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Simulation of elastic-network relaxation: The Si& Ge random alloy
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A method for relaxing a tetrahedral elastic network with length mismatch is developed. Systematic
study of simulations finds close agreement with the predictions of analytic theory for mean values of
nearest-neighbor bond lengths and reveals unexpected details in the full distributions in the limits
x ~ 0, 1. Application of the method to the problem of strain relaxation in bulk crystalline Si& Ge
predicts trends in local structure that could be tested by experiment.

I. INTRODUCTION

Semiconductor alloys are solid solutions of two or more
species of semiconducting compounds or elements. The
atomic sizes of the constituents determine much about
the structure and properties of an alloy. Lattice mis-
matches range from essentially zero for Gaq Al P to
approximately 14'%%uo for Sni Ge . On the microscopic
level, alloys mix two or more types of natural lengths
for nearest-neighbor bonds. This mixing leads to inter-
nal strain as local structure relaxes to accommodate the
mismatched lengths within the constraints of long-range
crystalline order. A strong tendency to preserve individ-
ual bond lengths within alloys has been demonstrated by
a number of experiments using EXAFS (extended x-ray
absorption fine structure), a probe of local structure. i s

A related problem that has been an active theoretical
subject is the elastic behavior of classical networks com-
posed of Hooke's law springs. Recent theoretical work
has pointed to a convergence of the problems of such net-
works and strain relaxation in semiconductor alloys.

The purpose of this paper is to present a model for
simulating length-mismatched elastic networks with em-
phasis given to systems corresponding to real semicon-
ductor alloys. The particular example chosen here is

the Sii Ge alloy. This system is interesting because
atomic site substitution occurs on both sublattices of the
diamond structure, rather than on one as in ternary III-
V and II-VI semiconductors, leading to different trends
in structure. Additionally, there has been little exper-
imental study of the local structural relaxation in bulk
crystalline Si~ Ge, although there have been studies
of amorphous and epitaxial alloys, as well as recent
theoretical approaches to the problem.

II. THEORY

A. Microscopic straiu

The elastic network studied here is a classical system
consisting of springs connecting points in a crystalline
structure. The structure in this ivork corresponds to
that of diamond, the underlying structure of most semi-

conductor alloys. For the example considered here, sites
in the network can be occupied by atoms of two types,
A (Si) or B (Ge), which leads to three natural bond-
lengths, A-A, A-B, and B-B. The A-B bond length
is taken to be the mean of the A-A and B-B lengths.
The A-A bond will always be assumed shorter than the
B-B bond throughout this paper. The possibility of va-
cancies or interstitials is not considered. Two types of
Hooke's law springs are included, corresponding to a ra-
dial nearest-neighbor force and an angular next-nearest-
neighbor force. The bond-stretching force drives the re-
laxation resulting from the bond-length mismatch while
the bond-bending force resists distortion from the aver-
age crystal structure. The angle-preserving force is also
necessary to stabilize the diamond structure, which has
no resistance to shear with only radial nearest-neighbor
forces present and is thus unphysical (as has been re-
cently reiterated by Cai, Mousseau, and Thorpe~).

When viewed as a model of a semiconductor system,
the elastic network is a rigid-ion or valence-force-field
model. Such theories are well known in the study of
semiconductors, the most widely used being Keating's
model, later extended by Martin. ' The particular for-
malism used in this work is due to Kirkwood, ' and more
recently presented by Harrison. In this approach, the
Hooke's law forces are incorporated through the elastic
strain energy (or Kirkwood potential) of the network,
which is a sum over all distorted bonds and angles of
energy terms quadratic in the distortions. The strain
energy is written as

Here d,. is the natural length of the bond between atoms
i and j, d;z is the actual length of the bond and 60;zy is
the deviation of angle centered on site j and terminated
on the (nearest-neighbor) sites i and k from the perfect
tetrahedral angle (109.47'). The force constants Co and
Cq are empirical parameters fit to the experimental elas-
tic constants of the solid. The force constants used for
mixed bonds and angles are given in Table I.

The network is relaxed by minimizing the total elastic
strain energy with respect to variations in atomic posi-
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TABLE I. Mixed-site force constants.

Bond A-B

Angle A-A-B
Angle A-B-A
Angle B-A-B
Angle A-B-B

Co = (Co + Co )/2

C) ——(2C, + C, )/3
Cg ——(C, + C, )/2
Cg = (C,"+C, )/2
Cg ——(Cg + 2Cg )/3

tions, thus ensuring that the net force on a given site is
zero. In this work it is assumed that distortions from
the perfect crystal structure are small and so the devia-
tions of atomic positions are dealt with in a linear first-
order approximation. In the case of the Siq Ge alloy,
this assumption is reasonable given the 3.8%%uo bond-length
mismatch. Each atomic site has full freedom to move
in response to local forces, with the constraint that no
bonds are broken or crossed. The final strain energy and
all structural information are obtained from the relaxed
configuration of the network.

Osgood and Harrison have recently questioned the va-

lidity of short-range force models that use parameters
obtained from elastic constants, owing to the neglect of
long-range electronic interactions. We note here in re-
sponse that structural trends depend primarily on geom-
etry and local site occupation, found due to the presence
of competing bond length and angle preserving forces
(with the radial forces dominating), and not on the spe-
cific form of the microscopic interactions.

B. Supercell model

Simulation of the full random elastic network is accom-
plished with a supercell model. Recent analytic work
has confirmed the importance of long-range adjustments
in strain relaxation, even with only short-range forces in-
volved, ruling out models based on clusters or small unit
cells. A supercell model has the additional capability of
including the effect of any local configuration of sites.

The typical supercell used contains N = 1000 sites of
the diamond structure, with the dimensions of a large
cube composed of 125 face-centered cubic unit cells (five
regular cubes per side). Periodic boundary conditions
apply at the edges of the supercell. The effects of super-
periodicity are neglegible for this size cell. Lattice sites
are occupied by atoms of type A or B, randomly placed
to achieve the composition desired. The site distribution
is thus simple binomial. The (relaxed) position of each
site and the bond and angle types associated with it are
explicitly retained in the model. Results are accumulated
over many independent configurations of the cell.

Two methods for relaxing the supercell are available.
The first is an exact solution of the problem (within
the small displacements approximation), with all sites
relaxed simultaneously. There are three independent pa-
rameters per site that describe local distortions and three
additional parameters necessary for the relaxation of the
lattice constants of the supercell. Technically, the prob-
lem reduces to solving a system of 3N + 3 coupled linear
equations and keeping track of all relevant site informa-
tion.

TABLE II. Comparison of relaxation methods. The com-
puter used was a Convex C240. For the approximate method,
the total iterations and cpu time necessary for convergence to
one part in 10 are given.

Cell size

64 sites
216 sites
512 sites
1000 sites
8000 sites
27 000 sites
125 000 sites

Iterations

20
45
80
120
380
780
1580

cpu seconds
(approximate)

0.6
1.3
4.5
12.0
310
2100
19 750

cpu seconds
(exact)

0.12
4.6
62
430

III. SIMULATION RESULTS
A. Systematics

Both approaches to the supercell model display the
following systematic properties predicted by the analytic

The exact method is relatively slow in execution time
and expensive in computer memory. It is impractical for
N ) 1000. An approximate method based on a simple
physical picture of strain relaxation has been developed
that avoids the practical difficulties of the "brute force"
solution.

The approximate method for relaxing the supercell em-

ploys an iteration procedure based on a rigid-neighbor
approximation. A single site is relaxed alone, with all
neighbors held fixed. The strain energy terms used in-
clude only the four bonds and six angles associated with
the site. This approximation builds on the notion, first
advanced by Balzarotti et al. ,

2 that strain relaxation can
be understood in terms of the behavior of local tetrahe-
dral clusters. The method avoids the previously men-
tioned limitations of cluster models because all clusters
are simply part of the supercell.

The supercell is then relaxed sequentially, each site vis-
ited in turn (the order is irrelevant in this approxima-
tion), with all sites initially at average positions deter-
mined by the virtual-crystal approximation (VCA) for
a given composition. The entire procedure is repeated
until all atomic positions stabilize. Changes in atomic
positions with iteration step converge quickly, becoming
exponential after an initial number of steps. A 1000-site
supercell requires 120 iteration loops to converge to a
level of one part in 10, and 300 loops to achieve a level
of one part in 10 . This method is quite reliable when di-
rectly compared to the exact solution, the only detectable
difference being a minor discrepancy in the limit of small
z or 1 —z (see Sec. III C). It also requires far less com-
puter time and memory, allowing much greater statistical
accuracy and even the use of very large cells of 125000
sites or more. The speeds of the exact and approximate
methods are compared for several cell sizes in Table II.
The approximate method is a useful tool for simulation
with the exact method as a check.

In the following sections the method used to obtain
results will always be indicated.
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This section details the simulation of the random alloy
Siq Ge using the supercell model. The natural bond
lengths used are 2.35 (Si) and 2.44 (Ge) A and the force
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theory of the random elastic network. ~ For the case of
equal radial and angular force constants, Co+ = Cg,
Cy —Cy the network displays several symmetries. The
mean nearest-neighbor (NN) bond lengths A-A, A 8-,
and B-B are linear as a function of composition z. The
strain energy is parabolic and symmetric about z = 0.5.
Interestingly, the full distributions for the three nearest-
neighbor bond lengths have identical functional shapes,
with weights (1 —z)2 (A-A), 2z(1 —z) (A-B), and z2

(B B). -The centers of the distributions are of course dif-
ferent. The properties of distributions will be considered
in more detail in Sec. III C.

In the limit Ct ~ 0, all bonds in the network attain
their natural lengths and the strain energy tends to zero.
Both versions of the supercell model reproduce this be-
havior for this special limiting case within the bounds of
numerical accuracy.

The only discrepancy between the exact and approxi-
mate methods concerns the Vegard law behavior of the
network. The exact method produces perfect adherence
to Vegard's law for Co+ = Co, downward bowing for
Co+ ) C+ and upward bowing for Co+ ( Cg (with
CP = C, always). Because of the condition of rigid
neighbors, the approximate method does not allow the
lattice constants of the supercell to relax and thus Ve-
gard's law is imposed for all cases. In a random alloy,
which is isotropic and thus has no preferred direction for
lattice constant relaxation, this is not an important lim-
itation.

B. Si~ Ge
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FIG. 2. Calculated mean nearest-neighbor bond lengths
for Si& Ge, Si-Si (lower solid circles), Si-Ge (open circles),
Ge-Ge (upper solid circles). The solid line shows the predicted
VCA bond length. Similar results are obtained in Refs. 4, 8,
and 15.

constants are Cos' ——55.0 eV, CoG~ = 47.7 eV, C&' ——3.2
eV, CP' = 2.8 eV. Results in this section for mean
quantities were obtained from samples consisiting of one
hundred independent configurations of a supercell with
N = 1000 sites at each composition studied. Distribu-
tions were accumulated over one thousand configurations
of such a supercell. The approximate relaxation method
was used in both cases. The calculated strain energy for
the random alloy is shown in Fig. 1.

Local structural quantities show several clear trends
in the relaxed alloy. The mean NN bond lengths sepa-
rate according to type, short Si-Si, intermediate Si-Ge,
and long Ge-Ge, Fig. 2. The small curvature in the
mean lengths as a function of composition is a result of
the slight mismatch of force constants. The bonds are
spread into distributions with the centers of each distri-
bution having a value close but not exactly equal to the
natural length. Figure 3 shows the full distributions for
the NN bonds at z = 0.2. The distributions are close
to Gaussian. Essentially identical results are obtained
by Cai, Mousseau, and Thorpe for the elastic network
and by de Gironcoli, Giannozzi, and Baroni from Monte
Carlo simulation of Sit Ge . Gregg has obtained sim-
ilar results using a cluster model described by Weid-
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FIG. 1. Calculated total (diamonds), angular (circles),
and radial (triangles) strain energies for random Siq ~Ge
from the elastic network.
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FIG. 3. Distributions for the nearest-neighbor bond
lengths in Sip Ge at x = 0.2.
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mann, Gregg, and Newman. ~s Our results for NN bond
lengths in the impurity limits are comparable to those of
Martins and Zunger.

The mean deviations of bond angles from the perfect
tetrahedral angle of 109.47' also show distinct trends,
Fig. 4. There are three groupings here that separate
according to the occupation of end-point sites. Angles
with two Si end points are on average bent larger than
ideal, those with mixed Si and Ge are smaller at small
z and larger at large z, and those with two Ge are
smaller for all z. The calculated distributions for all

angle types at z = 0.2 are shown in Fig. 5. This be-
havior is in marked contrast to the case of amorphous
alloys, in which angular distributions are expected to
center around b8 = 0. The fourfold coordination of the
underlying diamond crystal structure is the difference in
this case.

These trends in local angular distortion can be under-
stood in terms of relaxation around impurities near z = 0
and z = 1. For example, consider the Si-Si-Si and Si-Ge-
Si angles. At low z the Si-Si-Si angle will obviously have
b9 = 0. At high z the three Si atoms making up this
angle are isolated in the mostly Ge alloy. The lattice
constant is close to that of pure Ge, so the unit of three
Si sites will be stretched apart to fit into the larger Ge
lattice, opening up the angle between them. The Si-Ge-
Si angle will also be undistorted near z = 0 because the
relaxation around the isolated central Ge site will be a
uniform radial expansion, leaving the angles centered on
the Ge site undisturbed. Near z = 1 the Si-Ge-Si angle is

composed of two Si sites bonded to a common Ge within
the mostly Ge alloy. The central Ge site will be pulled
towards the two Si sites by the two short Si-Ge bonds,
again opening up the angle. Similar arguments explain
the trends in the other four angle types.

The calculated mean next-nearest-neighbor (N NN)
distances appear in Fig. 6. These quantities are the sep-
aration between two sites that share a common nearest-
neighbor site. The only direct coupling between the two
end-point sites is angular. Here the two groupings de-
pend not on the end points but on the central site, with
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FIG. 5. Distributions for the (a) Si-Si-Si, Si-Si-Ge, and
Ge-Si-Ge and (b) Si-Ge-Si, Si-Ge-Ge, and Ge-Ge-Ge bond
angles at x = 0.2.

short distances centered on Si sites and long distances
centered on Ge sites. This arrangement derives from the
trends in the bond lengths and angles and can be ex-
plained by the law of cosines. If the NNN distance is c,
the two NN bond distances are a and b, and the bond

angle is 8, then c2 = a2+ b2+ s2ab+ ~sb8, after expand-
ing for a small angular distortion b0 about 0 = 109.47'.
As an example, consider the mean Ge-Si-Ge and Si-Ge-Si
distances. Both are composed of the same type of bonds,
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FIG. 6. Calculated mean second-neighbor distances for
Siz ~Ge~. Si-Si-Si (solid circles), Si-Si-Ge (solid squares),
Ge-Si-Ge (solid triangles), Si-Ge-Si (open triangles), Si-Ge-Ge
(open squares), and Ge-Ge-Ge (open circles). The solid line
represents the VCA prediction for second-neighbor distances.
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Si-Ge, but the Ge-Si-Ge distance is short because its as-
sociated mean b8 is negative and the Si-Ge-Si distance is
long because of its positive b8. The remaining NNN dis-
tances can be explained similarly. The distributions for
all NNN distances at z = 0.2 are shown in Fig. 7. Un-
like the nearest-neighbor distances, there is considerable
overlap of the distributions.

C. Local structure in the dilute limits

We now return to the systematic properties of the elas-
tic network. Simulation of elastic-network relaxation in
the dilute concentration limits z 0 and 1—x 0 reveals
unexpected details in the local structure of the random
alloy. A hypothetical random alloy Aq B is studied,
with several different choices of force constants and nat-
ural bond lengths always taken to be equal to those of Si
and Ge. (For the main example, the force constants are
chosen to be equal for simplicity and are approximately
those of Sit Ge .) Since the subject here is systemat-
ics, the exact relaxation method (employing a 512-site
supercell) is used to ensure full precision, see below.

Consider the most obvious local structural quantity,
the nearest-neighbor bond lengths. The full distribu-
tions for the bond lengths are approximately Gaussian
in shape away from the dilute limits, but near z 0
(or 1 —z 0) the distributions are clearly composed of
distinct subpeaks. The emergence of the subpeaks as z
changes from 0.08 to 0.02 is shown in Fig. 8, for a net-
work with C&

—Cg = 50.0 eV and CP = CP = 3.0

eV. The effect is most clearly seen for the (dominant)
A-A bonds, which occur with the highest probability as
z becomes smaller, but the behavior of the (impurity)
A-B and B-B bonds is exactly the same. The analytic
theory predicts that all three nearest-neighbor bond dis-
tributions should have identical functional shapes, and
that is seen to hold in the simulation even in the limit of
small z. The approximate relaxation method also repro-
duces this detailed structure with one small error: the
centers of two subpeaks are shifted by 0.001 A, due to
partial truncation of long-range elastic displacements by
the finite-iteration procedure.

The existence of the subpeaks can be attributed to the
presence of impurity sites (B at small z, A at small 1 —z)
in the first- and second-neighbor shells of the sites making
up the type of bond in question. Figure 9 shows the two
sites central to a bond (solid circles) and their first (lined
circles) and second (open circles) neighbors. Throughout
this section, first shell will denote any site that is nearest
neighbor to either bond site, and second shell any site
that is next-nearest neighbor (but not nearest) to a bond
site.

Fully separated subdistributions were obtained by ex-
plicitly distinguishing A-A, A-B, and B-B bonds accord-
ing to the number and location of impurity B sites in the
first- and second-neighbor environments of each bond in
the simulation samples. Figures 10—12 show these fully
separated subdistributions for the dominant species A-
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FIG. 8. Distributions for the nearest-neighbor A-A dis-
tances in a network A~ B with force constants Co
Co ——50.0 eV and C, = C&

——3.0 eV at compositions
x = 0.08, 0.04, 0.02. The subpeak structure emerges as the
composition approaches the dilute limit. The samples at
x = 0.08, 0.04 consisted of 256 000 sites. The sample at
x = 0.02 was 1024000 sites. The individual cell size was
512 sites in all cases.
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impurities in the first shell. Figure 10(a) shows the peak
for A-A bonds with no B in the first or second shell, Fig.
10(b) shows the peak for A-A bonds with a single B in
the first shell, and Fig. 10(c) shows the peak for two or
more B in the first shell (none in the second). The peaks
decrease in height according to total number of B sites
present (note the changing vertical scales) and the cen-
ters shift to shorter lengths, because more impurity B
first neighbors compress the central bond more. All of
the peaks consist of a dominant single mode and a small
shoulder due to impurities in the third shell. There are
no effects due to distinct geometrical configurations since
all first-shell neighbors are equivalent. The small satellite
peak in Fig. 10(c) is due to configurations with three (or
more) B sites in the first shell.

The next progression of figures, 11(a)—11(c), show the
subpeaks that occur with on. e B site in the second shell
and zero, one, and two (or more) impurities in the first
shell. The two peaks in Fig. 11(a) result from the two
possible geometrical configurations for a single impurity
in the second shell. The bond connecting the impurity
to the first-neighbor shell is parallel to the central bond
in six of the eighteen possible cases, resulting in two sub-

peaks with relative weights of six and twelve. Figures
11(b) and 11(c) show the related peaks arising from con-

figurations with one B site in the second shell and one
or more in the first shell. The centers of these peaks are
again progressively shifted to smaller lengths and the to-
tal weights are scaled by the number of B sites present.
The small background in Fig. 11(c) is due to bonds with

three or more impurities in the first shell.
Finally, the peaks arising from configurations with

two or more impurities in the second shell appear in

Figs. 12(a)—12(c). There are three independent geomet-
rical configurations for two B sites in the second shell,

leading to the three main peaks in each of the diagrams.
The background peaks in the diagrams are caused by
three or more impurities in the second shell. The famil-

iar shifting to shorter lengths and vertical scaling due to
the presence of increasing numbers of impurities remains.

The finite widths of the subpeaks are real effects due to
the surrounding medium beyond the second shell. The
supercell model explicitly includes many shells of sur-

rounding atoms and thus incorporates the long-range re-

laxations that produce the widths. The mean-square
fluctuations ( d g —( d ) have been calculated at
z = 0.02, 0.04, 0.08, 0.16 for the full A-A distribution and
for the group of three subpeaks of the A-A distribution
with no B sites in the second shell of the bond (these
subpeaks appear in Fig. 10 for z = 0.02). Results for
both are plotted as a function of z(1 —z) in Fig. 13. The
mean-square fluctuation of the full distribution is propor-
tional to z(1 —z), the same as a Gaussian, as demanded

by the analytic solution. " Further, at each composition
all of the subpeak fluctuations are equal within small sta-
tistical error, and also show a composition dependence of
z(1 —z).

Typical errors in bond lengths due to neglect of second-
order terms in the expansions of d;z —d,

&
and 0,&k + b0;&g

are on the order of 10 A. This is much smaller than the
range over which a single subpeak has appreciable weight.

1.5

C
0
0 0.5
O

0.0
0.00 0.05 0.10 0.15

FIG. 13. Calculated mean-square Auctuations ( d
—( d ) for alloy Ai ~B~ (Co = 50.0 eV, Ci ——3.0 eV) as a
function of x(1 —x). Triangles indicate the fluctuations of the

full A-A distribution, circles indicate the fluctuations of the A-

A subdistributions with no B sites in the second shell (see Fig.
10); in the latter case the three types of fluctuations are equal

within an error smaller than the plot symbol size. The four

points shown are for compositions x = 0.02, 0.04, 0.08, 0, 16.
The linear dependence on x(1 —x) is the same as a Gaussian.

(For the main example in this section at z = 0.02, the

subpeaks have V ( d ) —( d ) —6 x 10 4 A. ) The
subpeak structure is clearly not an artifact of the linear
first-order approximation used in relaxing the supercell.

For completeness we note here that at the other di-
lute limit, (1 —z) 0, a similar structure of subpealcs
is found. The ordering of peaks is different, a mirror
image of the low-x case, due to the fact that the impu-
rities then have shorter bond lengths and the host has
a longer natural length. Additionally, the full distribu-
tions of second-neighbor distances and bond angles show

subpeak structure in the dilute limits, with the same ori-
gin. The computer simulations also indicate that the phe-
nomenon of identical functional shapes for distributions
extends to next-nearest-neighbor distances and bond an-

gles, at all values of z (with force constants equal).
The structure of subpeaks is found to sonze degree for

any physically realistic force constants, the only require-
ment being the presence of competing radial and angular
forces. For example, Fig. 14 shows the subpeak struc-
ture at z = 0.02 and z = 0.98 for a network with a large
mismatch of both radial and angular force constants. Be-
cause of the unequal force constants, the dominant peaks
(A-A at z = 0.02 and B Bat z = 0.98) a-nd impurity
peaks (A Bin both-cases) are no longer identical (al-
though very nearly), and the low- and high-z structures
al'c not exact Illirror llTlagcs. Ill thc lllllit, C] ~ 0 tllc
widths of the distributions vanish and the subpcak stuc-
ture disappears.

All subpeaks in the nearest-neighbor bond-length dis-

tributions can be explained by the number and geometri-
cal configuration of impurity sites in the first- and second-

neighbor shells of the bonds. This suggests an intuitive,
physical explanation for the identical shapes of nearest-
neighbor bond length distributions in the dilute limits.
All types of bond, whether A-A, A-B, or B-B, respond
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FIG. 14. Distributions for the nearest-neighbor distances

for a network with Co ——50.0 eV, Co ——25.0 eV, C& ——3.0
eV, C&

——1.0 eV. The sample size was 256 000 sites (512-site
cells) at both compositions. Note that the subpeak stucture
is still clear despite the force-constant mismatch. (a) AA-
distances at x = 0.02. (b) A Bdistances at x -= 0.02. (c)
B Bdistances at x =-0.98. (d) A Bdistances at x = 0.9-8.

in the same way to the presence of additiona/ impuri-
ties in the first- and second-neighbor environments, thus
producing the same pattern of subpeaks in all three dis-
tributions. The apparently unusual equivalence of host
and impurity distributions has a simple physical origin.

The occurrence of satellite peaks should not be con-
fined to the system studied here, the diamond crys-
tal structure populated by two atom types, but will
be present in any tetrahedral network with length mis-
match, including ternary or quatenary networks in the
zinc-blende or wurtzite structures. In real semiconduc-
tor alloys, additional interactions such as charge transfer
may complicate the effect. Nevertheless, given the over-
all success of spring models in describing local structure,
it would be surprising to find a complete lack of structure
in dilute-limit bond-length distributions in real semicon-
ductor alloys.

IV. DISCUSSION

The supercell model described here is a reliable
method for relaxing elastic networks with multiple nat-
ural lengths, as demonstrated by its close reproduction
of the analytic solution of Cai, Mousseau, and Thorpe. 4

The rigid-neighbor relaxation method allows fast and ex-
tensive simulations whose accuracy can be carefully mon-
itored. The method has great flexibility because the oc-
cupancy of sites can be completely controlled, permitting
any local or long-range configuration to be studied. Gen-
eralization to many systems beyond the single example
of random Siq Ge studied here is straightforward.

The model has demonstrated its usefulness by reveal-

ing a rich local structure present at the dilute concen-
tration limits and providing a physical basis for under-
standing this structure and reconciling it with the re-
quirements of the analytic solution. The satellite peak
structure in the nearest-neighbor bond-length distribu-
tions seems surprising given the apparent simplicity of
the analytic solution. Nevertheless the structure does
conform to the theory and in fact helps explain why iden-
tical distribution shapes are preserved at low and high
alloy-concentration limits (in the case of equal force con-
stants). The detailed structure is also interesting because
it necessarily follows that the full bond-length distribu-
tion is built up from the subdistributions at all composi-
tions, although this is only apparent in the limiting cases.

It should be noted that in experimental studies it is
usually the impurity bond distribution that is accessible,
not the host. Recall, however, that all bond distribu-
tions will display subpeak structure, and since the force
constants of real semiconductor alloys fall in a very lim-
ited range, host and impurity distributions will be very
similar.

In dealing with the Si& Ge alloy in this work a
random-site distribution has always been assumed. This
is the common assumption for the bulk alloy in ex-
periments and is supported by recent Monte Carlo
simulations. If the alloy is indeed random then exper-
iments with EXAFS should see trends in the nearest-
neighbor and next-nearest-neighbor environments very
similar to the results predicted by our elastic network
simulations. %e know of no published EXAFS data for
bulk crystalline Si~ Ge at this time. EXAFS results
from the Ge A edge for epitaxial Ge-Si layers grown on a
Si(100) substrate do indicate that the Ge-Ge and Si-Ge
bond lengths are conserved in the strained alloy layers.
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A more complete experimental study would be desirable
for purposes of comparison.
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