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Probing localization and mobility of an excess electron in a-Si by quantum molecular dynamics
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The behavior of an excess electron in a-Si is studied over a wide temperature range using the
quantum-molecular-dynamics approach. The electron is found to be localized in a nearly spherical void

0
of radius -3 A, and is surrounded by a ring of eight Si atoms. The simulation results for the electron
mobility are in good agreement with the time-of-flight measurements.

I. INTRODUCTION

Photogenerated excess electrons in time-of-flight (TOF)
mobility measurements provide very useful insight into
the nature of localized states near the conduction
band. ' In these experiments the mobility p is mea-
sured from the distance d transversed by excess electrons
during transit time t in an external electric field E:
p=dl(Et). Experiments in a-Si indicate that the elec-
tron mobility is thermally activated over a temperature
range of 150—320 K. ' In the early TOF measurements
by Le Comber and Spear, the room-temperature mobility
was found to be 0.1 cm /Vs and the activation energy
0.19 eV over the aforementioned temperature range.
More recent measurements ' by a number of different
groups find the room-temperature mobility to be around
1 cm /V s and the activation energy to be 0.13 eV.

In the temperature range of 150—320 K, a multiple-
trapping model is used to explain the observed thermally
activated behavior of the electron mobility. Assuming
a thermal equilibrium distribution of free carriers and
carriers trapped in shallow traps, the extended-state mo-
bility p,„,is reduced relative to p by the fraction of time
that a carrier on the average spends in an extended state.
Thus, one finds that

g (E.)
p=rM,„,1+ exp(bElk& T)

g E,

where g (E, ) and g (E, ) are the densities of states at the
conduction-band mobility edge and trap states, respec-
tively, and hE =E,—E, is the activation energy. Widely
different values of p,„„rangingfrom 10 to 500 cm Vs,
have been estimated from Eq. (1).

Very recently, attempts have been made to measure the
electron mobility in a-Si and a-Si:H in the picosecond
domain using photoinduced absorption experiments. '

The picosecond domain is readily accessible to computer
simulation and, with the recent development of
quantum-molecular-dynamics (QMD) technique, "
mobility simulations on these short time scales can be
performed by the same TOF method as used in real ex-

periments.
In this paper, we describe the QMD simulation results

concerning the microscopics of localization and mobility
of an excess electron in a-Si. Three-dimensional visuali-
zation shows that the excess electron is trapped in voids
whose radii are approximately 3 A. The mobility of the
excess electron is calculated using a subtraction approach
based on the difference in the electron dynamics at zero
and finite electric fields. This approach yields a good
signal-to-noise ratio. The calculated electron mobility is
in good agreement with TOF mobility experiments over
the whole temperature range between 150 and 300 K.
The activation energy is found to be 0.1 eV, which is also
in accord with the measured value.

The outline of this paper is as follows. In the next sec-
tion, we explain the quantum-molecular-dynamics algo-
rithm. Interaction potentials used in the simulations are
discussed in Sec. III. In Sec. IV, we describe the numeri-
cal procedure, and the results are presented in Sec. V.

II. QUANTUM-MOLECULAR-DYNAMICS
ALGORITHM

Let us first consider the situation where the physical
system consists of an excess electron interacting with N
solicon atoms at a finite temperature T. In the tempera-
ture range of interest, i.e., between 150 and 300 K, Si
atoms behave as classical particles. The excess electron
moves under the inhuence of a time-dependent potential,
V(r, IRt(t) J ), that depends on the position of Si atoms,
[Rt(t) j . The Schrodinger equation for the electron reads

fi
i% P(r, t ) =Hg(—r, t), H = — 7 + V(r, IRt(t) I ),

(2)

where f(r, t) is the excess electron wave function and m is
its mass. Formally, one can write the solution of Eq. (2)
as

f(r, t +b, t) = T exp ——f H dt' f(r, t), (3)
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where T is the time-ordering operator and 4t is a time in-
crement. For sufficiently small b t (3) can be written as'

. ht AV
g(r, t+bt)=exp —i V(r, t) exp ibt2' 2m

Xexp i —V(r, t) r/i(r, t)+O((bt) ) .
2A

RV Ak
exp iht g(r)= g exp iht — g(k)e'"'

2m ~ 2m

This step involves taking the direct fast Fourier trans-
form of g(r), multiplying the Fourier transform g(k) with
exp(ihtfik /2), and then taking the inverse discrete fast
Fourier transform.

(iii) The last step involves matrix multiplication be-
tween exp[ ibtV(r, [R&(t—)])/2R] and the outcome of
step (ii).

Repeated application of these three steps provides the
wave function at successive intervals of time.

Together with the propagation of the wave function at
each time interval, the positions of classic atoms, [R&(t)],
and the potential V([R&(t)] ) have to be evaluated. The
time evolution of [R&(t)] follows Newton's equations,

d R/
M = —V(U{[R((t)]}

—
V~ fdr V(r, [R~(t}]}~/(r, t) ~2, (6)

where M is the mass of a Si atom. The first term on the
right-hand side of Eq. (6) arises from the interaction
among Si atoms, while the second term is due to the in-
teraction of a Si atom with the excess electron. Equation
(6) is valid only if the excess electron is in the lowest-
energy state at every instant and nonadiabatic events are
absent during the time evolution of the excess electron
wave function. The solution of Eq. (6) requires
knowledge of the interaction potentials U and V. The
form of U and V we have used is discussed in Sec. III.

Recently the excess electron mobility in helium gas'
and water' has been calculated with a straightforward
application of the QMD approach outlined above. In
these simulations, an external electric field is applied and
the average drift velocity along the direction of the ap-
plied field is calculated. These mobility simulations are
beset with the difficulty that for small external fields the

(4)

In the case of bulk systems without any external fields,
one can use periodic boundary conditions and implement
Eq. (4) with use of discrete fast Fourier transforms. The
simulation cell is divided into a regular grid, and at each
time interval the wave function P(r, t) and the potential
V(r, [R&(t)j} are expressed on the grid points. Then
there are three steps involved in the execution of Eq. (4).

(i) Matrix multiplication of exp[ ihtV(r—, [R&(t)] )/
2A'] and P(r, t) in the real space. The result g(r) is avail-
able on the grid points.

(ii) The next operation, exp(ihfiV /2)g(r), is per-
formed in the momentum space:

fluctuations in the velocity are much larger than the ve-
locity response to the external field and, as a result, the
signal-to-noise ratio is too poor to yield meaningful re-
sults. These direct mobility simulations have to be per-
forrned at sufficiently high values of the electric field so
that the response is above the level of fluctuations. How-
ever, too large an electric field can lead to nonadiabatic
dynamics for the excess electron.

The problem of poor signal-to-noise ratio is also
present in nonequilibrium simulations of classical sys-
terns. To alleviate this problem, Ciccotti and Jacucci
have developed an approach for classical systems in
which equilibrium and nonequilibrium simulations are
performed with identical initial conditions. ' The parti-
cle trajectories of equilibrium and nonequilibrium simula-
tions are monitored for a time ~ over which the equilibri-
um and nonequilibrium trajectories are correlated. The
response to an external field is calculated by subtracting
the equilibrium value of the dynamic variable conjugate
to the field from its nonequilibriurn value. Since the equi-
librium and nonequilibrium values of the dynamical vari-
able are correlated over the time interval v, the subtrac-
tion method eliminates the random fluctuations, leaving
behind the systematic response to the external field.
Ciccotti and Jacucci have demonstrated that the subtrac-
tion method is equivalent to obtaining the response from
the time-correlation function of the dynamic variable in
an equilibrium simulation. For a charged particle in a
Lennard-Jones fluid, the mobility calculated with the sub-
traction method agrees with the Green-Kubo formula
and the simulation results in liquid Ar are also in good
agreement with experimental measurements. '

The classical subtraction technique has been extended
to the case of mixed quantum-classical systems. ' For an
excess electron in a-Si, the Hamiltonian in the presence of
an external field, E= (E,0, 0), is

'2

&(t)= V eEt + V{—r, [R—,(t)] ) . (7)
1

2m l

The average velocity is calculated from

{v„(t))=tr[e ~~v„(t)]

where

= lim —J dt, {fo(t,)~v„(t)~$0(t,)),
taboo T 0

(8)

v„(t)= U~(t)v„U~(t)

and v =(ikey/Bx eEt)/m. In Eq.—(8), H and go are the
electron Hamiltonian and the ground-state wave func-
tion, respectively, without the external field; in Eq. (9),
U~ is the time-evolution operator in the presence of the
field.

In order to remove the large random fluctuations and
calculate the systematics of the velocity response to the
external field, equilibrium and nonequilibrium simula-
tions are performed for a time ~ using identical initial
conditions for the wave packet and the configuration of
Si atoms. The velocity response, which is the difference
in the velocities calculated from the nonequilibrium and
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equilibrium simulations over the time interval ~, exhibits

a much improved signal-to-noise ratio.
Special attention must be paid to the choice of ~. For

classical systems, Ciccotti and Jacucci argue that the to-
ta1 simulation time should be less than the duration over
which the equilibrium and nonequilibrium simulations
are correlated. ' In the case of mixed quantum-classical
systems where one is interested in the response of quan-
tum jparticles, finite-size effects may require special atten-
tion. For example, when periodic boundary conditions
are used, a quasifree particle can diffuse over the entire
length L of the box in time rd-L /D, where D is the
self-diffusion coeScient of the quantum particle. If the
simulation is run longer than ~d, then spurious phase-
coherence effects can mask the real transport of quantum
particles. Should such a situation arise, the system size
for the nonequilibrium simulation should be increased so
that the velocity response can be monitored longer. The
asymptotic value of the response can be calculated from
these difFerent finite-size simulations.

The subtraction technique has been applied successful-
ly to calculate the mobility of an excess electron in heli-
um gas at 77 K.' The @MD simulations were performed
over a wide range of helium densities. Over that range
both the quasifree and self-trapped behavior for the ex-
cess electron are observed. The calculated velocity
response of the electron is found to have a good signal-
to-noise ratio. The mobility results are in good agree-
ment with the time-of-Sight measurements.

III. INTERACTION POTENTIALS

In the present simulations, efFective potentials are used
to describe the Si-Si atom interaction U and the electron-
silicon atom interaction V. U is taken to be the
Stillinger-Weber potential It consists of a two-body
potential and a three-body term that takes into account
the covalent interactions in the system. Using this poten-
tial, MD simulations have been performed for liquid,
amorphous, and microclusters of Si. The success of these
simulations is well documented. In a-Si MD simulations
for the static structure factor and bond-angle distribution
are in good agreement with experiments. ' Simulation re-
sults for the phonon density of states in a-Si are also in
good agreement with inelastic neutron-scattering mea-
surements. '

The interaction between an electron and a silicon atom
is described by an efFective potential of the form

V(r) =eoexp[ (r /ro) ]B(r—/r, )

(ae /2r )[1 B(—r/r, )], — (10)

where B(x)=1—[1—exp( —x )] . The first term
represents a repulsive core due to the Pauli principle and
Coulomb interaction between the excess electron and the
electrons of a silicon atom. The second term is an attrac-
tive interaction experienced by the excess electron at
large distances due to the electronic polarizability a of
silicon atoms.

The parameters co pp and r, are determined from two
separate self-consistent electronic structure calculations
in the density-functional formalism. In both calcula-
tions, a random network of 54 Si atoms is considered. '

The first calculation is performed for a system of 54 Si
ions and 216 valence electrons, with the electron-ion in-
teraction described by a nonlocal pseudopotential and
the electron-electron interaction including the Hartree,
exchange, and correlation effects. For the exchange-
correlation potential, we use the local-density approxima-
tion and the form of the potential is Perdew and Zunger's
fit to the exchange-correlation energy results of the
Green's-function Monte Carlo calculations. In the
second self-consistent electronic structure calculation, the
ionic positions are still the same random network
configuration of 54 Si atoms as before. In addition to the
216 valence electrons, there is now the additional excess
electron and a uniform, neutralizing background. The
electron-ion and electron-electron potentials have the
same form as in the first calculation.

The purpose of these two calculations is to identify the
appropriate length and energy scales for the excess elec-
tron in the a-Si network. The difFerence in the total ener-
gies of the two calculations, after suitably subtracting off
the contribution of the excess background charge in the
second calculation, provides the energy scale for the ex-
cess electron. The length scale associated with the excess
electron in an a-Si network is estimated from the extent
of the excess electron localization, i.e., the participation
ratio [Q fdr~(p;(r)~ ] ', where y;(r) is the excess elec-

tron orbital and Q is the vo1ume of the 54-atom cell.
Next, MD simulations are performed on an a-Si system

in which the atoms interact via the Stillinger-Weber po-
tential U. The amorphous system is obtained by a melt-
quench process. Starting with a well-thermalized high-
temperature liquid at 5000 K, the system is cooled suc-
cessively to 4000, 3000, and 2000 K. At each tempera-
ture, the system is thermalized for 50000 MD time steps
(one MD time step is equal to 0.605 femtosecond). The
2000-K system is cooled "slowly" to 1500, 1000, 600, and
300 K. Again at each temperature the system is thermal-
ized for a long time. These four systems are well-
thermalized glassy states.

In one of the configurations at 300 K, an excess elec-
tron is injected. The initia1 wave function for the excess
electron is taken to be a Gaussian. Keeping with posi-
tions of Si atoms fixed, the Gaussian wave packet is pro-
pagated in imaginary time using the prescription in Eq.
(4). A long imaginary-time propagation allows the elec-
tron to reach the ground state corresponding to the given
configuration of Si atoms. For different amorphous
configurations of Si atoms, these long imaginary-time
propagations were carried out. The parameters co 7'0,

and r, are chosen so that the ground-state energy of the
excess electron and its participation ratio in the ground
state agree with the values obtained from the electronic
structure calculations. The resulting parameters are
co=4.49 eV, r0=2.04 A, and r, =2.25A. The value of a
is taken to be 5.48X10 cm . The parameters are re-
lated to the length of the energy scale of excess electron
in a-Si.
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FIG. 1. A snapshot of electron density (red) and the positions of Si atoms (white).

IV. CALCULATIONS

The simulated systems consisted of 486 silicon atoms in
a 41.05X15.39X15.39A MD cell, so that the density in
these simulations corresponded to the experimental den-
sity, p =5 X 10 cm, of the amorphous system. The
electron wave function was represented on 64X16X16
discrete grid points. Simulations with 128 X 32 X 32 grid
points were also performed to ascertain that the grid size
had no effect on the results. The discrete time propaga-
tion of the electron wave packet was carried out with a
time step, b t = l a.u. (0.024 fs), while the time step in the
integration of Newton's equations for silicon atoms was
25 At. Periodic boundary condition was imposed.

Simulations were initiated by thermalizing the Si sys-

tern without the excess electron at high temperature,
T =5000 K. This well-thermalized system was cooled to
a lower temperature and thermalized for a long time.
%'ith repeated cooling and thermalization, the system
temperature was brought down to 300 K. At this stage a
conjugate-gradient method was applied to the Si-atom
configuration to bring the system to a local energy
minimum. The excess electron was added to the Si sys-
tem and its wave packet was propagated in imaginary
time, using Eq. (4), until the electron reached the ground
state corresponding to the given configuration of Si
atoms. Next, in the presence of the excess electron, the
Si atoms were relaxed to the minimum-energy
configuration by the conjugate-gradient method. The
imaginary-time propagation of the electron wave packet
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FIG. 2. Electron-silicon pair distribution function G(r) cal-
culated relative to the center of mass of the electron wave pack-
et at T=300 K.

followed by the application of the conjugate-gradient
method to the Si configuration were repeated until the
combined excess electron and Si-atom system reached the
lowest-energy configuration. Starting with this fully re-
laxed system, the electron wave packet was propagated in
real time and the equations of motion for Si atoms were
solved concurrently to obtain well-thermalized systems at
temperatures T =300, 200, and 150 K. At each tempera-
ture the combined system was thermalized for at least
0.24 ps while the simulation proper was run for an addi-
tional 0.6 ps.

V. RESULTS

In the temperature range of 150—300 K, the excess
electron is observed to be localized for the entire duration
of the simulation. Figure 1 shows a typical snapshot of
the excess electron and silicon atoms in the system at
T=300 K. It is evident that the electron is trapped in-
side a void, around which the local tetrahedral arrange-
ment of silicon atoms is destroyed. The snapshot in Fig.
1 indicates that the localized electron cloud is nearly
spherical in shape. To assess the shape of the electron
wave packet, we calculate a shape order parameter g
from the radius of gyration tensor T:
@=0.5[3Tr(T )/(TrT) —1], where T= J drrr~f(r, t)~ .
y vanishes for a perfectly spherical wave packet, whereas
for an infinitely elongated wave packet g is unity. The
QMD simulations reveal that y for the localized electron
in the a-Si system is small ( 0.05) and remains so
throughout the simulations at 300, 200, and 150 K.

An estimate for the size of the void trapping the elec-
tron can be obtained from the excess electron-silicon ra-
dial distribution function G(r). Figure 2 shows such a
distribution function measured relative to the center of
mass of the electron wave packet. From the first peak in
G(r) we estimate that the size of the void is -3 A, and
from the area under the first peak in G(r) we find that
the number of nearest-neighbor Si atoms is eight.

At temperatures between 150 and 300 K, nonequilibri-
um QMD simulations in the presence of a small external
electric field were also performed to calculate the excess
electron mobility. The mobility simulations were per-
formed in the presence of a uniform external electric field
of strength 1.03 V/cm in the x direction. Figure 3 shows
the time variation of the velocity response at tempera-

oi i
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3 4 5 6
103/'T {K ']

FIG. 3. Velocity response of an excess electron in a-Si in the
presence of a uniform electric field of strength 1.03 V/cm. Ve-
locities in the x, y, and z directions are denoted by solid, dashed,
and dotted curves, respectively.
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FIG. 4. Temperature dependence of the mobility of an excess
electron in a-Si. Solid circles represent the QMD results. Open
circles are the time-of-flight experimental results by Hourd and
Spear (Ref. 25).

tures T=300, 200, and 150 K. From the ratio of the
asymptotic values of the velocity response in the direc-
tion of the field and the field strength, we find that the ex-
cess electron mobility p is (0.55+0.20), (0.067+0.012),
and (0.007+0.016) cm /V s at 300, 200, and 150 K, re-
spectively. A comparison between the simulation results
and the TOF mobility measurements is shown in Fig.
4. The simulation results for mobility exhibit a thermal-
ly activated behavior, just as experiments do. Fitting the
simulation results to the formula for mobility to the
multiple-trapping formula [Eq. (1)], we get the activation
energy bE =(0.12+0.03) eV. The calculated activation
energy compares well with the experimental value, 0.14
eV. The same fitting gives the extended-state mobility

p,„,=4 cm /V s and the density-of-states ratio
g (E, )/g (E, ) = 13. They also compare favorably with
the corresponding experimental values 7.3 cm /Vs and
30, respectively. We have also calculated the velocity
response of the electron using a time-dependent first-
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order perturbation method. The results are identical to
those obtained by the subtraction method. Thus an elec-
tric field of strength 1.03 V/cm corresponds to the
linear-response regime.

The results for the excess electron mobility depend on
the topology of the network glass and the nature of de-
fects trapping the electron. In the earlier TOF experi-
ments, the room-temperature mobility was measured to
be 0.1 cm /V s and the activation energy over the temper-
ature range of 150-300 K was 0.2 eV. More recent mea-
surements find that the room-temperature mobility is 1
cm /Vs and the activation energy is 0.14 eV over the
same temperature range. The observed differences be-
tween these experiments arise from different preparation
conditions and, perhaps, the purity of samples. To test
the effect of the former, we have performed mobility
simulations using another set of initial conditions. In this
case the simulation result for the room-temperature mo-
bility, p=(0.08520.012) cm /Vs, is much smaller than
the value obtained from the previous simulations. To get
an estimate of the activation energy, we have used the
multiple-trapping model where the activation energy is

the energy difference between the localized and extended
states. Taking the difference between the ground and the
first excited states to be a rough estimate of the activation
energy, we find that its value for the second set of initial
conditions is 0.2 eV. This agrees better with the earlier
TOF measurements.

In conclusion, QMD simulations for an excess electron
in a-Si reveal that defects such as voids tend to localize
excess electrons. The size of these voids is -3 A. The
mobility simulations between 150 and 300 K are in good
agreement with the experimenta1 results. Applying the
multiple-trapping model to the simulation results, the
values for the activation energy and the density-of-states
ratio are in good agreement with the corresponding ex-
perimental values.

ACKNOWLEDGMENTS

This research was supported in part by the Louisiana
Education Quality Support Fund, Grant No. LEQSF-
(1991-1992)-RD-A-05, and National Science Foundation
Grant No. ASC-9109906.

'J. M. Marshall, Rep. Prog. Phys. 46, 1235 (1983).
T. Tiedje, in Semiconductors and Semimetals, Vol. 21C, edited

by J. Pankove (Academic, New York, 1984).
3W. E. Spear, J. Non-Cryst. Solids 90, 171 (1987).
4J. M. Marshall, P. G. Le Comber, and W. E. Spear, Solid State

Commun. 54, 11 (1985).
5Reliable measurements become difficult near 150 K, although

below 80 K the experimental results are reliable again. Start-
ing around 80 K the electron mobility is observed to rise first
with a decrease in the temperature and then saturate in the
temperature range of 10-50 K. Furthermore, unlike the
measurements between 150 and 320 K, the low-tempearture
mobility data exhibit a dependence on the intensity of the ex-
citation used for photogeneration of carriers.

P. G. Le Comber and W. E. Spear, Phys. Rev. Lett. 25, 509
(1970).

7A. I. Rudenko and V. I. Arkhipov, Philos. Mag. 39, 465 (1979).
T. Tiedje and A. Rose, Solid State Commun. 37, 49 (1980).
J. Orenstein and M. Kastner, Phys. Rev. Lett. 46, 1421 (1981).
E. A. Schi8; R. I. Devlin, H. T. Grahn, J. Tauc, and S. Guha,
Appl. Phys. Lett. 54, 1911 (1989).

' A. Selloni, P. Carnevali, R. Car, and Parrinello, Phys. Rev.
Lett. 59, 823 (1987).
R. N. Barnett, U. Landman, and A. Nitzan, Phys. Rev. Lett.
62, 106 (1989).

' R. K. Kalia and J. Harris, Solid State Commun. 73, 839
(1990); R. K. Kalia, P. Vashishta, L. H. Yang, F. W. Dech,
and J. Rowlan, Int. J. Supercomput. Appl. 4, 22 (1990).

' R. K. Kalia, P. Vashishta, and S. W. de Leeuw, J. Chem.
Phys. 90, 6802 (1989).

~5R. N. Barnett, U. Landman, and A. Nitzan (unpublished}.
G. Ciccotti and G. Jacucci, Phys. Rev. Lett. 35, 789 (1975).
A. Nakano, P. Vashishta, and R. K. Kalia, Phys. Rev. B 43,
10928 (1991).

F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262
(1985).
W. D. Luedtke and U. Landman, Phys. Rev. B 40, 1164
(1989).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W.
Kohn and L. J. Sham, ibid. 140, A1133 (1965).
W. Y. Ching, C. C. Lin, and L. Guttman, Phys. Rev. B 16,
5488 (1977).
G. B.Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B
26, 4199 (1982}.
J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

~4D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).
A. C. Hourd and W. E. Spear, Philos. Mag. B 51, L13 (1985).
At 150 K the drift velocity becomes so small that it is masked

by thermal fluctuations, resulting in a large error bar in the
calculated mobility. This causes large uncertainties in the
calculated extended-state mobility and the density-of-state ra-

tio. A much longer simulation will improve the accuracy.
For classical systems, calculation of response by the first-order

perturbation theory is described by G. Ciccotti, G. Jacucci,
and I. R. McDonald, J. Stat. Phys. 21, 199 (1979). The
present method is an extension of their method to mixed

quantum and classical systems.
~SIn neither equilibrium nor nonequilibriuxn simulations did we

find any deviations from adiabaticity in the electron dynam-

ics. At regular time intervals, the real-time QMD simulations

were interrupted, the silicon atoms were held fixed, and the
electron wave packet was propagated in imaginary time. The
imaginary-time propagation causes the electron to reach the

ground state corresponding to the fixed configuration of sil-

icon atoms. Next the overlap of this ground-state electron
wave function with the initial wave function was calculated.
At all times the overlap was very close to unity.




