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Quantum transport and pinning of a one-dimensional Wi~er crystal
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We study electron transport along a strongly depleted one-dimensional channel and assume the limit
of very weak disorder when electrons form the Wigner crystal. Pinning of this crystal by a weak poten-
tial of single impurity is considered in the quantum case. Zero-point oscillations of the crystal
significantly diminish the pinning barrier. However, it remains finite at moderate densities of electrons
(na& 0.5), in spite of the absence of the 1ong-range order in one dimension. Charge transfer in the sys-
tem occurs due to thermally assisted tunneling of the crystal through the pinning barrier, which results
in a power-law temperature dependence of the conductance o(T). The nonlinear conductance 0.(U) at
T =0 obeys a similar law.

I. INTRODUCTION

Gated semiconductor structures have a remarkable ad-
vantage in the study of electron-transport phenomena in
mesoscopic systems: the electron density in the sample
can be controlled by means of the gate voltage. At high
densities, quasi-one-dimensional channels formed by the
depletion of a two-dimensional (2D) electron gas in a het-
erostructure or in a Si metal-oxide-semiconductor field-
effect transistor (MOSFET) reveal high (o ) e /h ) con-
ductance of a metallic type. ' Moreover, for channels
with a moderate length, L &1 pm, the ballistic electron
propagation can be observed. These facts prove that at
sufficiently high 1D electron densities, n & 1/a~, the in-
teraction between electrons does not have drastic efFects
and a free-electron description is an adequate one (here,
az is the Bohr radius for the semiconductor material).
However, the Coulomb interaction becomes increasingly
important for a stronger gate-induced depletion of the
channe1 when naz «1. This interaction can control the
crossover to the dielectric behavior of the channel con-
ductance. The particular mechanism for such a cross-
over depends on the magnitude of the random fluctua-
tions of electrostatic potential which forms the channel.

If the fluctuations are large, the channel breaks, form-
ing a sequence of quantum dots, and the transport is
contro11ed by tunneling between them. Under certain
conditions, the conventional Coulomb blockade deter-
mines the character of this tunneling. '

If fluctuations are small, a one-dimensional Wigner
crystal (WC) can be formed. This crystal is pinned by
weak inhomogeneities in the channel and the electron
transport is determined by tunneling and activation of
the crystal. Such a possibility for silicon MOSFET chan-
nels was first suggested by Scott-Thomas et al. in order
to explain their experimental data.

In this paper we study the pinning of a 1D Wigner
crystal by a single impurity, creating a smooth potential
for each electron (Fig. 1). The total potential felt by the
crystal as a whole is a periodical one with the crystal
period a. Therefore, the elementary charge transfer in
the system occurs due to the shift of the WC by its period

which represents the relative magnitude of quantum fluc-
tuations of the crystal period: 5a/a -a. Here, m is the
electron mass, s is the sound velocity in the crystal calcu-
lated in the Appendix and given by

s = ln(8. 0nD),2e fl

Km
(2)

where K is the dielectric constant, and D is the distance
between the WC and a conducting plane (gate). Al-
though we carry out all the derivations for the model of
the WC with a closely situated gate (D ~ a), the case in
which the gate is absent is also briefly discussed in our
paper.

The influence of quantum fluctuations on a 1D crystal
can be very strong even at a « 1. This manifests itself as
a divergence of the correlator (u(0)u(x)), where u(x) is
the crystal displacement at the point x. At large x this
correlator increases as aa ln(x/a ) that leads to the loss
of long-range order in a 1D crystal. It might be expected,
then, that for a sufficiently long system the pinning po-
tential will be completely smeared out at any finite u, i.e.,
V;„=0. We will show that this is not the case, because
the barrier itself, however small it may be, suppresses the
long-wave fluctuations responsible for the absence of
long-range order. The remaining oscillatory modes of the
WC renormalize the height of the barrier according to
the formula

a. It can be provided either by thermal activation or by
tunneling of the crystal through some effective barrier
V~;„(pinning energy). Let us denote the height of this
barrier in the classical limit, which corresponds to very
low electron densities, as Vo. Here we evaluate the pin-
ning energy V;„ for the quantum case. The difference
between V„;„and its classical value Vo is caused by zero-
point oscillations of the WC that should wash out the
periodic pinning potential felt by the crystal. It is natural
to characterize the magnitude of this effect by the dimen-
sionless parameter

' 1/2
Playn=

msa 2 ln(8. 0nD )
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U(x)
' the conductivity

o(T)=os
Q Vpin

(5)
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FIG. 1. Pinning of a one-dimensional Wigner crystal by a
single impurity in the classical limit. (a) The crystal in a
smooth impurity potential U(x). Positions of electrons corre-
sponding to the ground state are shown by circles. (b) The
effective pinning potential V(u) as a function of the shift of
crystal u with respect to the impurity. The amplitude VD may
be much less than U(0).

Vpin
= Vo

' a/(1 —a)
0

ms
(3)

o(T) =o0exp( —V;„/ks T) . (4)

At lower temperatures, kz T« a V;„, the tunnel
mechanism of transport of the WC dominates. The
quasiclassical probability of tunneling of an elastic chain
through a single potential barrier had been found by Lar-
kin and Lee. It was shown to vanish in the limit of an
infinitely long chain. However, at finite temperatures,
when the tunneling can be activation assisted, this proba-
bility, as shown in this paper, becomes finite and provides

where VQ «ms, a & 1, and P is a numerical factor.
It is quite common to define the crystal, in contrast to

the liquid, as an object which can be pinned by an arbi-
trarily weak potential. According to this definition, Eq.
(3) justifies the use of the term "one-dimensional Wigner
crystal" in spite of the absence of long-range order. We
see from Eq. (3) that the pinning exists at any a & 1, that
usually corresponds to nas &0.5 [see Eq. (1)]. One can
contrast this behavior to the two-dimensional WC which
undergoes quantum melting at very small 2D densities 1V:

According to numerical simulations, Xaz =2X10
This fact results plausibly from an anomalously small

value of shear modulus and has no analogy in one-

dimensional crystals where transverse degrees of freedom
do not exist. That is why, in the sense of the definition

given above, it can be much easier to obtain a one-

dimensional Wigner crystal than a two-dimensional one.
The existence of pinning energy [Eq. (3)] manifests it-

self both in temperature dependence of linear conduc-
tance o(T) and in the I Vcharacteristic o-f the channel.
At high temperatures, aV;„k&T~ V;„, the conduc-
tance has an activation behavior

Expressions (4) and (5) match at ksT-(a/4)V;„. The

prefactor o.0 in these formulas is of the order of e /h.
The main signature of a pinning state is the existence

of threshold voltage U,h in the current-voltage depen-
dence at which a steep increase of current occurs. By
analogy with the classical limit, the threshold value Uth
can be found as U,h=mV~;„/e. However, even at volt-

ages far below the threshold, U «U, h, and at T=0 the
quantum tunneling gives rise to the finite nonlinear con-
ductance

' 4/a

cr(U)=o0
th

The last result represents a zero-temperature analog of
Eq. (5).

As one can see from Eq. (3), the pinning energy, and
hence the threshold voltage, vanish at the point a=1.
This important prediction, as well as applicability of for-
mula (3) to the case of large quantum fluctuations a- 1,
are planned to be discussed elsewhere. '

This paper is organized in the following way. In Sec.
II a classical model of a 1D Wigner crystal interacting
with a charged impurity is described. In Sec. III we give
a simplified derivation of pinning energy for the quantum
case. Formal calculation of this energy by the variational
method is presented in Sec. IV. In Sec. V the quantum
transport of a pinned WC is studied. The summary of re-
sults and their possible relation to the experiments ' are
given in Sec. VI.

II. DESCRIPTION OF THE MODEL

The properties of a Wigner crystal are determined, first
of all, by the form of electron-electron interaction. Usu-
ally the channel, where electrons are situated, is accom-
panied by a metallic body (gate) spaced from the channel
by some distance D larger than interelectron distance a
(we shall assume that D~a). The gate screens the
Coulomb interaction between electrons and remakes it
into a short-range repulsion. It manifests itself as a finite
phase velocity s of the crystal oscillations with wave-
lengths larger than D. The value of s is calculated in the
Appendix and is given by Eq. (2). Thus, as soon as one is
interested in large-scale deformations, the WC can be
represented by an elastic chain of particles connected by
springs. The system is described by three parameters:
the chain period a, the electron mass m, and the sound
velocity s. This simplest model of the WC will be used in
the present paper. The e6'ects of the long-range Coulomb
repulsion, which appear in the absence of the gate, will be
discussed briefly in Sec. III and V.

Suppose now, that there is an impurity near the chan-
nel that produces, for an electron, a long-range potential
U(x) with the spatial scale d ~ a and with the small mag-
nitude U(0) «e /va (Fig. 1). When the chain is shifted
as a whole by the distance u, its total energy V(u)
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V(u)= g U(ai+u) . (7)

The function V(u) is periodic and can be expanded into a
Fourier series [for the sake of simplicity we consider an
even function U(x }]

a
V(u ) =—f dx U(x )+ g U(q )cos(q u ), (8)

a m=1

changes periodically with some amplitude Vo which
defines the pinning energy in the classical case. It is easy
to relate Vo to U(0) in a general form in the approach
which neglects the deformation of the WC caused by the
impurity potential. In this case the energy of crystal-
impurity interaction is given by the sum

WC formed by the pointlike electrons, provided that, in
contrast, the impurity potential is of long-range nature.

III. QUANTUM SUPPRESSION
OF THE PINNING BARRIER

Our goal now is to explore how the quantum oscilla-
tions of the chain affect the amplitude of the effective pin-
ning potential. Suppose the pinning center is situated at
x =0 in the middle of a chain with length L. The interac-
tion between the chain and this center can be described
by Eq. (10}with u =u(0}, where u(x } is the local chain
displacement at point x. This approach is justified since
relevant oscillations, as we shall see later on, are the
long-wavelength ones. The Hamiltonian of the Wigner
crystal interacting with the pinning center has a form

where q =2am /a and

00

U(q ) =—f dx U(x )cos(qx )
a

(9)

2
H= gp„+ g k u„— cos u(0)

is the Fourier transform of original potential U(x ). Be-
cause the first term in Eq. (8} does not depend on u, only
the second term in Eq. (8) is important.

The Fourier transform U(q) drops with q at a typical
scale q —1/d. This decrease at q ))1/d is known to be
at least exponentially fast provided the original potential
U(x) has no singularities

U(q ) o- exp( —Aqd ),
where coefficient A depends on the shape of the U(x ). In
Eq. (8) all q ))1/d so that U(q ) drops very fast with
m. Hence, we may keep the only term in Eq. (8) with

q, =2~/a and get

(13)

up
uk cos( kx ) +

k)0 2

The terms related to the odd modes sin(kx ) are omitted
in Eqs. (13) and (14) because they do not interact with the
center and produce a constant term in the Hamiltonian.
The local displacement near the center u(0) in Eq. (13) is
given by the sum over even modes only,

where pk and uk are canonically conjugated operators of
momentum, and coordinate of the even oscillation mode
with the wave number k (k =2nm /L;
m =0, 1, . . . , L /2a), and uk is defined by

' 1/2

u(x)= 2a
L (14)

~o 2~u
V(u ) = V(0)+ cos —1

2 a
(10) u(0)=

L

' 1/2
up

g uk+
I&&0 2

(15)

4e
V0 1~2 exp

a(da )
(12)

Thus, if the charged center is shifted away from the axis
of the WC as little as on d=a, the effective barrier
height, compared with the origina1 potential, wi11 be
suppressed by two orders of magnitude.

Note that the sinusoidal potential of form (10) had
been used in the Hamiltonian, " which describes the in-
teraction of a charge-density wave (CDW) with zero-
radius impurity potential. This model is based on the as-
sumption that the CDW itself is sinusoidal. We see that
the same form of interaction appears automatically for a

where Vo =2U(q, ) is given by Eq. (9) and is of the order
of U(0)exp( —2m. Ad /a ).

For example, a charged impurity spaced off from the
WC by a distance d such that D »d ~ a creates for each
electron the Coulomb potential

e2
U(x)=

(x 2+d 2) 1/2

This provides for the crystal, as follows from Eq. (9), the
pinning energy

k)0
(16}

with

2 k '
2msk

(17}

and 8 being the normalization factor. After averaging
the cosine in Eq. (13) by use of Eqs. (15) and (16},we get

First, we will calculate the shift c, in the ground-state
energy due to the pinning potential given by the last term
in Eq. (13), as a function of parameter a [Eq. (1)]. The
problem of calculating e. is nontrivial, because the pertur-
bation analysis does not work even at very small Va (we

will further assume Vo «ms ) It turns ou. t that for in-

creasingly long systems (i) the first-order correction to the
energy vanishes at any a, and (ii) the second-order
correction diverges (at a & —,'}.

Statement (i) can be easily checked by averaging the
pinning term in Eq. (13) with the nonperturbed wave
function of the ground state. The eigenfunction of the
Hamiltonian (13}with Vo =0 is given by the product
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%0 cos u(0) %0 ~exp — g (uk), (18)
2' 4H
a aL „,o

which represents the well-known Debye-Wailer factor. '

After substituting Eq. (17) into Eq. (18) and replacing the
sum over k by the integral, for the first-order correction
c'" to the ground-state energy we obtain

crease of kinetic energy of zero-point oscillations.
Indeed, the existence of additional nodes at x =0 for the
modes with k & ko causes their frequencies to shift up-
ward to make them coincide with those of the nearest
odd modes (Fig. 2), i.e., the frequencies are increased by
b,cok =m.s/L. With the total number of shifted modes be-

ing koL /2n, the kinetic energy increases by

Vo ~/~ dk
exp —a

2 o k
(19)

fi
b,cok =

k (ko

Asko

4
(21)

Vo ~. dk
exp —a

2 kp k

'a
Vo koa

2 7T
(20)

Thus, the existence of nodes for long-wave oscillations
is profitable in terms of energy because it leads to the res-
toration of a finite potential well with the depth ~e& ~. On
the other hand, the nodes are also associated with the in-

u(x)

The integral in Eq. (19) diverges logarithmically at the
lower limit and should be cut off at k-2m/L. The final
value of c'" vanishes as L with increasing chain length
L. It is a consequence of the lack of long-range order in a
one-dimensional crystal. The second statement (ii) re-
quires more cumbersome calculations and is planned to
be proved elsewhere. '

As we shall demonstrate below, the actual shift of ener-

gy e is finite and proportional to a noninteger power of
Vo ~ The origin of this nonanalytical dependence is that
even a very small pinning barrier Vo produces, at x =0
roughly speaking, a node for each long-wavelength mode
with a wave number less than some typical value
ko=ko(V&} (Fig. 2}. The oscillations of these "soft"
modes are suppressed near the pinning center. As a re-
sult, these modes do not participate in smearing out the
pinning potential. In other words, the integral in Eq. (19)
should be cut off at the lower limit by k =ko, that yields

The wave number ko should be chosen in order to min-
imize the sum of kinetic and renormalized potential ener-

gy, Eqs. (21) and (20), respectively. At a ( 1 the net ener-

gy c=c,+@2has its minimum at
' 1/(1 —a)

ko=—7T 0
(22)

ms

The corresponding value of c is given by

V 2V
' a/(& —a)

0 0s= — (1—a)
ms

(23)

In Sec. IV this formula will be obtained again by means
of a regular variational procedure.

At a & 1 the sum c=c&+c2 has its minimum value
c=O at ko=0. This result, which implies the absence of
pinning at a&1, is discussed in Ref. 10, where the ex-
istence of a peculiarity at a = 1 for the Hamiltonian (13)
is confirmed by the perturbation analysis.

It follows from Eq. (23) that ~e~ is strongly diminished
compared with its classical value

~ e„,.„~= Vo /2, if
a in(ms /Vo) is large, although a itself may be small.
We have shown that this decrease is due to the high-
frequency modes with k & ko ~ The same modes suppress
the amplitude of the pinning potential that acts on the
crystal. Hence, the renormalized amplitude of the pin-
ning potential is ~s, ~. Thus, in our approach, which im-

plies a sharp division on high (k & ko) and low (k (ko)
modes, the effective pinning potential is given by

V;„
V,s(u ) = — cos(2m u /a ), (24)

—L/2

—L/2

/
p /

(

u(x)

L/2

L/2

with V~;„=2~a& ~. Here, u(0) means the crystal displace-
ment (15) averaged over the high-frequency modes. After
substituting Eq. (22) into Eq. (20), for the pinning energy
V;„we obtain Eq. (3) with P=2.

So far we have considered the case of a short-range in-
teraction between electrons in the WC, which is provided
by a closely situated gate. Our derivation was essentially
based on the existence of a finite phase velocity s =cok/k
for long-wave oscillations of the crystal. If the gate is ab-
sent, the phase velocity diverges in the long-wavelength
limit, and the frequency spectrum cok is that of the 1D
plasrnon

(b) =s kincgk so n (25)

FIG. 2. The profile of an even oscillation mode (a) in the ab-
sence and (b) in the presence of a pinning center situated at
x =0. Dashed curve shows the adjacent odd mode.

where y —1 and so=2e /orna. As a result, the mean-

squared amplitude of zero-point oscillations for mode k,
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2m cok
(26)

where matrix I k should be chosen in order to produce
an oscillation profile

mso2

V;„=Voexp —2a*ln'
Vo

(27)

where the quantum parameter a' analogous to a [see Eq.
(1)] is defined as

a'=~(na, /2)'" (28}

A comparison of Eqs. (27) and (3), where a is defined for
a large but finite gate spacing D by Eq. (1), shows that the
long-range nature of electron-electron interaction
enhances the pinning by suppressing the quantum oscilla-
tions. In real structures, however, another factor may be
more important, namely, the gate screening of the ran-
dom potential produced by charged impurities that al-
ready diminishes the classical pinning energy Vo.

increases with decreasing k more slowly than given by
Eq. (17). Consequently, the divergence of the sum over k
in the exponent in Eq. (18) is slower, too, which should
result in a weaker nonanalytic dependence of the pinning
energy V;„on the classical pinning potential Vo than
that given by Eq. (3). The expression for Vv,„can be de-

rived in the same way as it was done above for the short-
range model, starting with Eqs. (25) and (26) instead of
Eq. (17). The result can be represented in the form

fk(x)= Q I k cosqx
q

(31)

H = 'g (p —+k u )
— + V qr u (0 )

Vo

k

(32)

The harmonic Hamiltonian (32) is diagonalized by the
transformation (30b}with the matrix

Ckh

(k+5kb ) —
q

ko

~ (k'+k')'" '

(33a)

(33b}

which approaches the modulus of the sine for small k
("pinned" modes), and the cosine for large k ("non-
pinned" modes).

A wave function satisfying this requirement is the
eigenfunction of the ground state in the case of a small
quantum parameter, a« ln (I/Vv), within the limits
of which the Hamiltonian (29} can be exactly diagonal-
ized. In this case, the magnitude of quantum fluctuations
near the center is small compared with the lattice param-
eter, ( u (0) ) « 1, so that the last term in Eq. (29) can be
expanded in u (0), yielding

IV. VARIATIONAL CALCULATION
1 k

5k =—arctan
ko

(33c)

Here, we derive the ground-state energy of the Wigner
crystal in the presence of a small pinning potential by
means of a variational approach. It will be convenient to
use dimensionless units in which a=m=s=1. The
Hamiltonian (13}then takes the form

Vo
H = ,' g p„+—,

' g k—uk— cos[2m.u(0)], (29}

(30a)

with the energy measured in units of ms, and Vo &(1.
Parameter a/n=filrnsa .defined in Eq. (1) plays the role
of dimensionless Plank constant: [pk, uk ]= ia/n- ..

We shall construct the appropriate trial function, using
results of Sec. III as a guide. Obviously, the trial func-
tion %tuk] should depend on all normal-mode coordi-
nates uk. One s first inclination is to choose the function
4 in the form of Eq. (16), considering ( uk ) as variational
parameters. However, this would yield a senseless
answer because the picture of the crystal oscillations, de-
scribed by the wave function (16), does not provide de-
creasing oscillation amplitude near the pinning center at
x =0: normal modes uk are amplitudes of cosines in the
coordinate space. However, as shown in the previous
section, this decrease ("node") should exist in the crystal
bound to a pinning center. This suggests that one should
use a function 4 which depends instead on linear com-
binations of uk, e.g., as given by

+0[uk ] ~ II e"p( vk/4~vk ~ }
k

q X kq k& Pq X kq k
k k

as well as substituting Eq. (15), into Eq. (29), that yields

H= ,' QPk+ ,' g(k+5—kh) vk
——gckvk

4ko

Vo
COS Ck Vk

2 o
(34)

where 6 =2'/L is the spacing of the frequency spectrum
in the absence of pinning potential, and kv=qr Vv. As
seen from Eqs. (33) at high wave numbers k »kv, the
quantity 5k tends to zero, so that I k =5k . At small k,
5k =

—,', and the matrix I kq gives the Fourier transform of
sin(k ~x ~ ), that can be checked by substitution of Eq.
(33a) into Eq. (31).

The function %[uk ] given by Eqs. (30) and (33) is an
exact eigenfunction for a« ln '(1/Vv) only. It is not
the case for an arbitrary a when the coordinate u (0) can
reach a few neighboring minima of pinning potential, and
Hamiltonian (29} is essentially nonharmonic. However,
we can use the function + [ uk ] for arbitrary a, as a trial
function, treating kv in Eqs. (33a)—(33c) as a variational
parameter (perfectly analogous to kv in Sec. III}.

The form of Hamiltonian (29} in the representation vk,

Pk = i(a/~)dldvk—, can be obtained by substitution of
expressions

Vk X ~kquq
q

(30b)
where we have used Eq. (33a}for I k and the identity
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oo

cotan(m. z ) .
2z

After averaging the Hamiltonian (34) with the wave
function (30), for the energy E= ( 4~H ~'Il) we have

2 I 2E=y, , + (v„')
k 8m vk

This result coincides with the exact ground-state energy
for the quadratic Hamiltonian (32) and might be obtained
by a straightforward diagonalization of (32).

Expression (40) was obtained in the Debye approxima-
tion, i.e., for the frequency spectrum cok =sk, 0 & k & n /a,
which we used for the sake of simplicity. All the calcula-
tions can be repeated for another form of the spectrum
given by

k0 V0+a y k5k(vk ) — n —e
k 2772 2

(35)
2s . ka

cgk = sin
Q 2

(41)

where

30=
2 g ck(vk )

2k 20

(36)

In Eq. (35) we have omitted the terms of second order in

k0 V0E Eo= f—dk 5k — 0— e
2~ 0

' 2~ 2
(37}

C

(38)

where Ev=(a/2m. )gkk is the zero-point energy in the
absence of pinning. Substitution of Eq. (33), for 5k, ck,
into Eqs. (37) and (38), and calculation of integrals over k
yield

ak0
E—E

2H

'a
Vv kv

2 7T
(39)

where we allowed ko to be much less than the Debye
wave number k=m. At a&1, the sum (39) has a
minimum at

Parameters (vk ) in Eqs. (35) and (36), as well as pa-
rameter k0, are variational ones. The last three terms in
the right-hand side of Eq. (35) form a small correction to
the zero-point energy due to the pinning. Hence, we can
substitute into these terms the values ( vk ) found from
the minimization of the major (first) term in the energy
(35}:( vk ) =a/2n k As a .result, replacing the sums over
k in Eqs. (35) and (36) by integrals over the interval
0&k &m, we get

which corresponds to a chain with the nearest-neighbor
interaction and is a good approximation when the dis-
tance D between the gate and the WC is small: D & a. As
a result, we arrive at Eq. (40) with a somewhat difFerent
numerical coefficient: vr /4 instead of n The .functional
dependence of E—E0 versus V0 remains unchanged be-
cause it is determined by the long-wave part of the pho-
non spectrum only.

V. TRANSPORT OF THE WIGNER CRYSTAL

The form of effective pinning potential V,e(u ) obtained
in Sec. III, Eqs. (24) and (3), permits one to determine the
threshold voltage U,h at which the depinning of the WC
occurs. In an analogy with a classical problem, U,h is
given by the formula

dV, f
(42)

max

For a ((1, the voltage U= U,h corresponds to the sharp
increase in the WC conductance. The finite current,
however, can pass through the system even far below the
threshold (U« U,h). In this section we shall calculate
both linear and nonlinear conductance of the WC in this
region, and shall estimate the voltage of crossover be-
tween these two regimes.

When discussing the linear conductance of a channel
connected to "perfect" leads with metallic conductivity,
we neglect the electron-electron interaction inside the
leads. This allows us to relate the conductance to the
transmission coefficient of the channel by means of the
Landauer formula

k =m.(m. V )'~" ~'&&n.
0 0 ED E (43)

E—E0

' a/(1 —a)

(1—a)
ms

(40)

Note that this result differs from the estimate (23) of
Sec. 111 by the numerical factor (~/2} ~' ' only. An
expansion of Eq. (40) at small values a « ln '(ms2/Vv)
yields

Vo emsE—E0= — 1 —a 1n
2 m. V0

Finally, substituting the last value into (39) and returning
to the dimensional notation, for the ground-state energy,
we obtain

where f(E) is the Fermi distribution, and D(E} is the
transmission coefficient for electrons with the energy E
counted from the Fermi level. Although electrons are as-
sumed to be noninteracting outside the channel, the value
of D(E) is determined by the electron-electron interac-
tions inside the channel. ' Transport through the chan-
nel at low temperatures T occurs due to tunnel hops of
the crystal on a period a through the effective pinning
barrier. The quasiclassical probability of this tunneling
at T=O for a similar system was calculated by Larkin
and Lee, who studied the tunneling of the charge-
density wave. We shall review briefly the concepts of this
derivation in terms of Wigner crystal parameters, and
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(44)

where mlo/a is the tunneling mass, and the total tunnel
barrier consists of two parts: the pinning barrier V;„and
the deformation energy -ms a/10 of the tunneling seg-
ment. The action at the relaxation stage (that follows the
"local" tunneling through the pinning barrier) does not
depend on V;n and can be represented in the following
form:

A2 =f [ Vd,((t )+ i Td,((t )
~
Jdt

=2f V„„(t)dt,
0

(45)

where tL is the time necessary for spreading of the defor-
mation onto the whole crystal length; Tz,((t) &0 and

Vd ((t) are kinetic and potential energies of the deforma-
tion, respectively, and we have assumed that the total en-

ergy E is that of the ground state: E= Vd f+ Td f 0.
The energy Vd,((t) can be estimated in terms of charac-

teristic size 1(t ) of the deformed segment at instant t as

ms a
Vde((t ) = l(t )

(46}

generalize this result for the case of finite temperatures.
Following Ref. 9, we shall treat the tunneling process

as a quasiclassical one that occurs through the barrier
with the effective height V;„[Eq. (3)]. This approach is
also suitable in the case in which the pinning barrier is
strongly suppressed by quantum oscillations, and will be
justified later on. The tunneling probability is given by
D -exp( —2A /fi), where A is the minimal value of the
tunnel action, for the shift of the crystal by a from an un-
deformed ground state to the equivalent one. Obviously,
a long chain cannot tunnel with all its particles moving
simultaneously because action A will contain a huge
mass. Hence the tunneling should consist of two stages.
First, a finite segment of WC tunnels through the barrier
on the distance a, creating a deformed area with the
length lo around the center. Then this deformation,
which corresponds to a classically forbidden state of WC,
relaxes spreading along the remaining part of the chain.

At the first stage, action A, is given by
1/2

mlo ms 2

A) =a

Eqs. (44) and (48). This sum has a minimum at

lo=ms a/V in .

Finally, for the tunneling probability we get

2 4
D =exp ——(A, + A2) =exp ——ln

Vpin L

ms a

where a and V»„are given by Eqs. (1) and (3), respective-
ly.

Note that the inverse length 10 coincides with the
wave number ko (22} that separates the pinned (or classi-
cal) and nonpinned (or "quantum") oscillation modes.
The main contribution to the action A = A, + A2 comes
from A2 [we have Az/A&=ln(L/10)] which mainly in-
volves, as seen from Eq. (47), the tunneling of long-wave-
length modes with l ))lo. At the same time, the renor-
malization of the pinning barrier down to V»„, Eq. (3},is
due to the modes with 1 &lo. Thus our suggestion re-

garding a quasiclassical nature of tunneling in the quan-
tum case is justified. However, the effective potential bar-
rier is diminished due to the high-frequency oscillations.

The tunneling rate (49) of a WC interacting with an im-

purity and, hence, the linear conductance at zero temper-
ature, vanish for increasingly long sample. This is be-
cause the deformation energy in Eq. (45) approaches too
slowly the zero limit that corresponds to the ground
state: Vd,((t ) ~ 1/t. At finite temperatures, however, the
crystal can tunnel, being excited above the ground state
by a finite energy E )0, so that the deformation energy,
after the tunneling event, is also finite: Vd,f-E. Accord-
ing to Eq. (46), the energy corresponds to the size

lz =ms a/E of the deformed region. In order to obtain
the action A2(E) for the finite energy E, we should re-

place L with lz at the upper limit of the integral (48).
The final formula for the tunneling probability D(E) has
a form

The length lo should be found from the minimization
of total action

A(lo)= A, (lo)+ A2(lo),

The deformed region, starting from the size lo, expands
in time with the sound velocity s, so that we have

l(t ) =10+st .

Substituting Eqs. (47) and (46) into Eq. (45) and changing
the integration variable t to I, yields

4 Vpin
D(E)=exp ——lna E

with E being in the interval

ms a /L ((E((Vpin .

(50)

2 Ldl 2 LA2= —msa —=—msa ln —. (48)

The numerical coefficient 2/m in Eq. (48) does not follow,
of course, from our simplified derivation. It can be ob-
tained, for example, by a solution of the harmonic equa-
tion of motion that permits one to calculate the function
Vd,((t) for the crystal with negative kinetic energy, as
was done in Ref. 9.

Equations (49) and (50) are written apart from numerical
coefficients in the argument of logarithm. Physically, ex-
pression (50) represents the probability of tunneling for a
long-wave soliton with a length -lE =ms a/E.

The linear conductance of a channel connected to me-
tallic leads is given by formula (43). This implies that the
transport through the channel occurs due to solitons
which are excited at the ends of the channel by electrons
arriving from the leads. Because the channel transmis-
sion coefficient D(E) is mainly limited by the small tun-
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e dE E 4 Vpino.= exp — ——ln
fi k~T k~T a E (51)

neling probability of solitons passing through the impuri-
ty potential, we will estimate D(E) at E &0, as given by
Eq. (50). At energies E »ks T the Fermi function f(E)
can be replaced by the exponential exp( E/—ksT}, so
that for conductance 0. we get

——+ —ln —=—'ln
L dl L dl )g2 I 3/2

~0 l ~o l a l()

Hence, for the action A 2 we have
r 'r

A 2
= PlSoa ln

4 3/2 L
3~ lo

(55}

(56)

At small a«1, the integrand in Eq. (51) has a sharp
maximum at

E=4ksT/a . (52)

1 l
V ~ —1ndef

1
(53}

which differs from Eq. (46) by a logarithmic factor. The
scaling relation between the length l and the time t has a
form

l
t oc

ln'~ (1/a )
(54)

[cf. Eq. (25)]. As a result, the integral f dl /l in the tun-
nel action (48) will be replaced by

Evaluating the integral in (51) near this maximum, we ar-
rive, apart from a numerical coefftcient, at Eq. (5} for cr

with oo-e /A'.

Thus we have obtained the temperature dependence of
the linear conductance provided at low temperatures by
activation-assisted tunneling. Formula (5) for the con-
ductance is valid until the activation energy E given by
Eq. (52) is less than the barrier height V;„, i.e., at tem-
peratures

T & T, =a Vp,.„/4k' .

In the temperature interval T, & T &
Vz,„/ks, the major

contribution to the current comes from the activation
over the barrier V~;„, and Eq. (4) takes place.

The finite energy E that is necessary for the crystal to
complete the tunneling in a finite time can be provided
not only by thermal activation but also by the external
voltage applied. At low temperatures the conductance
o ( U) will then be nonlinear and proportional to D(eU),
where the tunneling probability D(E) is given by Eq. (49).
As a result, for cr(U) we obtain the power-law depen-
dence (6). At a given temperature T and voltage U the
conductance is determined either by Eq. (6), or by the
linear formula (5), whichever gives larger results. The
crossover to the nonlinear regime occurs at U-akim T/e
It is noteworthy that at a «1, the nonlinear behavior of
the conductance takes place at voltages much smaller
than the temperature (expressed in eV).

To conclude this section, we discuss briefly how the re-
sults of the conductance are changed in the case of the
long-range Coulomb interaction between electrons in a
WC (i.e., for the channel without a screening gate). At
the stage of the tunnel relaxation that dominates the tun-
neling probability, the potential energy Vd,f of the de-
formed crystal segment scales with its length l as

where so is introduced in Eq. (25). The further derivation
of the conductance cr proceeds in the same way as given
above, and we get

e 8 3y2
a*

Vpin
cr — exp — ln

3a* T (57)

with a' defined by Eq. (28). We see that the temperature
dependence o(T) is stronger than that given by the
short-range formula (5). The field dependence o ( U) [Eq.
(6)] transforms, of course, in the same way.

VI. CONCLUSION

We considered in this paper the pinning of a one-
dimensional electron solid by a single-impurity potential.
Although the long-range order is absent in 1D, this does
not eliminate the pinning even by an arbitrarily weak po-
tential. This was demonstrated above for the case in
which the impurity potential is not only weak but also
smooth (this already makes the pinning barrier very small
in a classical limit). Obviously, pinning becomes stronger
for sharper potentials. It follows from the variational
analysis (cf. Secs. III and IV) that our results are valid
even if the impurity potential U(x ) is not smooth. Par-
ticularly, for

a» ln '(ms /Vo)

the renormalized pinning barrier is determined by the
first Fourier harmonic of the impurity potential Vo and
quantum parameter a as given by Eq. (3); here Vo and a
are defined by Eqs. (9), (10), and (1). Higher harmonics of
pinning potential are strongly smeared out by quantum
oscillations: The magnitude of rth harmonic U(q„) is di-
minished by the factor ( Vo/ms }' . Thus, our result (3)
for the effective pinning potential is valid as well for a
broader class of weak pinning centers.

Formulas (5) and (6), which predict a power-law behav-
ior for both temperature and voltage dependence of the
conductance, were also derived for a weak smooth irnpur-
ity potential. However, this power law is universal with
respect to a model of potential. Particularly, it remains
valid in the case of an arbitrarily high tunnel barrier: It
follows from the discussion in Sec. V that the exponent
4/a in Eqs. (5) and (6) is determined by tunneling at large
imaginary times and does not depend on the barrier
shape.

The studied case of a single impurity may serve as a
starting point for an investigation of pinning by more
complex configurations. In particular, pinning of a 1D
Wigner crystal by two impurities, which leads to phe-
nomena similar to the well-known Coulomb blockade,
will be studied separately. ' Here we list briefly the main
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N
I

N+1
I

N+2
I

Ln

predictions for this model of pinning and its possible rela-

tion to the experiments reported in Refs. 6 and 15.
Suppose that two weak pinning centers are situated in

the channel at sufficiently short distance L such that one
can neglect the crystal deformation between the impuri-
ties (the weak-pinning case). The effective pinning poten-
tial will be given by the sum of two terms of form (10)
with the phase difference 2nL/a. between two cosines.
The amplitude of the total potential and, hence, the
height of the pinning barrier V;„,will change periodical-
ly with the electron concentration n =1/a resulting in
sharp conductance oscillations in the gate voltage V~
shown in logarithmic scale in Fig. 3(a). A different mech-
anism of conductance oscillations versus V is well
known for an electron gas separated in some region from
the rest of the channel by two high tunnel barriers. Here
the oscillations result from the existence of Coulomb lev-
els due to discreteness of an electron charge, ' the
electron-electron interaction being described in the
mean-field approach. This model does not account for
the short-range correlations of electrons. Both models
predict the same period of oscillations hV~. However,
the shape of oscillations Incr( Vs ) is different in these two
cases. In the mean-field theory, the function 1no ( Vs) at
low temperatures should consist of straight segments
with a constant slope ("saw-teeth") analogous to that
shown in Fig. 3(d). This is because the activation energy
is defined by the Coulomb level closest to the Fermi ener-
gy. In the case of the strongly correlated system (WC)
the situation is more complicated. The form of oscilla-

tions varies depending on the pinning strength and on the
regime of transport (activation or activated tunneling).
In one particular case it may look sawlike [Fig. 3(d)].
Generally, however, it differs qualitatively from the saw-
teeth dependence [Figs. 3(a), 3(b), and 3(c)]. Apart from
this, the ratio of the activation energy c, of the linear
conductance to the threshold voltage U,h should be
different in the case of weak (or intermediate) pinning and
in the mean-field model (i.e., Coulomb blockade):
s, /eU, „equals I/n. [cf. Eq. (42)] and 1, respectively. In
Refs. 6 and 15 the conductance oscillations cr( Vs } were
observed for two different quasi-one-dimensional struc-
tures based on silicon and GaAs, respectively. In both
cases, as one can see from data reported for a minimum
of 0 ( Vs }, the ratio s, /eU, h was approximately one third.
The pinning model could also explain a general increase
in the ratio of the conductance values o,„/o;„ in adja-
cent maxima and minima with electron concentration n
decreasing, which was observed in Refs. 6 and 15. The
mean-field theory predicts this ratio,

cr,„/cr;„-exp[ e /2C—(L )k~ T),
where C(L ) is the segment capacitance, to be indepen-
dent on n. In the weak-pinning model the ratio

0,„/0;„-exp( 2VO /k~ T—)

is sensitive to the electron concentration n since the pin-
ning energy Vo, as discussed in Sec. II, tends to increase
with decreasing n. However, a clearer argument in favor
of one or another model would be, in our opinion, the
study of the oscillation curve in the logarithmic scale
Incr(V ), where the difference between two models, as
demonstrated in Fig. 3, should be observable. Since these
data are absent in the experimental papers discussed, we
refrain from drawing a final conclusion on this subject.
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APPENDIX

FIG. 3. Oscillatory dependence of the conductance cr vs the
electron concentration n in a Wigner crystal pinned by two im-
purities located at distance L from each other. A few particular
cases which difFer by pinning strength and temperature regime
are shown schematically in (a)—(d). The entire channel length is
assumed to be sufKiciently short. Graphs are shifted and nor-
malized to the same oscillation magnitude. (a) Very weak pin-
ning. (b) and (c) The crossover from the weak to the strong pin-
ning. (d) Very strong pinning, intermediate temperatures. This
case is analogous to the mean-field prediction (Coulomb
blockade).

We calculate here the electrostatic energy and the
sound velocity of a chain formed by electrons with a con-
stant period a=n ' and placed at distance D along a
conducting plane (gate). Parameters D, a, and the chain
length L are supposed to meet the condition L &&D ~ a.
The sound velocity s is defined by the general formula

z n d2E
s

m dn
(Al)

where m is the mass of electron, and E(n ) =E/L is the
chain energy per unit length. Interaction energy of 1V

electrons, including potentials of their electrostatic im-
ages, is given by
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1V
00 2

, =~„a[4.D +(ai) ]'" (A2) E= 2(lnM+ y )
—2 ln

1Ve Ma
2KQ D

The second sum in Eq. (A2) can be replaced by an in-
tegral: For D )a/2, this replacement leads, as one can
see, to an error of less than 2%%uo in the final calculation for
s. As a result, we have

2

Ln [ln(nD)+y], (A4)

where y=0. 577 is the Euler constant. For the second
derivative of E=E/L we obtain

Ne ~ 1

2tca,.~, /i/
dx . (A3}f oo 1

(4D 2+x 2)1/2

d2E 2e~
ln(nD }+—'+y

dn 2 (A5}

Both the integral and the sum in Eq. (A3) diverge loga-
rithmically; however, two divergences cancel each other.
We cut the sum on large ~i

~

=M and the integral, corre-
spondingly, on ~x ~

=Ma; hence,

Note, that the quantity (A5) is proportional to a directly
measurable value, namely, to the inverse capacitance c
per unit length between the channel and the gate:
c '=(tr/e )E"(n). Substituting Eq. (A5) into Eq. (Al),
we arrive at formula (2) of the main text.
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