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Two-point quasifractional approximations have been used to study the energy levels for a hydrogenic
atom when a magnetic field is applied perpendicular to the x-y plane. Perturbation theory gives power-

series expansions for weak magnetic fields and asymptotic expansions for very high magnetic fields. Us-

ing appropriate forms of the two-point quasifractional approximants, we recover both expansions and

have found a better interpolation between the two limiting situations for the ground- and excited-state

energies than those previously published.

I. INTRODUCTION

In a recent paper, MacDonald and Ritchie' have used
a two-point Pade approximant for the eigenvalue spec-
trum of a two-dimensional hydrogenic atom in the pres-
ence of a uniform magnetic field of arbitrary strength. As
they point out, this problem is very relevant in several
areas of physics.

A perturbation analysis for the weak-field limit gives
the energy levels in terms of a power expansion where the
parameter of expansion is the coupling constant y, which
measures the ratio between the magnetic energy and the
Coulomb energy. On the other hand, in the strong-field
regime, the Coulomb potential is considered as the per-
turbative potential and the expansion is given in terms of
the parameter x = (n /2y )'~ . The parameter y is defined
as

y = ( e fi B)/( ce m * ),
where m * is the effective mass, e the dielectric constant
of the host material, e the electron charge, A' the Planck
constant divided by 2~, and c the speed of light in vacu-
um.

A straightforward application of the two-point Pade
method has to be done in terms of the x variable. The
power expansion is made in terms of the y variable,
which is x, and the efficiency of the procedure is low
since the odd powers have to be chosen equal to zero, and
they do not carry additional information. On the other
hand, the curves obtained from different Pade approxi-
mants are very different. No regular pattern appears and
the results become unreliable. Also, the lowest-order ap-
proximant curve has unphysical characteristics, such as
negative derivative at the origin for the 1Sstate. Howev-
er, recently a method ' has been published to interpolate
between zero and infinitp where they use fractional ap-

proximations combined with other functions such as ex-
ponentials, fractional powers, trigonometric functions,
etc. , in such a way that the approximant has the same
singularities as the exact functions in all the region of in-
terest, including the boundaries (x ~ 00 in our case).

The two-point Pade method uses both the power and
the asymptotic expansions. Once one has the correct
form of the approximation, all the equations for the pa-
rameters are obtained uniquely from the significant terms
of both expansions. Irrelevant zero odd-power terms as
sometimes may occur in the Pade method do not appear
here.

Using this method, we have postulated five two-point
quasifractional approximants. These approximants do
not show unphysical curves. Furthermore, all the ap-
proximants are really close to one another and to the nu-
merical solutions. Also, they agree very well with the po-
tential and asymptotic expansions in the appropriate re-
gimes of magnetic field (y).

The energy levels are classified with respect to the
angular-momentum quantum number L„which depends
on the azimuthal angle for a given magnetic Geld. In Sec.
II we consider the theoretical background which leads to
the expansion for weak and strong magnetic fields. In
Sec. III we propose our two-point quasifractional approx-
imants which interpolate between these two limits. We
conclude in Sec. IV.

II. PERTURBATION EXPANSIONS

The Hamiltonian H which describes the physical sys-
tem is composed to two contributions: (l) the Coulomb
energy, which represents the interaction between a con-
duction electron and a donor atom; (2) the "kinetic" en-
ergy (l/2m*)[p+(e/c)A], where A is the magnetic
vector potential. If we adopt the symmetric gauge
A=(B/2)( —y, x, O), the Hamiltonian can be expressed
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TABLE I. Coefficients of five two-point quasifractional approxirnants for Ek CEq. (8)].
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+yL, —2/p+y p /4 (2)

E„I= —(n ,') +—m—y+y (p )„I/O+0(y ) . (3)

Values of (p )„I for n=1,2,3,4 have been taken from
Ref. 1.

For the case of y))1, our unperturbed Hamiltonian
does not include the Coulomb term. In this case, the
solutions of Eq. (3) are of the form g=—e' ~R (p), where
R (p) satisfies the radial Schrodinger equation. This radi-
al equation may be solved by using the confluent hyper-
geometric function. The results are

and

E~ =%co, [N + (
~
m

~

+m ) /2 ] (4)

where V is the two-dimensional Laplacian, I., is the
angular-momentum operator, —ifiB/BP, and the units of
energy and length are the effective rydberg constant and
modified Bohr radius, respectively, %0 and ao. ao is
given by efi /m 'e and Ao by m *e /2e A

Using perturbation theory for y ((1, MacDonald and
Ritchie' have obtained the weak-field expansion for the
energy levels E„&,up to third order in y, as follows:

g a„y", y«1
n=0

Ek, m
=

00

r Z b. /r"+r ' Z &./~"
n=0 n=0

y»1,

where b„=a' "'; B =a' " ', the a„'s are given by Eq.
(3) in Ref. 1 and ak' =2(m /2)'~ a'k'

The strategy of this approach using the two-point
quasifractional approximation is to reproduce the singu-
larity of the exact function introducing additional non-
fractional as well as fractional powers, exponentials, etc.
In this case, we want to recover the ramification point at
infinity defined by the y' factor. We must keep in mind
that the ramification points come in pairs. So we have to
introduce a function in such a way that the second
ramification point is outside the region of interest, that is,
the negative axis. For this reason we use as a factor the
function (1+A,y )', A, )0. Now one of the ramification
points is at infinity and the second one is at y= —1/k.
Since y 0, the second ramification point is outside the
region of interest. X is fixed by a minimization procedure
for the two-point quasifractional approximant with
respect to the numerical solution of the eigenvalues of the
Schrodinger equation.

++I" x'+~I" x'+n, m+ n, m+ (6)

R~ (p)= [(~m +Q)!]'~ e p

XF( N, ~m~+ i,p /—2az)

X(a I~I+&[m[2 mlitt)

where a& =(h/m*co, )'~, F(a,P;x) is the confluent hy-
pergeometric function, and co, =eB/m 'c. There exists a
close connection between the confluent hypergeometric
function and the Laguerre polynomials. Using pertur-
bation theory for the Coulomb potential, MacDonald and
Ritchie' have obtained and expression for the energy lev-
els as follows:
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where x =(~/2y)'~ and the numerical constants a'„' 's

are taken from MacDonald and Ritchie's work.

III. TWO-POINT QUASIFRACTIONAL APPROXIMANTS

For the two-point quasifractional approximation it is
useful to rewrite Eqs. (3) and (6) in the following manner:

FIG. 1. Our lowest two-point quasifractional approximant
for the ground state (1S). The continuous line represents the

approximant and the crosses refer to the numerical solution of
the eigenvalues. The energy scale is in Ap and we have used

y'=y/(1+y) as the horizontal scale. The same is valid for
Figs. 2 and 3. k =0.28.
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TABLE I. (Continued).

(N, J,M)

Potential
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In order to recover the behavior of the energy levels
around y=0 and y~ao, we must use two-point quasi-
fractional approximants whose forms are chosen as fol-
lows:

&~(y )/Qsr(y )(1+~y )

+& (y)/Q (y)(1+~y) ' . (8)

The denominator Qir(y), with qo=1, can be deter-
mined at the same time as TN(y) and PJ(y). However,
as it also happens in the Pade method, the zeros of
QM(y) sometiines appear in the physical region, that is,
the interval (0, 00 ). In order to avoid these problems, we
choose only y & 0 and q; & 0. To get the same accuracy
with this method, one should go to higher degrees of the
polynomials.

Figures 1—3 show all the five two-point quasifractional
approximants obtained by using the power series [Eq. (4)]
and asymptotic expansion [Eq. (7)] for the ground state
1Sand the excited states 2P and 3D . We observe that
all our approximants are very close to one another. We
also compare them with the numerical solution of the
Schrodinger equation. Table I gives the hierarchy of
equations obtained for the five two-point quasifractional
approximants.

Practically all five approximants [Eq. (8)] give almost
the same accuracy, which is always better than the accu-
racy of the best MacDonald-Ritchie approximants. Also,
we must note that from the very beginning we supply two
asymptotic expansion terms to our approximants
throughout, bo and Boy'

We have chosen A, by requiring that the maximum ab-
solute error be minimum. This approach is valid when
we know the exact numerical value of E(y) for a given
state. We have solved numerically the eigenvalues of the
Schrodinger equation with a precision of four digits and a
step of by'=0. 1, where y'=y/(y+1). The value of A,

is different for each state and each approximant.
The values of A, obtained are 0.28, 30, and 133 for the

lowest-degree approximants for the states 1S, 2P, and
3D, respectively. Their coefficients are presented in
Table II.

In Table III we present the largest errors of our best
approximants, ez, and our lowest approximants, ci, with
respect to the numerical solution to the Schrodinger
equation. We also show the maximum error, @MR, for the
best MacDonald and Ritchie interpolation formulas with
respect to the numerical solution. A,~ and A,L correspond
to the A, 's which make the maximum error a minimum
for our highest- and lowest-order approximants, respec-
tively.
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FIG. 2. Our lowest two-point quasifractional approximant
for the excited state (2P ). The continuous line represents the
approximant and the crosses refer to the numerical solution of
the eigenvalues. A, =30.

FIG. 3. Our lowest two-point quasifractional approximant
for the excited state (3D ). The continuous line represents the
approximant and the crosses refer to the numerical solution of
the eigenvalues. A, = 133.
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TABLE II. Coefficient values for the lowest approximant with N= 1, J= 1, and M=O.

State

1S
2P
3D

0.28
30

133

to

—1.668 690
—0.120 132
—0.042 098 6

1.000000
1.000000
1.000000

Po

—2.331 310
—0.324 312
—0.117901

Pi
—1.326 380
—6.864 680

—10.84040

TABLE III. Comparison of the largest errors of the best approximants, cz, of the lowest approxi-
mants, cL, and of the MacDonald-Ritchie interpolation formulas, c~R.

State

1S
2P
3D

0.7
10.8
34.0

0.0003
0.0001
0.0001

~MR

0.021
0.004
0.001

0.032
0.007
0.003

0.28
30.0

133.00

IV. CONCLUSIONS

We have proposed two-point quasifractional approxi-
mants for the energy levels of a two-dimensional hydro-
genlike atom in the presence of an external magnetic
field. We have obtained an interpolation between the low
magnetic-field and the high-field limit for the states 1S,
2S, 3P, 3S, 3D, and 4S. The values of the optimum k
for these states are 0.28, 84, 30, 11.2, 133, and 27, respec-
tively. It is important to mention that these values of A,

correspond to the lowest approximant.
The advantage of our method is that our approximants

show a clear pattern and they stay close together for any
value of the approximants. Unphysical curves do not ap-
pear here. The efficiency of the method is higher with
polynomials of lower degree than those of MacDonald
and Ritchie due to the fact that irrelevant zero odd-
power terms do not appear here. At the same time, we
recover the values of the energy levels for both extreme
field regimes where perturbation theory works perfectly
for the two-dimensional case. This feature is particularly
attractive since perturbation theory does not work in the
three-dimensional case. The results obtained should be
useful for the study of shallow donor impurities near the
center of a quantum well under appropriate conditions. '

We see that our approximants have achieved better ac-
curacy than those of MacDonald and Ritchie and they
are much simpler. The polynomials presented in this pa-
per contain only four unknown coefficients, while the ex-
pressions of MacDonald and Ritchie have thirteen un-
known coefficients.

We would 1ike to point out that we have not included
higher-order approximants since the lowest-degree ap-
proximant (N= I, J= I, M=O) reproduces the numerical
solution of the energy eigenvalues. However, our approx-
imant with nine coefficients is undistinguishable from the
numerical solution. The highest error is 0.0003 for the
nine-coefficient approximant while the highest error for
the lowest approximant (N =J=1, M=O) is 0.03, both
with respect to the numerical solution of the eigenvalue
problem.
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