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Microscopic calculation of the dynamic structure function in the deep-inelastic regime
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We study the dynamic structure function S(k,co) of Bose liquids in the asymptotic limit k, co~ ~ at
constant y =(m /k )(m —k /2m), using the orthogonal correlated basis of Feynman phonon states. This

approach has been traditionally and successfully used to study the S(k,co) at small k, co, and it appears
possible to develop it further to obtain a unified theory of S(k,co) at all k and co. In the present work, we

prove within this approach that the S(k,co) scales exactly in the k, co~-00 limit, as is well known. We

also show that, within a very good approximation, the scaling function J(y) is determined solely by the

static structure function S(q) of the liquid. In contrast, the traditional approach to the S(k, co) at large

k, co is based on the impulse approximation (IA), and the J&A(y) is solely determined by the momentum

distribution n (q) of the particles in the liquid. In weakly interacting systems, where the IA is exact, we

show that the J(y) calculated from the Feynman phonon basis is identical to the J&A(y). The theory is

applied to liquid He and the J(y) is calculated using the experimental S(q). This J(y) is quite similar to
the JlA(y) obtained from the theoretical n(q) of liquid He. A number of technical developments in

orthogonal-correlated-basis theories are reported.

I. INTRODUCTION S(k, co) =f dco' F(k, co —co')S,~(k, co'), (1.3)

Deep-inelastic neutron-scattering (DINS) experi-
ments' measure the dynamic structure function (DSF)
S(k, co) at large values of k and co. In this region it has
been observed that the DSF exhibits approximate scaling:

—S(k, co)~J(y), k, co —+au,k
m

F(k, co co')= R—e—f dt e' "A(k, t) .
0

(1.4)

Here
l A(k, t)l is the probability that the struck atom is

in the same momentum state k+ p;„;„,j at time t after the
collision with the neutron. More formally, A (k, t ) is
given by

m k
at y= —co-

k 2m
=const, (1.1) A(k, t)=

&Olp„e

(olp„e 'H'ptlo)
—Hot tl )

(1.5)

where y is the West scaling variable, m the mass of the
atom, and J(y) the scaling function. When the intera-
tomic potential is finite the J(y) is given by the impulse
approximation (IA) as

JtA(y)= f dq qn(q),
4 p

where p is the density and n (q ) is the momentum distri-
bution of the atoms in the system. In this case the struck
atom recoils as if it was free, since potential can be
neglected when the energy of the atom co is large enough.
If the same was true for systems with hard-core interac-
tion, like helium liquids, it would be possible to extract
their n(q ) directly from DINS experiments. However, it
has been argued that in this case IA has to be corrected
to take into account the fact that the potential is not
small with respect to the energy of the struck atom for all
k and co of practical interest, so that the recoil is not
quasi-free. These corrections are known as the final-
state-interaction (FSI) e/fects.

There have been several attempts to calculate the effect
of FSI on DSF. In one approach the DSF is written as a
convolution of $&z(k, co) obtained with the IA and a fold-
ing function F as follows:

where

1 —ik.r.
pa= ~N Xe

J

N is the total number of particles, Hz is given by

Ho=+ + g v,,
PI

i ™i&jwI

and I is the index of the struck atom. It is difficult to cal-
culate the A(k, t) and thus the folding function
F(k, co co') exactly. —A number of approximate
schemes "have been developed, and the one developed
by Silver and collaborators' is quite successful in ex-
plaining available data' at k-23 A on liquid "He.
Monte Carlo calculations' of the folding function have
also been quite successful at k —10 and 23 A

In another approach the S(k, co) at large k and co is ex-
panded in powers ofI /k:

2
k m Pl

m
' k

—S(&,co)=J(y)+—J (y)+ —J (y)+. . . (I.g)
k

The co" weighted moments of DSF can be related to the
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& 0/q, "/0 &f" dyy "J(y}=f" (1.10)

for all values of n. This observation implies that the
asymptotic J(y) is given by J,~(y), and effects of FSI are
of order m /k.

The moments of other J (y) can also be calculated; for
example, '

f „dy y "Ji(y}

1 )(n+ I)/2
m —1m=1

X g (0~[8,", v(r; )]c},; '~0) .
j(wi)

It is, however, difficult to obtain an expression for J, (y)
which will satisfy all these moments. In practice, only
first few moments are calculated, and the Ji (y) is estimat-
ed from these by using an orthogonal polynomial expan-
sion. The results of such studies are in qualitative agree-
ment with the experimental data on liquid He. '

If the interatomic potential is finite, the J„(y) can be
computed' in terms of many-body distribution functions.
For example, Ji(y) can be evaluated using the off-

diagonal two-body density matrix p2.

J,(y)= — f" ds e'~'f d r p2(r sk, o, r,—o)
27Tp

X f du[v(r —uk) —v(r)] .
0

(1.12)

Unfortunately these formulas do not apply to the hard
core systems. The u integral in the above expression is
divergent when path of integration passes through the
hard core region. A remedy for this problem may be to
use the T matrix instead of the bare potential ' ' to cal-
culate functions J„(y). However, these functions then be-
come k dependent because the T matrix is k dependent
and the simple expansion (1.8) is invalidated.

In the limit k~ oo, co~ ~ at constant y, it has been
proved that S(k,co) is a function of y alone. However,
the J(y ) for Bose hard sphere gas obtained by summing a
selected class of terms using the many-body perturbation
theory developed by Brueckner, Bethe, and Goldstone
gave an asymptotic J(y ) different from the J«(y ).

All the theories mentioned above, with the exception of
Ref. 22, start from the IA that takes into account the in-
teractions in the initial state of the target, and try to im-
prove upon it by incorporating the effects of FSI. This
procedure gets more and more difficult as k decreases and
the FSI effects become more important. In contrast the

y" moments of J (y) if the ground-state wave function is
known, using the relation'

deum"S k, co = 0 p& 8, . . ., H, p|, . . . 0, 1.9
0

where there are n commutators in the expectation value.
In particular it has been shown' ' that

response at small k and co is easily treated by using Feyn-
man phonon states. ' In particular the orthogonal corre-
lated basis formalism based on Feynman's ideas is quite
successful in explaining the observed S(k, co ) at
k 2 A '. The small and large k methods have different
starting points; the momentum distribution n(q) is the
main input for the IA, while the OCB formalism uses the
static structure function S(q) as the main input. The
S(q} and n(q) are not unrelated. For example, if one
uses the Jastrow wave function

O'J= g fJ(r; ) (1.13)

II. OCB FORMALISM

In the correlated basis (CB) theories of quantum liquids
the CB states are defined as'

G ~pi Pn].
, p. lG'Glpi . p. ]'" (2.1)

to approximate the ground state, then the S(q) [i.e., the
pair distribution function g(r)] determines' ' fJ(r) and
hence n(q). However, it is not clear that there exists a
one-to-one correspondence between the S(q) and n(q ) of
a general Bose ground-state wave function.

In principle the OCB formalism can be used to study
S(k, ~) at all k and co; however, the calculations become
technically complicated as k increases. In the present
work we show that, by using analogs of Ward intensities
in orthogonal correlated basis perturbation theories
(OCBPT), it is possible to calculate the S(k, co) in the
scaling limit, and thus extend this low k method to the
k ~ ac limit. The OCBPT is reviewed in Sec. II, and the
scaling behavior of S(k, co) is proved with OCBPT in Sec.
III. The J(y) is calculated in Sec. IV approximately by
summing all diagrams in which the struck particle emits
or absorbs any number of phonons one at a time. This
approximation allows intermediate states with any num-
ber of phonons, and hence it should be reasonable. It is
possible to test its accuracy as discussed in Sec. V. The
properties of J(y ) calculated with the OCBPT are dis-
cussed in Sec. V in a pedagogical fashion, where it is
shown that for a weakly interacting system the OCBPT
J(y ) equals the J,~(y ). Moreover, we find that the ana-
lytic structure of the J(y) has singularities found in the
J,A(y ) due to the presence of condensate 5 function and
the I/q singularities in n(q). The J(y) of liquid He is
calculated in Sec. VI using the experimental S(q). The
calculated J(y) is quite similar, though not exactly the
same, as the J,~(y ) calculated from theoretical models of
n(q). In particular it has a 5 function at y =0 of strength
comparable with the condensate fraction in n(q }. Finally
the results of the paper are summarized in Sec. VII. The
new techniques developed in this work are fully discussed
in the text with the hope that they would be useful in cal-
culating the S(k, co) at large but finite A: and thus help
evolve a unified theory of DSF at all values of k and co.

Nevertheless, to keep the text in sections relatively simple
a number of details and proofs are given in the Appen-
dices.
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where
I ] are noninteracting states of the ideal gas, and G

is the correlation operator which is usually determined by
minimizing the ground-state energy

E.=(OIHIO) = [OIG'HGIO]
(2.2)

[olG'G Io]

If, as is often done in the case of bose liquids, 6lo) is
taken to be equal to the exact ground state 40:—IO) the
Feynman phonon (FP) basis is obtained:

(p p )Io)
pn

&Ol(p '''p )(p ''p )Io)' '
Pl Pn Pl Pn

(2.3)

where

1

&N
(iP 41)

and N is the number of particles. We will assume the
thermodynamic limit N~ 00, Q~ ~ at constant density

p=N/Q. Note that in this notation p p does not

equal (pz
. .

pt ) with brackets. The simple product of

p s contains terms where particles i,j,. . . in the sum are
the same. Such terms are excluded from the product in
the brackets by definition [eq. (2.4)]. CB states are com-
plete and normalized, but not mutually orthogonal.
There are continuum many CB states, so that they cannot
be orthogonalized using the well-known Schmidt pro-
cedure. They can be orthogonalized using the Lowdin
transformation, but the resulting states have higher en-

ergies than CB states; in particular, the ground-state ex-
pectation value of the Hamiltonian is higher. Perturba-
tive corrections move the energies down again, and both
of these effects are larger than the net displacement. '

1 Hence generally the CB states have been used with a
nonorthogonal basis perturbation theory.

Recently, a new orthogonalization procedure free of
the problems mentioned above was proposed. A com-

Xexp[i(pi'rl+ ' ' ' +Pn rl)] & bination of Schmidt and Lowdin transformation is used

g 4) in such a way that the diagonal matrix elements of the
orthonormal-correlated (OCB) and the CB states are
equal. First, a partially orthogonal (PO) set of n-phonon
states is defined using Schmidt procedure:

IPi ' ' ' Pn]—= IPi ' '~pn) g g lqi qm&&qi ' ' ' qmlPi ' ' Pn) '

m (n q1, . . .,q

(2.5)

A PO n-phonon state is orthogonal to all PO (mAn )-phonon states by construction. However, it is not orthogonal to
other PO n-phonon states. This is achieved in the second step by the Lowdin transformation:

1
IPi Pn &=IPi Pnl r IPi Pn] tPI PnlP1 Pn]

I I
»n

+ —, X X IPli ~ ~ &Pn]IP1~ ~ ' ~ ipnlpi&'''~pn][pii'''~pnlpii ~ '~pn]
I I II II

P1$ ~ ~ ~ fP P1 p ~ ~ ) P

(2.6)

where the coefficients 1,—1/2, 3/g, . . . are the same as
those in the expansion of (1+x) '~, and a bar on the
matrix elements indicates that the diagonal matrix ele-
ments are to be omitted. In general we use li ), Ij ), . . . to
denote OCB states. These may also be denoted by listing
all momentum labels whenever appropriate.

It is expected that the OCBPT has a better conver-
gence that the nonorthogonal CBPT. Moreover, OCBPT
uses the well-known simple perturbation expansions in-
stead of the nonorthogonal perturbation theory. On the
other hand, the computation of the matrix elements is
more involved due to the complexity of OCB states. The
convergence of OCBPT is not expected to depend upon
the specific nature of the bare interaction, i.e., if it has a
hard core or not. For this reason we use it to study the
scaling properties of the response at large k and co.

It is useful to recall some simple properties of Feynman
phonon states. Their normalizations are determined by
the static structure function S(q):

&olp~„'lo) =s(k), (2.7)

Their energies are obtained from the identity

«I&(H —Eo)BI0&= y &ol(v, ~) ~ (v;B)IO),
i =1,N

(2.9)

where A and B are functions of particle coordinates, like

pIp . . .p„, which commute with the potential. Further,
since OCB and CB states have the same diagonal matrix
elements of H we obtain

&o p„(H —E, )p'„o&

&olpu'Io&

k
2mS(k )

(2. 10)

«l(p p p. )(p'p' p') Io &

=S(l )S(m ) S(n)+terms of order N ' . (2.g)
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(l,m, . . . , nlH —Eoll, m, . . . , n)
m2

2mS(l ) 2mS(m )

n 2

+ . + + terms of order N
2mS(n }

(2.11)

X5(k —I —m)+three-body terms, (2.12)

(I,mlH —Eolk)= 1 1 1

~N &S(k)S(l)S(m) 2m

X [k m[S(l ) —1]+k I [S(m )
—I]]

The nondiagonal matrix elements are more difficult to
calculate. The most important of these are

(l, mlk)

1 1 Sl —1+ Sm —1
v N &S(k }S(1)S(m)

values of I and/or m. Hence, when k is large either 1 or1has to be -k so that the other is finite. In other words
a hard phonon having a large k can only emit soft pho-
nons having finte momenta. The main differences be-
tween ordinary and OCB perturbation theories are due to
this property of Feynman phonons. In ordinary perturba-
tion theory a particle with a large momentum k can
transfer momenta of order k to another particle when the
interparticle interactions have a hard core, whereas a
Feynman phonon having a large momentum k can only
transfer a finite momentum even when the interparticle
interactions have a hard core. However, the matrix ele-
ment (2.13) has terms proportional to k I, and thus be-
comes very strong in the k ~ ~ limit.

III. SCALING PROPERTY OF DSF

The DSF is given by'

X5(k —I —m)+three-body terms .

(2.13)

1
S(k, co) = ——ImD(k, co),

where

(3.1)

The above matrix element is the leading term of the OCB
matrix element (I,mlHlk), and can be used to study its
properties as shown in Appendix A. It is also shown
there that when k is large the three-body terms can be
neglected.

The static structure function S(q) of a Bose liquid ap-
proaches unity exponentially even when the interatomic
interactions are hard, like, for example, the Lenard-Jones
(6, 12) potential. We do not address here the problem of
hard sphere gas whose [S(q )

—1] does not go exponen-
tially to zero at large q due to the singularity in the
derivative of the pair distribution function g(r } at r =c
the hard core radius. In systems like He liquid whose
[S(q)—1] goes to zero exponentially at large q, the ma-
trix elements (2.12) and (2.13) are nonzero only for finite

D(k, co)=(OIp«[oi H+Eo+—i71] 'p«lo)

=S(k)(kl [co H+Eo+—iri] 'Ik)

(3.2)

(3.3)

H=Ho+H',

&ilHolj &=5;7&ilHli &,

&iIH'Ij &=(1—5;, )&ilHlj& .

The resolvent in DDRF can be expanded as

(3.4)

(3.5)

(3.6)

is the density-density response function (DDRF!, and il is
a positive infinitesimal. The Hamiltonian of the system is
divided into diagonal and off-diagonal parts with respect
to OCB:

D(k, oi) =S(k ) g (kI [co Ho+Eo+iri] '—(H'[oi Ho+Eo+—iri] ')"lk)
n=0

=S(k) Go(k)+Go(k) QH«, Go(i)H «Go(k)+

=S(k )Go(k)+Go(k)X(k, oi)D(k, co), (3.7)

where

Go(i) = (i I [co Ho+ Eo+iq] '—
Ii ) (3.8)

X(k, co) = g H «, Go(i)H «

+ gH«;Go(i)H Go(j )H'-«+ . . (3.9)

are energy denominators, and the proper self-energy
(PSE) is defined as

with the Gersh-Rodriguez series' where every term
diverges if the potential has a hard core. The difference
comes from the fact that the basis states used to derive
Gersh-Rodriquez series (plane waves for the struck atom
and exact eigenstates for the remaining N —1 atoms) do
not include the strong short-range correlations between
the struck atom and the rest of the atoms, whereas OCB
states do.

When k is large, S(k)=1, and from Eq. (2.10) we ob-
tain

The above resolvent expansion is well behaved in the
sense that every term is finite. This is to be compared

k
Go ( k ) = co — +i i)

2m
=—(y+ig)

k
(3.10)
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D(k, ro) = ro — X—(k, ro)+i ri
2m

(3.11)
V'&

Moreover, as discussed in Sec. II, and proved in Appen-
dix A, only the states li ) that have one hard phonon with
momentum of order k and one or more soft phonons with
finite momenta contribute to X(k,co). These states are
represented as

FIG. 1. The expansion of the self-energy Xs(y) [Eq. (3.17)].
The thick line represents the hard phonon while the thin lines
represent the soft phonons.

Pl Pn —1» Pl»' ~ »Pn —1) (3.12)

where
I p; I

are finite, i.e., of order k, and
r

1Go(i)= co — (k —
pi

— —p„ i) +0(k )+iri

=—[go(i ) +0(k ') +i ri] (3.13)

go(i)=y —k (pi+ +p, ) . (3.14)

H, =—[h, +0(k ')],

In Appendix A it is also proved that the off-diagonal
matrix elements H

~
between states having one hard pho-

non are proportional to k/m, i.e.,

Xs(y) is difficult because of the large number of different

types of vertices, representing the matrix elements h,'. , in
this expansion. However, all the diagrams based on the
vertex at which the hard phonon emits or absorbs a soft
phonon, as illustrated in Fig. 2(a), can be summed by the
standard field-theoretical methods.

In Appendix B it is shown that this basic one- to two-
phonon vertex is given by

—(klH lk —I, E )—:I'o(i )+0(k ')
k

v'~ 2
&f(&)+0(k ') . (4.2)

The function f( I ) is determined entirely by the static

where h~ is independent of k. From Eqs. (3.9), (3.13),
and (3.15) it follows that

—„X(k,oi)=&s(y)+0(k '),

&s(y)=ghkgo(i)hl„. + gh kg (o&')h go(J )hjk+'
l lAJ

(3.16)

(3.17) + ~ ~ ~

/:Pi&

Consequently

D(k, co)=D—s(y )+0(k '), (3.18)

Ds(y)=ly —&s(y)+in] ', (3.19)

so that (k lm )S(k,co) [Eq. (3.1)] is a function of y alone
in the limit k ~~, and y scaling is found to be an exact
result. We also obtain the useful relation

+ ~ ~ ~

from Eq. (3.19).

—&s(y )

y
—Xs(y )+i' (3.20)

+ ~ ~ ~

(c)

IV. CALCULATION OF THE SCALING FUNCTION

It can be shown that spectator phonons do not contrib-
ute to the matrix elements of OCB, i.e.,

( I
pi . p. ql . . q I- lpl . . p. ql

=(p„.. . ,p. lHlpi, . . . , p'. & (4.1) + ~ ~

(e)
when the number of phonons (n+m) and (n'+m) is
finite. Because of this property it is possible to consider
the diagrammatic expansion of Xs(y ) shown in Fig. 1,
where the thick line represents the hard phonon and thin
lines represent soft phonons. An exact calculation of

FIG. 2. Diagrammatic representation of terms that include
only the one- to two-phonon vertex. (a) The proper self-energy
X~(y ). (b) The dressed vertex I ( l,y ). (c) The dressed hard pho-
non propagator g(y). (d) The Dyson equation. (e) Noninter-
secting diagrams of Xz(y).
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structure function S(q), and is also calculated in Appen-
dix B. It contains a leading term

f (/} /&[S(l) —1]
S (/)

(4.3)

and small corrections from the Lowdin orthogonalization
of the two-phonon states. The f(1) is finite and linear in 1

at small 1 where S(/) is linear in 1. We recall that S(q) is
the only input in our calculation of the scaling function,
as opposed to other works where the ground-state
momentum distribution n(q ) is used.

Since we closely follow the calculation of electron self-
energy in QED, it is natural to use the same terminology
whenever possible. Thus the dressed vertex 1(l,y) is
defined as

I (l,y ) = I 0(/) [1+A( l,y ) ] (4.4)

and it represents the sum of diagrams in Fig. 2(b); A(l, y )

is the vertex correction. The dressed hard phonon propa-
gator g(y ) is shown in Fig. 2(c), and the Dyson equation
for the proper self-energy is shown in Fig. 2(d). Analyti-
cally it is written as

Xs(y)= g I(/, y)g(y+k /)I, (/)
I

If we put A(l, y)—=0 in Eq. (4.5), we obtain the integral
equation for the sum of all diagrams without intersecting
soft phonon lines as is illustrated in Fig. 2(e):

,
( ) f d 1 (k 1) f(l}

(2m) p 4[y+k. l —Xs(y+k. /)+iq]

This integral equation for Xs(y ) can be easily solved nu-

merically by iteration.
To calculate Xs(y) including the vertex correction we

need another equation relating Xs(y) to A(l, y ). As men-
tioned above, the number of hard phonons is conserved
in this theory. This conservation is analogous to the
charge conservation in QED, and it is not surprising that
the identity

k. lA(l, y) =Xs(y) —Xs(y+k 1) (4.7)

k 1[1+A(l,y)]=[y+k 1 —X (y+k /)] —[y —X (y)]

analogous to the Ward identity of QED holds. The proof
of this identity is given in Appendix C. Equation (4.7) is
expressed as

d 1 (k 1) f(/)[1+A(l, y)]
(2m. ) p 4[y+k 1 —Xs(y+k 1)+ir/] and substituted into Eq. (4.5) to obtain

(4.8)

k /f(/}[[y+k 1 —Xs(y+k 1)]—[y —Xs(y)]]
Xs(v) =

(2m ) p 41 [y+k 1 —Xs(y+k /)+ig]
d 1 k lf(l)= —[v —Xs(v}]

(2m. ) p 4/[y+k 1 —X (y+k /)+iq]
(4.9)

Substituting this Xs(y) into the RHS of Eq. (3.20), we
obtain

d 1 k lf(1)
(2n) p 4/[y+k 1 —Xs(y+k 1)+ig]

Equation (4.12) is of a convolution type, and can be
solved by Fourier transform. Functions J(y) and F(x)
are absolutely integrable:

f dvlJ(y)l=- f dy J(y)=1, (4.13)

d I=f " ', k /f /
D, (y+k /)

(2m) p 41

f d/, Ds(y +1, )1,F(1,),
16m p

(4.10)

f" dxlF(x)l= f" dx f "dpp

f d r =2f dx f(x)( oo,
271 r 0

(4.14)

where

F(x)=f dpp =f dt . (4.11)
0 p+x

so that their Fourier transforms are defined. Using the
identity if'(s)= f dy e '«'yf(y) the integral equation
(4.12) can be reduced to the differential equation

At small t the function f(t) is linear in t so that F(x) is
finite and continuous at x =0. Moreover, it is real and
decreasing since f( t ) is real and positive. Since
ImDs(y) = —~J(y ) it follows that

J'(s ) =aF'(s )J(s ),
which has the solution

J(s)=Ce'~"

(4.15j

(4.16)
yJ(y)=a f dz(y —z)F(y —z)J(z),

where a =1/16m p.

(4.12)
In the limit s~ ~ F(s)~0, and hence J(s)~C. Thus,
inverting Fourier transform gives
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J(y)=C5(y)+C f e'~'
00 277

X exp a dxe ''I' x —1

V. DISCUSSION

We begin the analysis of the scaling function J(y ) [Eq.
(4.17)] by evaluating it in the limit y ~0. In this limit the
function F(y ) [Eq. (4.11)]can be expanded as follows:

F(y ~0)=F(0)—iy ~

lim +O(y ) .f(l) 2

o l
(5.1)

In Appendix B it is shown that the slope of the f(l ) at
the origin is the same as that offo(l) [Eq. (4.3)] so that

(l) . fo(l) . l
lim = lim = lim =2mc,

o l i o l I oS(l)
(5.2)

where c is the sound velocity in the liquid, and we obtain

F(y ~0)=F(0)—2mciy I+0(y ) . (5.3)

The function F(y ) has a cusp at y =0, and we will now
show that as a consequence the scaling function J(y) has
a cusp at the origin in addition to the 5 function. In the
theory of Fourier transforms it is proved that for
sufficiently smooth functions 4(x ):

(4.17}

The constant C can be found from the normalization con-
dition

r

1= dyJy =C 1+exp a dxFx —1

C=exp —2a f dx F(x) =exp —2a f dl f(l)
0 0

(4.18}

Formulas (4.17) and (4.18) are the main result of the
present paper.

where the constant C is given by Eq. (4.18), and the con-
stants A and 8 are given by

B=C
2

(5.9)

The scaling function in IA [Eq. (1.2)] exhibits the same
small y behavior with the coefficients

00 7tlc
C «=n„A«= dq qn(q), B«=limqn(q)=n,

0 q~o

(5.10)

In particular the ratio B /C is identical in both our theory
and IA.

Next, we want to discuss the origin of the 5-function
peak at y =0. In general, the presence of the 5 function
in DSF means that the probe couples to a long-lived state
with a given energy and momentum. The inverse lifetime
of this excitation is given by the imaginary part of the
self-energy: r '-ImX(k, m), and it is expected to be
proportional to k on the basis of the semiclassical value
r-pvcr, where p is the density, v =k/m the velocity, and
0. the average two-body scattering cross section. The
Im X(k, co) depends upon y, and it is order k when yAO.
However, in the present calculation the ImX(k, co) at
y =0 does not have a term of order k, and hence the 5
function at y =0 in the J(y).

The origin of the y dependence of the lifetime can be
easily seen in the contribution of the second-order dia-
gram, i.e., the first diagram of Fig. 2(a). In second order,
an off-shell FP with momentum k and energy
co=k /2m+ky/m can decay into two FP of momenta
k —l and l, thus acquiring a lifetime given by

A =4mpC f ds exp f dx cos(sx)F(x) —1
8m p

(5.8)

QO

dx cos(sx )4(x ) = — +f 4'(0) 4'"(0)
0 $2 s'

(y( v)(0) + ' ' $~00
$

X5(co—(k —l) /2m —l /2mS(l)) .

Using Eqs. (4.2) and (5.11) we obtain

(5.11)

so that the integrand of Eq. (4.17) becomes

4am c 1 1 mc 1

$ s 4~p s s2

shoo

(5.5)

(5.6)

Thus, the Fourier transform of the function F(x ) is

00 4me 1F(s~~)=2 dx cos(sx)F(x)= +0
0 $2 $4

—f d l(k 1) f(l)5.(y+k. l+O(k ')) .
4(2~)2p m

(5.12)

When yAO we get r-k ' as expected from semiclassical
arguments, but when y=0 (on-shell FP) the situation is
completely different. In that case the energy-conserving
5 function forces the cosine k.l to be of the order k
which makes the integrand of Eq. (5.12) small, and we
find that on-shell FP has a long lifetime ~-k in this or-
der.

The Xs(y ) of Eq. (4.9) has the properties

From Eqs. (4.17},(5.4), and (5.6) it follows that

J(y ~0)=C5(y ) + [ ~ B ly l ]
1

4 p
(5.7)

Re Xs( —y ) = —Re Xs(y ),
Im Xs( —y ) =Im Xs(y),

Xs(0)=0 .

(5.13)

(5.14)

(5.15)
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Im Xs(0)%0 . (5.16)

Hence the scaling function J(y ) obtained from the Xs(y )

does not have a 5 function at y =0. The approximation

The solution of the simpler integral equation (4.6), ob-
tained by summing diagrams of Fig. 2(e), also satisfies the
symmetry properties (5.13}and (5.14); however,

Xs(y ) is bad since there is an exact cancellation between
the summed and the omitted diagrams at y =0. This can-
cellation occurs order by order in loopwise expansion of
Xs(y). We will demonstrate it on a two-loop level, i.e.,
we will show that the sum of the second and the third di-
agrams on Fig. 2(a) vanishes at y=0. We denote this
sum Xs '(y) and obtain

X(2)(0)—f d I dm
(2n) p (2n. ) p

d I dm
(2m) p (2ir) p
dI dm

(2m) p (2m) p

(k /} (k m) f(l)f(m) 1 1

16(k I+iri)[k (1+m)+i'] k I+i' k m+iri

(1,.I +1,. )
16l m [k ( I +m) + i7}]

k mf(l)f(m)
161 m

(5.17)

(5.19)

dyy Jy = E„,

In the present calculation it was possible to sum all the
diagrams containing one- to two-phonon vertex [Fig.
2(a)], and thus preserve this cancellation. If, for some
reason, the J(y ) has to be approximated by a subset of di-
agrams, then it appears that the correct way to do it is to
sum the diagrams order by order in the interaction rather
than to sum infinite subsets of diagrams like Xs(y ).

In our calculation of the scaling function J(y ), we have
taken into account only the diagrams containing one- to
two-phonon vertex. We can estimate the validity of this
approximation by calculating the known sum rules

dyJy =1, (5.18)

f dyyJ(y)=0,

(5.24)

The above relation between S( l ) and n (1) is derived in
Ref. 15. Using it the scaling function in the uniform limit
becomes

and

fU(&)
JU(y ) =C5(y )+ f dl

16m2p lyl I

=C5(y)+ f dq qn(q),
4m p lyl

(5.25)

I

Since S(q ) depends only on p, each integration over mo-
menta gives an additional power of a. Thus, to the
lowest order in a the Lowdin corrections [Eq. (B8)] van-
ish and the function f( l ) becomes

fU(l)= ' ' =41 n(l) .
I [S(l)—1]

S ( I)

where Ek is the ground-state kinetic energy per particle.
The first two sum rules are satisfied by the construction
of J(y) [Eq. (4.17)], and for the third we obtain

C=l — f dl fU(l)=l —f 3 &(q)
8m' p 0 (2n) p

(5.26)

is the fraction of particles in the condensate, as in J,A(y ).

f dyy J(y)= f dl l f(l) .
00 24m. p

(5.21)
VI. NUMERICAL RESULTS

g(r)=1 —aG(s), s=(ap)'~ 'r, G(0}=1, -(5.22)

where a is a small parameter. Physically, it corresponds
to the dense (p~ ao ) systems with regular interaction, al-
though it can be realized even in dilute (p~O) systems
provided that the potential is sufficiently weak. The stat-
ic structure function is given by

S(q}=1—+(p), p=(ap) '
q, F(0)=1 . (5.23}

However, since Eq. (4.17) is not exact, the right-hand side
of Eq. (5.21) may be different from 2mEk/3, and the
difference is a measure of the importance of the neglected
one- to many-phonon diagrams.

Finally, we want to show that in the uniform limit
[~g(r ) —1~ ((1]the scaling function J(y ) [Eqs. (4.17) and
(4.18)] equals to the Ji~(y). The uniform limit' is the
situation where the radial distribution function is very
near to unity:

In this section we will apply the theory developed in
Sec. IV to the liquid He at zero temperature. First, we
compute the vertex function f(l) given by Eq. (B8). As
was already mentioned, the only input needed in this
computation is the static structure function S(q ). Using
the experimental S(q ) from Ref. 28 we obtain the func-
tion f(I ) that is shown in Fig. 3 together with its leading
part fo(l) [Eq. (4.3)]. It can be seen that the Lowdin
correction [i.e., the difference between f(l) and fo(l)] is
small, but it is nevertheless significant since the scaling
function J(y) [Eq. (4.17)] and the strength of the 8-
function peak [Eq. (4.18)] depend exponentially on f(I ).

Using this f(l) in Eqs. (4.17} and (4.18) we obtain
C =0.15, and the J(y ) that is shown in Fig. 4. For com-
parison, Ji~(y ) generated from the variational n(q ) (Ref.
29) that has the condensate fraction n, =0.092 is also
shown. In order to test the sensitivity of the calculated
J(y) to changes in the input, we have computed it using
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FIG. 3. The function f(l)/1 [Eqs. (4.2) and (Bg)] of liquid
He at equilibrium density and zero temperature calculated

from S(q) of Ref. 28 with (solid line) and without (dotted line)
Lowdin corrections.

FIG. 4. The' scaling functions of liquid He at equilibrium
density and zero temperature. Solid line: Eq. (4.17) using f(l )

of Fig. 4; dotted line: IA generated from n(q) of Ref. 29. The
5-function peaks at y =0 with respective strengths of 0.15 and
0.092 are implied.

the Monte Carlo S(q) from Ref. 30, and obtained essen-
tially the same result. In particular, in this case C =0.14,
which is to be compared with n, =0.11 in the Monte
Carlo calculation of Ref. 30.

Finally, using the value Ek =14.8 K from Ref. 23 and
f(l ) from Fig. 3, we find that

f dl l f(l)=0.97 .
Ek 16~ p~ 0

(6.1)

As was argued in Sec. V, the closeness of this value to 1

suggests that diagrams involving one- to many-phonon
vertices have contributions much smaller than those of
diagrams containing one- to two-phonon vertex only.
However, the numerical value 1 —0.97=0.03 of the error
has to be taken only as an estimate since the experimental
S(q ) and theoretical Ek are used to obtain it.

VII. CONCLUSIONS

We have presented the calculation of the S(k, co) of a
bose liquid at T=O in the asymptotic limit k, co~ 00, at
y—= (m/k)(~ —k'/2m)=const, using OCB formalism.
The orthogonalized Feynman phonon states [Eqs.
(2.3)-(2.6)] are used to construct the OC basis. It is
found that y scaling is exact in the k~~ limit, i.e.,
(m/k)S(k, co) is a function of y alone. It is also found
that the dominant physical process is emission and ab-
sorption of the soft phonons (i.e., phonons whose momen-
ta are « k) by the hard phonon that is generated by the
recoiling atom.

In order to obtain the scaling function J(y ) an approxi-
mation that amounts to allowing soft phonons to be emit-
ted or absorbed only one at the time is introduced (see
Fig. 2). The resulting theory is solved using standard
field-theoretical methods without further approxima-

tions, and the closed expression for J(y) is obtained [see
Eqs. (4.17), (4.18), (4.11), and (B8)—(B10)]. The only in-

put needed is the static structure function S(q ) of the sys-
tem.

It is found that J(y) has a 5-function peak at y=0,
whose strength is connected with the slope dJ(p )/dp ~» =o
in the same fashion as in the IA [Eq. (5.9)]. In the case of
the liquid He this strength is equal to 0.15, which is to
be compared with the corresponding value of -0.1 in the
IA that is obtained from the theoretical calculations of
the momentum distribution. ' The plot of the calculat-
ed J(y ) vs J,~(y ) for y%0 is given in Fig. 4.

Finally, the validity of the approximation made in
neglecting processes that involve simultaneous emissions
and/or absorptions of multiple phonons is tested in two
ways. First, the kinetic energy sum rule for J(y) is evalu-
ated [Eq. (5.21)]. Its numerical closeness to the theoreti-
cal value suggests that the neglected processes are not im-
portant. Second, it is verified that in the exactly solvable
uniform limit [g(r ) —1 «1] J(y) reduces to the known
expression" as it should.
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APPENDIX A: PROPERTIES OF OCB
MATRIX ELEMENTS

The CB matrix elements of the unit operator and the
Harniltonian are given by

(01(pp, . . .
pp )(pq

. .
pq )i0)

[S(p, ) . . S(p„)S(q, ) . . S(q )]' (Al)
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(olv;(pp pp ).v;(pq pq )lo&
( . (H —&)q )= (A2)

We note that

&olv, (p, .p, ).v, (p,' p,
' )lo&

1

~(n+m)/2 + J qk
j=1,n
k=1, m

l A ''I ' Wl
l n

11%'' l '''Al

(Olexp[ —i(pi r; + .
p/ r; . +p„r; —

qi r. ,
1

q„r, —q r. , )]lo&,
l

(A3)

where in the last sum we are not summing over i. These matrix elements vanish if the states lpi p„) and lqi q )
l k.r,"

contain an unequal number of hard phonons. Such matrix elements necessarily contain expectation values of e " pro-
portional to S(k)—1 which vanish at large k. The matrix elements do not vanish if the states have an equal number of
hard phonons. For example, if p, and qi -k, then terms having particles i, =i ', will contribute to (A3). Since the initial
state lk & has one hard phonon, all the states that contribute to X(k, co) [Eq. (3.9)] also must have one hard phonon. We
denote them by lP, pi p„), where

p Q p 0 ~ ~ p (A4)

and all lower case p; are of order "1",i.e., of order k . In this case only the following terms contribute to overlap:

1
»pi ' ' ' p, IQ qi ' ' ' q~ —

&i„+~+2i/z

(Olexp[ —i[(P—Q) r;+pi r; + +p„r; —
qi r., — —q r. , ]]lo&

1

i&i&W Wi„ [S(p, ) S(p„)S(q, ) S(q )]' '
l wl

I
X xl

(A5)

For this reason only two-body terms contribute to the matrix elements (2.12) and (2.13). We need to consider only the
contribution of terms having P Q in Eq. (A3) to the matrix elements of H Eo. These—terms give contributions of order

lk r" & lk r
k and k. The terms having P qi or pi Q contain expectation values of e ' or e ', and they vanish in the limit

k ~ ao, and those having pI.qI. give contributions of order 1 which can be neglected. It then follows that

1
(P pl ' p. l(H —&0) Q qi q )=

27?l

n m

Xp+Xq,

X(P,p„. . .,p„Q,qi, . . . , q )+terms of order k (A6)

The diagonal matrix elements of orthogonal correlated (OC) states lP, p„. . . , p„& are the same as those between CB
states l P, pi, . . . ,p„) by construction. However, the nondiagonal elements are different. We can generally write

lP, pi, . . . ,p„&= g & ~(pi, . . . ,p„,qi, , q~ ) IQ, qi, , qm ),
m n ql, . . . , q

(A7)

where the coefficients a(p, , . . . , p„,q, , . . ., q ) are obtained from the Schmidt and Lowdin transformations given in

Ref. 26. The matrix element is

( P,p„. . . ,p„ l(H E)lP', p', , . . .,p'„—& = X X
m nql q(m n I

qm

k —k.2

i =1,m

q+ g q,
'

j=l, m'

4I I I I«pi pn qi . qmi«pi . pn qi . qm )

X(Q,qi, . . . , q lQ', qi, . . . , q', &+terms of order k . (A8)

The coefficient of the k term is just the overlap (P,pi, . . . , p„lP', p'i, . . . , p„', &, which is zero for nondiagonal elements.

Hence the leading term of H, is proportional to k as asserted in Eq. (3.15).
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APPENDIX B: CALCULATION OF THE
ONE- TO TWO-PHONON VERTEX

(k —l, 1Ik)=
N S(I)

(k —l, lI(H —ED)Ik)= (k —k 1)
1 2 1 S(l ) —1

2m &N &S(l)

(Bl)

+O(k'), (B2)

and the PO matrix element is given by [from here on we
I

In order to calculate (k —I, IIHIk) matrix element we
need to calculate the corresponding CB and PO matrix
elements. Using Eqs. (A5) and (A6) we find

will omit the O(k ) terms):

[k—1,1 l(H —E0) Ik] = (k —1,1 l(H —E0)Ik)

—(k —1,11k)(kl(H —E0) Ik)

1
1

1 S(1}—1

2m v'N &S(1)

+f0(i) .k 1 kl
m O'N 2

(B3}

The OCB states are obtained from PO states using the
Lodwin transformation [Eq. (2.6)] for which the overlap
of the two phonon PO states is needed. We first calculate
the overlap of the two phonon CB states:

(k —l, lIk —m, m)= 1

N&S(l )S(m )
[S(Il—mI) —1+p fd r, d r d rk g;.kexp( il r—," im r,k—)], . (B4)

where g,. k is the three-body distribution function. The three-body integral is calculated using the convolution approxi-

mation'

g Jk =1+hajj +h;k+hjk+hijh;k+hljh&k+h;khjk+p f d rI hahJIhll,

where h;~
=g ( r;J )

—1. The result is

(k —l, 1Ik —m, m)= 1
jS( I

1 —m
I )

—1+[S(1 ) —1][S(m ) —1)+ [S(1) —1][S( I
1 —m

I )
—1]

N &S(1)S( m )

+ [S(m)—i][S(ll—ml) —i]+[S(l)—1][S(m ) —l][S(ll—ml) —1]J

1
[S(l)S(m )[S(Il —mI ) —1]+[S(l)—1)[S(m ) —1]} .

N&S(l}S(m)

From Eqs. (Bl) and (B6) it follows that the overlap of the PO two-phonon states is given by

[k—l, l Ik —m, m] =(k —1,1 Ik —m, m) —(k —l, l Ik)(kIk —m, m)

(B5)

(B6)

+—g [k 1 1
I
k 1„I—, J [k——1„1, I

k —1,, 1, J [k —1,, 1 I(H —Eo }I
k J—

l), l~

d 1, S(11) —1——f 3 QS(l)S(li)[S(Il —I, I)—1]k 1,
2 (2m) p QS(i, )

d I& d l~+ f—,
' f ', ~s(i)s(i, )[s(Ii—i, I)—i]

(2m) p (2n. } p

1 k S(1)—1klv'N 2m v'S(l)

S(12 ) —1
x QS(l, }S(l )[S( I 1, —lz I )—1]k 1' QS(i, }

k 1 &f,(l)+ S(i) f-—d 1, S(l, ) —1

N 2m 2 (2m)p Sli)
d 1, d l~ S(lq) —1

+—f, A(1, 1, )f, A(1„1,)l,
(2m) p (2m. ) p S ip)

(B8)

=—&S(l)S(m)[S(Il—mI) —1] .
1

N
(B7)

The one- to two-phonon OCB matrix element of the Hamiltonian can be calculated using PO matrix elements (B3) and
(B7) and Eq. (2.6) as follows:

(k —l, lIHIk) = [k—l, lI(H —ED)Ik] ——g [k—l, lIk —l„l, ] Ik —/l, l, I(H —Eo}Ik]
Ii

&f(l ),k 1 k.l
m V'N 2 (B9)
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where

A(l, m)—=I mS(m)[S(~1 —m~) —1] . (810)

When 1~0 the function A(l, li) can be expanded in 1

and substituted in Eq. (88). The angular integral of the
zeroth-order term vanishes, and the large parentheses in
Eq. (BS) is proportional to 1. Thus, the function f(1) is
linear for small values of l and has the same slope as
fo(l ). The functions f(1) and fo(l) computed using ex-
perimental S(1) for liquid He at low temperatures are
shown in Fig, 3.

We want to stress that the simple angular dependence
of the one- to two-phonon matrix element (89) and the
linearity of the function f(1},which are both crucial for
the present calculation of the scaling function J(y ), are
not artifacts of the convolution approximation that was
used in calculation of the overlap of two-phonon PO
states [Eq. (87)], but rather a genuine property of the ma-
trix element (89). Indeed, the three-body integral in Eq.
(84) depends only on 1, m and I m due to the isotropy of
the liquid, and so does the overlap (87). This property
alone fixes the angular dependence in Eq. (89). An addi-
tional feature of the overlap (87) is that it vanishes when
I ~0 or m ~0 since PO states with an unequal number
of phonons are mutually orthogonal by construction,
which implies the linearity of the function f(1) at the ori-
gin.

(a)

ijx-
k

k-m-l

k l A„(f,y) =

f~F~~
=I (i)0

~ ~ ~ ~ o ~ ~ o + o ~ . ~ +

( ~X~
=r(f)0

k km k k k

k-m-1

APPENDIX C: PROOF OF EQ. (4.7)

The Ward identity

k 1A(l,y)=Xs(y) —Xs(y+k 1) (Cl)
= I (l)0

4 I 0 ~ 0 ~ ~ ~ = I'(I) g (y)-g (y+k 7)

Xs(y ) = g Xs,.(y ) . (C2)

The same enumeration scheme can be extended to the
corresponding groups of the A(l, y ) diagrams:

A(l, y)= gA (l,y),

establishes the connection between the proper self-energy
Xs(y) and the vertex correction A(l, y). The diagrams
that contribute to the Xs(y } are shown in Fig. 2(a). If an
external leg 1 is attached to any hard phonon propagator
in any of the Xs(y) diagrams, a diagram contributing to
the A(l, y ) is obtained. In fact, all the diagrams that con-
tribute to the A(l, y ) [shown in Fig. 2(b)] can be generat-
ed in this way from the Xs(y) diagrams. Thus, there is
one-to-one correspondence between the diagrams that
contribute to Xs(y) and the groups of diagrams that con-
tribute to the A(l, y ) that have the same arrangement of
the internal lines as the Xs(y ) diagram plus an additional
external leg 1 attached to any hard phonon propagator.
An example of this correspondence is shown in Fig. 5(a).

The Xs(y ) diagrams can be enumerated by an index v:

(c)

holds for each group v separately:

k. lA, (l,y)=Xs „(y)—Xs „(y+k 1), Vv . (C4)

We begin the proof of Eq. (C4) by quoting the identity

k 1[y+k m+iq. ] '[y+k-(m+1)+ill]

=[y+k.m+ig] ' —[y+k (m+I )+ill] (C5)

From Eqs. (3.13), (3.14), (4.2), and (C5) it follows that

FIG. 5. The proof of the Ward identity [Eq. (4.7)]. (a) An ex-

ample of the correspondence between X~(y ) diagrams and

groups of A(l, y) diagrams. (b) Graphical representation of
equation (C6). An arrow pointing from a vertex denotes an ex-
traction of the momentum from the hard phonon propagator;
shaded oval stands for an arbitrary complex connection scheme
of the internal lines. (c) The proof of Eq. (C4).

where the diagrams in the group A can be generated
from the diagram X by a procedure discussed above. We
will prove the Ward identity (Cl) by showing that it

k.lGo(y+ k.m) —I o(1)Go[y+k.(m+ I ) ]

=I o(1){Go(y+k. m) —Go[y+k. (m+1)] j . (C6)
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Equation (C6) has a simple graphical representation as is
shown in Fig. 5(b). An arrow pointing from a vertex
denotes an extraction of the momentum from the hard
phonon propagator, which is an artifact of the removed
external leg l. A shaded oval stands for an arbitrary
complex connection scheme of the internal lines.

Next, we consider the arbitrary group A of the dia-

grams contributing to the vertex correction A(l, y ). With
the aid of Eq. (C6) it is easy to demonstrate that Eq. (C4)
holds for an arbitrary v as is done in Fig. 5(c). This
6nishes the proof of the Ward identity, since it was al-
ready shown that the validity of Eq. (C4) for all v's im-
plies Eq. (Cl).
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