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Electromagnetic analogies to general-Hamiltonian efFective-mass electron wave propagation
in semiconductors with spatially varying effective mass and potential energy
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It is shown that exact, quantitative electromagnetic analogies exist for all forms of the general Hamil-
tonian [R. A. Morrow and K. R. Brownstein, Phys. Rev. B 30, 678 (1984}],which applies to single-band
effective-mass electron wave propagation in semiconductors. It is further shown that these analogies are
valid for propagation in the bulk, propagation past abrupt interfaces between materials, and propagation
within one- and two-dimensionally inhomogeneous materials. These results indicate that the correct
form of the single-band effective-mass Hamiltonian can be determined through appropriate wave-
function-amplitude-sensitive experiments. Wave-function-phase-sensitive experiments (such as the mea-
surement of electron wave refraction directions) are not adequate to specify completely the Hamiltonian.
The present analogies suggest many wave-function-amplitude-sensitive experiments that can be used to
determine the correct form of the Hamiltonian. The results of the present analysis are broadly applic-
able to general effective-mass propagation, unlike other recent work that has treated specific cases.

Recent advances in nanostructure growth and fabrica-
tion techniques (such as molecular-beam epitaxy and
nanolithography) have led to the development of semi-
conductor devices in which the device response is dom-
inated by ballistic-electron (phase-coherent) transport. '

Such ballistic electrons have been rejected and refract-
ed, ' focused, ' and interfered ' in a manner analogous to
electromagnetic waves in dielectrics. Based on these re-
sults, it has been shown analytically, that under the
effective-mass approximation, exact, quantitative analo-
gies can be drawn between ballistic (collisionless) electron
transport in semiconductors and electromagnetic wave
propagation in dielectrics.

These previous analogies were developed both for
propagation in the bulk and for propagation past abrupt
interfaces between materials. In developing these analo-
gies, the electron wave boundary conditions at an abrupt
interface between dissimilar semiconductors were as-
sumed to be the conservation of the electron wave ampli-
tude g and the conservation of the product of the inverse
effective mass and the normal component of the gradient
of the electron wave amplitude, Vg n/m. The choice of
these boundary conditions is equivalent to choosing the
Hamiltonian H such that

an functions. Using this class of functions, Morrow and
Brownstein' have shown that only those Hamiltonians
that lie within a subset of this class of functions have
physical meaning when considering the matching of the
boundary conditions across an abrupt interface. There is,
however, significant disagreement as to the exact form of
the Hamiltonian within this class, based on consideration
of a number of specific cases. " ' The purpose of the
present paper, therefore, is to draw a set of exact, quanti-
tative analogies between electromagnetic wave propaga-
tion in dielectrics and effective-mass electron wave propa-
gation described by the complete class of Hamiltonians
given by Morrow and Brownstein. These analogies will
be drawn for propagation in the bulk, propagation past
abrupt interfaces, and for propagation within one- and
two-dimensionally inhomogeneous materials, and will be
valid for whatever form of the general Hamiltonian is ul-
timately shown to be correct. In addition, these analogies
present the specific types of experiments that can be per-
formed to identify the correct form of the effective-mass
Hamiltonian.

Morrow and Brownstein' demonstrated that, of the
general class of Hamiltonians (H) suggest by von Roos,
only those that take the form

$2
Hg= V.

2
+ V(r)Q=EQ,

m(r) HP= (m(r) V. Im(r)~V[m(r) g]I )+ V(r)Q=EQ
2

for electron wave propagation in a region of spatially
varying eff'ective mass m(r) and spatially varying poten-
tial energy V(r), where fi is Planck's constant divided by
2~, and E is the total electron energy. This Hamiltonian
is probably the most widely used form of the effective-
mass Hamiltonian. ' There are, however, other Hermi-
tian forms of the effective-mass Hamiltonian and each re-
sults in different boundary conditions. ' von Roos has
suggested a Hermitian class of effective-mass Hamiltoni-

with the constraint

2u+P= —l

have physical meaning, when considering propagation
past an abrupt interface between dissimilar semiconduc-
tors. Using comparisons of more exact theories and the
effective-mass theory, many authors have attempted to
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deduce the values of a and P, resulting in a wide range of
values from a= —

—,
' and P=O (Ref. 11) to a=O and

P= —1 (Refs. 12—14). As Morrow suggests, " the deter-
mination- of- the- correct- values- of- u- and- ~~- wiH- doubtlessly
depend on experiments. Galbraith and Duggan have
used photoluminescence data to shown that a=O and
p= —1 for GaAs/Gai „Ga„As quantum wells. ' Simi-
lar results have recently been reported for
GaAs/Ga1 Al„As quantum wells by Mojahedie and
Osinski. ' However, these results are valid only for
GaAs/Ga1 „Al„As heterostructures. ' Since the deter-
mination of a and P is still an open problem in general,
this paper will draw electromagnetic analogies to the gen-
eral form of the Hamiltonian given in Eq. (2) for all
values of a and P. The analogies that are drawn dictate
the form experiments must take in order to determine the
correct values of a and P.

For the Hamiltonian of Eq. (2), the boundary condi-
tions for an electron wave at an interface are'

and

m P continuous

m +~V/ n continuous,

(4)

(5)

where n is the unit vector normal to the interface.
Analogously, the boundary conditions for an electromag-
netic wave at an interface between two dielectrics require
the continuity of the tangential component of the electric
field (8) and the continuity of the tangential component
of the magnetic field (&) across the interface. Based on
this consideration, it is reasonable to look for analogies
between 4=m 1(t and either 8 or gf. In the previous
work based on Eq. (1), it was demonstrated that g (not 4)
was analogous to 8 for TE polarization and to gf for TM
polarization. The analogies of the present paper will be
consistent with these analogies because Eq. (1) is the a =0
special case of Eq. (2} for which 4=1(.

For bulk propagation in a homogeneous medium, an
exact analogy can be drawn between 4 and both 8 and

In this case, the Hamiltonian for the electron wave
propagation [Eq. (2)] reduces to a Helmholtz equation of
the form

V' 4= —k4, (6)

where k =2m(E —V)/fi . This wave equation [Eq. (6)]
is exactly analogous to the Helmholtz equation for an
electromagnetic wave propagating in a homogeneous
dielectric of permittivity e and permeability p, where 4 is
replaced by 8 for the electric-field equation and by & for
the magnetic-field equation. In the electromagnetic case,
k =co pE', where co is the radian frequency of the wave.
Since the electron wave Helmholtz equation has exactly
the same form as both the electric-field Helmholtz equa-
tion and the magnetic-field Helmholtz equation, an exact
analogy can be drawn between @and both 8 and &. Us-
ing these analogies and the definitions given in Ref. 6, one
can define a phase-refractive index for electron waves as

EW 1/2(~ V) 1/2n h
—m„ r

where mr=m/m„f is the relative effective mass and

and

n, 1cos81—n, p 2COS82r=
n, , cosa, +n, 2cos82

'

2n, ,cos81t=
n

p 1 COS81 + n
p 2COS82

(10)

where the electron wave amplitude index of refraction is
defined as

EW ti+ 1/2( E V )
1/2

amp, l mr I r, l (12)

for region I. These expressions [Eqs. (8)—(11}]are exactly
the same as the analogous electromagnetic expressions
for the reflection and refraction of an electromagnetic
wave from an interface between dielectrics 1 and 2 with
relative permittivities e„1 and e, 2 and relative perrneabili-
ties p„1 and p„2 respectively. In the electromagnetic
case, Eqs. (10) and (11) give the reflectivity and transmis-
sivity of the electric field for TE polarization and of the
magnetic field for TM polarization. Therefore, when
considering propagation past an abrupt material inter-
face, 4 is analogous to the electric field for TE polariza-
tion and to the magnetic field for TM polarization. In
other words, 4 is analogous to the electromagnetic field
quantity that is parallel to the interface. In the elec-
tromagnetic case, the amplitude index of refraction for
region l has one value for TE polarization,

p l + l /p l and another value for TM polariza-TE 1/2 1/2

tion, namp l Pr l /er l . Using the above results for theTM i/2 1/2 6

indices of refraction, one can construct a general set of
analogies between electron wave propagation, TE-
polarized electromagnetic wave propagation, and TM-

(E —V)„=(E—V)/(E —V„t) is the relative kinetic ener-

gy, where m„f and V„f are the effective mass and poten-
tial energy in a reference region. This electron wave
Phase-refraCtlVC- 1DdCX 18 RncJOgOQS tU tive- PhaSC-
refractive index for electromagnetic waves n ~z

=Qp, e„,
where JM, is the relative permeability and e, is the relative
permittivity of the dielectric. With these results, phase-
propagation effects, such as interference, can be analyzed
using standard electromagnetic results where 8 (or &) is
replaced by 4 and n h is replaced by n h . These results
are valid for all the Hamiltonians given in Eq. (2).

The above analogies can be extended to describe elec-
tron wave propagation past an abrupt interface between
materials 1 and 2 with effective masses m1 and m2 and
potential energies V1 and V2, respectively. When a plane
wave [the eigensolution to Eq. (6)] is incident upon such
an interface, part of the wave is reflected back into region
1 and part of the wave is transmitted (refracted) into re-
gion 2. The boundary conditions [Eqs. (4) and (5)] are
used to calculate the directions of propagation and the
amplitudes of the reflected and transmitted waves. By
substituting 4,=exp( jk, ; r)+ r e.xp( jk, „r) and 42
= t exp( jk2.r) into the boundary conditions [Eqs. (4) and
(5)], one finds that

8; =8„=81,
n ph 1 sln8 1 n ph 2 sin82
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p 2(p
Vm„~(r) V

4+kom„(r)[E —V(r)]„4=0,
m„~(r)

(13)

where m„(r)=m(r)/mo is the varying relative effective
mass, [E—V(r)]„=[E—V(r)]/(E —V)o is the varying
relative kinetic energy, mp is the average effective mass,
(E —V)c is the average kinetic energy, and
ko=[2mo(E —V)o/A' ]'~ is the average wave vector of
propagation in the medium. This wave equation [Eq.
(13)] is exactly analogous to the wave equation for TE
propagation in a one- or two-dimensionally inhomogene-
ous dielectric,

p2g
Vp„(r) V

8+kop„(r)e„(r)e =0,
p„r (14)

where p„(r)=p(r)/po is the relative permeability modu-
lation, e„(r)=e(r)/eo is the relative permittivity modula-
tion, pp is the average permeability, 6p is the average per-
mittivity, and ko=(co poco)'~ is the average wave vector
of propagation. By comparison of these wave equations
[Eqs. (13) and (14)], one can see that the analogies be-
tween electron wave propagation within a one- or two-

TABLE I. Analogies between effective-mass electron wave

propagation and electromagnetic wave propagation in general
dielectrics. The previously established constraint 2a+P= —1

applies.

Electron wave
EW

Electromagnetic wave
TE TM

m P
m

(E —V)

polarized electromagnetic wave propagation. This set of
analogies is shown in Table I. These analogies, which
have been developed for the general form of the
effective-mass Hamiltonian given in Eq. (2), are valid for
both propagation in the bulk and for propagation past
abrupt interfaces between materials. In the case of an
abrupt material interface, Eqs. (8)—(11)are valid for elec-
tron waves, TE-polarized electromagnetic waves, and
TM-polarized electromagnetic waves, where the ap-
propriate indices of refraction are used for each case.

Motivated by the results for abrupt interfaces, one can
attempt to draw similar analogies for propagation within
materials with general one- and two-dimensional inhomo-
geneities in effective mass and/or potential energy.
Again, the analogy will be drawn between 4 and either 8
(for TE polarization) or & (for TM polarization), where
the electromagnetic wave is propagating in a one- or
two-dimensionally inhomogeneous dielectric. In this
case, TE (TM) polarization is defined as the polarization
in which the electric (magnetic) field is polarized normal
to the plane containing the gradient of the inhomogenei-
ty. In the case of such an inhomogeneity, the Hamiltoni-
an for the electron wave [Eq. (2)] can be expanded as a
wave equation for 4.

dimensionally inhomogeneous semiconductor and TE-
polarized electromagnetic wave propagation within a
one- or two-dimensionally inhomogeneous dielectric are
the same analogies as those developed for propagation
past abrupt material interfaces, which are shown in Table
I. As one would expect, a similar analogy exists between
electron wave propagation within a one- or two-
dimensionally inhomogeneous semiconductor and TM-
polarized electromagnetic wave propagation within a
one- or two-dimensionally inhomogeneous dielectric,

Ve„(r) V
&+kop„(r)e„(r)&=0,e„r (15)

where the analogies are again given in Table I. Thus, the
analogies of Table I are valid for propagation in the bulk,
propagation past abrupt material interfaces, and propa-
gation within one- and two-dimensionally inhomogeneous
semiconductors. For all of these cases, standard elec-
tromagnetic analysis techniques can be used to analyze
electron wave effects such as interference, propagation,
reAection, refraction, and diffraction, where the analogies
of Table I are used.

At this point, one might wonder whether such exact
analogies exists for general three-dimensional inhomo-
geneities. In this case, the analogies do not hold. For
general three-dimensional inhomogeneities, decoupled
TE and TM polarization cannot be defined. Therefore,
one cannot write scalar wave equations [like Eqs. (14) and
(15)] for the electric and the magnetic field, but must use
the curl equations. Since the vector field quantities are
coupled, no exact analogy can be drawn between the vec-
tor electromagnetic fields and the scalar electron wave
amplitude.

In conclusion, this work has shown that exact, quanti-
tative analogies exist for all forms of the general Hamil-
tonian of Morrow and Brownstein. ' In addition, these
analogies were developed for propagation in the bulk,
propagation past abrupt interfaces between materials,
and propagation within one- or two-dimensionally inho-
mogeneous materials. With these analogies, one can ana-
lyze a wide class of electron wave effects such as
reAection and refraction, ' interference, ' and
diffraction' using well-understood electromagnetic
analysis methods.

An understanding of these electron wave optical effects
in semiconductors has become of increasing importance
in the past few years. Recent experiments have verified
that the electron wave phase index of refraction is pro-
portional to the product of the square root of the kinetic
energy' and the square root of the effective mass. ' '
It is likely that, in the near future, similar experiments
will be performed to verify the dependence of the ampli-
tude index of refraction on kinetic energy and effective
mass. Since the form of the amplitude refractive index is
linked to the form of the effective-mass Hamiltonian
(through n, ~ m~ '~ ), experiments that establish the
power dependence of the effective mass in the amplitude
index of refraction can be used to identify the correct
form of the effective-mass Hamiltonian. The recent ex-
periments on transition energies in GaAs/Ga& Al As
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quantum wells' ' 6t this category since the transition
energies are strongly dependent on the reAectivity of the
barriers (and thus strongly dependent on P).' Due to the
exact analogies to electromagnetics, it is easy to conceive
of other numerous experiments (such as measuring inter-
face re6ectivity) to establish this dependence. However,
regardless of the results of such experiments, the exact,
quantitative analogies established in this paper remain
valid. In addition, if the correct form of the Hamiltonian
(for material systems other than GaAslGa, „Al„As) is
shown to be other than a=0 and P= —1, the results of

previous work based on this assumption (such as Refs. 6
and 17) can be simply modified using Table I, with the
analysis methods remaining valid.
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