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Thomas-Fermi (TF-A,W) and Thomas-Fermi-Dirac (TFD-A,W) statistical models, including the
Weizsacker gradient correction with variable coupling coefficient k, have been applied to the problem of
dielectric screening of an impurity donor ion in a homogeneous and isotropic semiconductor. Nonlinear
differential Euler-Lagrange equations for the electron density are solved numerically and self-

consistently with the impurity potential function under the screening charge constraint, giving micro-
scopic response functions and screening radii with A, and ion-charge state as parameters. Illustrations of
the numerical results are given for a monovalent donor point charge in silicon and germanium. It is evi-

dent that the TF-A,W and TFD-A, W screening radii are continuous, single-valued functions of A. with a
minimum value in the range 0~ A, ~ 1. Also, it is found that TF (TFD) and TF-9W (TFD-9W) spatial

dielectric functions are in close agreement, the latter, however, having a smaller screening radius. The
gradient correction reduces the nonlinear TF (TFD) screening radius by about 7.5% (9.8%) and 8.4%
(12%), respectively, in silicon and germanium. Thus, the theoretical value, 9, of A, leads to better results

than the original value, 1, of Weizsacker which is associated with less effectively screened impurity po-
tentials in both theories. The TF-—'W and TFD-—'W screening radii differ by about 20%% for both semi-

conductors. It is expected that the nonlinear TFD- —W screening functions will further improve the non-

linear TFD donor binding energies for silicon and germanium, which are already in quite good agree-
ment with experiment. The TFD-A,W theory cannot be regarded as conclusive, since higher-order gra-
dient corrections to the TF kinetic energy and gradient corrections to the Dirac exchange functional and

the correlations functional, not to mention self-interaction effects, have not been taken into account here.

I. INTRODUCTION

The zero-temperature microscopic response of the
valence electrons of an intrinsic semiconductor to a static
substitutional point-charge impurity Z (in a.u. ) has been
investigated in terms of Thomas-Fermi' (TF: no ex-
change and correlation), Thomas-Fermi-Dirac (TFD:
pure exchange), and Thomas-Fermi-Dirac-Slater (TFDS:
exchange and correlation in the Xa approximation) sta-
tistical models. In each case minimization of the total
ground-state energy functional with respect to the local
electron density n (r), subject to the constraint that the
total number of electrons is constant, yields a Euler-
Lagrange equation for n(r) which must be solved self-
consistently with the screened impurity V(r) under the
screening charge constraint. The displacement of the in-
homogeneous electron density from the uniform, unper-
turbed background density n supplies the continuous
source term in Poisson's equation for V(r). This equa-
tion also contains a discrete source term associated with
the point impurity. The Euler-Lagrange equation
expresses the constancy of the electrochemical potential
of the system and incorporates the boundary condition
n (R)=n, where R is the finite radius of incomplete
screening characteristic of the semiconductor. The quan-
tity used to describe the dielectric response is the spatial
dielectric function e(r), defined as the ratio of the bare

Coulomb potential, —Z/r, to the screened potential
V(r). Its properties include the boundary conditions
e(0)= 1 and F(r) =e, where e is the macroscopic dielec-
tric constant in the region of space r ~ R.

All three models may be derived together since the TF
and TFD versions are straightforwardly obtained from
the TFDS theory by simply setting the exchange-
correlation parameter a equal to 0 (the no-exchange in-
teraction) and —', (the Kohn-Sham exchange potential), re-
spectively. The other frequently quoted value of n is 1,
corresponding to the Slater exchange potential. The
TFDS energy functional consists of the classical Coulomb
potential energy of electron-electron and electron-nuclei
interactions, plus kinetic and exchange-correlation ener-
gies based on locally planar electronic wave functions.
The TF theory and its various modifications and im-
provements are the precursor s of modern density-
functional theory which provides a rigorous mathemati-
cal basis for showing that for ground states these models
may be regarded as starting approximations to an exact
many-electron theory. In density-functional theory all
electronic properties of the ground state can in principle
be determined by an exact constrainted minimization of a
unique energy functional of the local density. The
Kohn-Sham version of this theory offers a practical set of
equations for rigorous calculations.

Previous applications of the TF, TFD, and TFDS mod-
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els to the problem of dielectric screening in semiconduc-
tors have ignored any consideration of gradient correc-
tions to the kinetic and exchange-correlation energies.
This paper is concerned, in particular, with the first gra-
dient correction to the kinetic energy functional of the
TF and TFD theories and its effect on the nonlinear
dielectric response of a homogeneous and isotropic model
semiconductor. The kinetic and exchange energy func-
tional in these theories are obviously oversimplified by
the local-density approximation which uses the corre-
sponding uniform-electron-gas expressions through the
local Fermi momentum. The Thomas-Fermi-Weizsacker
(TF-A,W) and Thomas-Fermi-Dirac-Weizsacker (TFD-
A,W) statistical models improve the TF and TFD kinetic
energy functional by adding a gradient term with cou-
pling coefBcient A, . In the original work of Weizsacker,
where A. is 1, this correction arises from allowing the elec-
tronic wave functions to be modified plane waves, thereby
exhibiting effects of the inhomogeneity of the electron
density. Formal gradient-expansion techniques have
justified the Weizsacker term and provided higher-order
gradient corrections to the kinetic energy. In these devel-
opments, however, the parameter A, is shown to be —,

' rath-
er than 1. It is of interest to note in atomic and molecu-
lar applications that the TFD-A, W model overcomes some
well-known difhculties associated with the TF and TFD
descriptions, namely, the unphysical behavior of the elec-
tron density both near and asymptotically far from the
nucleus, and the no-binding theorem which renders mole-
cules impossible. Other values of A, besides 1 and —,

' are
often used in these applications. The instability of nega-
tive ions and the lack of atomic shell structure are still
serious shortcomings of the TFD-A,W theory.

One can think of adding correlation corrections to the
TFD-A,W formalism. The Dirac-Slater local-density
treatment of exchange in the Xa approximation is a prac-
tical scheme for this purpose, as already shown by calcu-
lations carried out in papers II and III. The former uses
a linearized version of the TFDS screening equation in an
effective-mass variational calculation of shallow-donor
impurity ionization energy, while the latter presents nu-
merical and approximate analytical solutions of the com-
plete TFDS screening equation with effects of nonlineari-
ty and exchange correlation. Recent results show that
donor binding energy is very sensitive to the form of
dielectric screening. Binding energies obtained from nu-
merical integration of Schrodinger s equation with non-
linear TFD screening of a monovalent donor impurity
potential are in close agreement with experimental values
for silicon and germanium. Better descriptions' of the
exchange-correlation energy and higher-order gradient
corrections to the kinetic energy are desirable and avail-
able. In these cases, however, variational derivatives will
lead to very complicated Euler-Lagrange equations for
the electron density, not to mention that the sixth-order
gradient correction to the TF kinetic energy for atoms
diverges. " It remains for further work to investigate
correlation effects by repeating the present calculations
with the TFDS-A,W model, or some improvement thereof
which incorporates correlation in a more sophisticated
way. The Kohn-Sham equations are an alternate ap-

proach to the screening problem at hand. It would be of
interest to calculate dielectric response functions with
these equations and compare the results with those ob-
tained through the present statistical methods. Another
paper in this series is planned to report the results of this
study.

The variational derivative of the TFD-A, W Euler-
Lagrange equation is presented in Sec. II. The constant
Lagrange multiplier used in this procedure to deal with
the normalization condition on the electron density is
identified with the electrochemical potential of the sys-
tem. Both the screened impurity potential and the
screening charge are expressed in terms of the electron
density. The former relationship together with the
Euler-Lagrange equation form the fundamental coupled
system of equations. These are to be solved self-
consistently under the screening charge constraint. The
numerical method of solution described in Sec. III fol-
lows closely that used in TF-A,W and TFD-A, W theories
of atoms. The nonlinear differential equation for the den-
sity function is solved by iteration of its linear form ex-
pressed in terms of finite differences. Linearized TF and
TFD electron densities are used as initial density profiles
and the screening radius is varied until convergence to a
new density satisfies the polarization charge constraint.
To ensure convergence, the iteration scheme is repeated
with a linear superposition of the new and original densi-
ties as input until a consistent density and screening ra-
dius are found. Eventually, successive densities in this
process satisfy the convergence criterion and yield the
desired solution. Section IV presents numerical results
obtained from the TF-A,W and TFD-kW theories of
dielectric screening in silicon and germanium. Screening
radii for several values of A, and a corresponding subset of
response functions, both parametrized by Z =+1, are
displayed graphically. Considered as a continuous func-
tion of A, , it is seen that the screening radius, in both
theories, is single-valued and possesses a minimum value
in the interval 0 & A, & 1. Section V gives a brief summary
and some further remarks. This paper employs the atom-
ic system of units in which the unit of length is the first
Bohr orbit (ao) and the unit of energy is the hartree
(twice the Rydberg). The electronic charge (e) and mass
(m), and action (fi) are all set equal to unity. Because the
theories under development here are isotropic, all space-
dependent quantities are spherically symmetric functions
of the magnitude r.

II. BASIC EQUATIONS OF THE TFD-A,W THEORY

A qualitative description of the TFD-A, W ground-state
energy functional has been given in Sec. I. Its three basic
components are kinetic, potential, and exchange energies.
The kinetic energy density consists of a plane-wave elec-
tron contribution which is proportional to the five-thirds
power of the electron density, and an inhomogeneity
correction term which varies as the square of the gradient
of the density. The exchange energy density in the
plane-wave approximation is proportional to the four-
thirds power of the density. Therefore, in the theory at
hand, the total ground-state energy is expressed (in a.u. )
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as

E =c„f n' (r)dr+Ac, f dr
n (r)

+f n(r}VN(r}dr

+ —,
' f n (r)V, (r)dr —,

'—ac, f n ~ (r)dr .

The exchange part of E has been expressed in the Xo. ap-
proximation. However, only the cases of no exchange
(a=0) and pure exchange (a= —', ) are considered here
since the focus is more on the effects of the gradient
correction. The nuclear potential energy created by any
nuclei is denoted by Vz(r), while V, (r) is the potential
energy due to the electron charge cloud. The mathemati-
cal expressions for these quantities are

nonlinear screening equations for this problem have been
solved and a rather remarkable donor acceptor asym-
metry has been noted. ' For simplicity of presentation,
the present paper deals exclusively with positive values of
Z, especially the monovalent case. Another paper is
planned for acceptor impurity ions in the TFD-A,W
theory. Equations (2) and (3) show that V(r) follows
from electrostatic considerations. An equivalent way to
accomplish this is to require that n (r) and V (r) are relat-
ed by Poisson's equation

V V(r) =4~f n —n (r)]+4m Z5(r) .

At this point, it is convenient to introduce the transfor-
mations p(r)=rn'~ (r) and U(r)=rV(r) The.n, a form
of Eq. (7) suitable for numerical calculation is obtained.
Namely,

and

Z 7l d7
V~(r) = ———

r r —r'~
(2)

(3)

4A,c. ——'c r p (r)+ —c r p (r)
d (r)i, 2 3 k 3 edr

ER —— p(r)=0, r ~R . (9)
r

The second term on the right-hand side of Eq. (2) origi-
nates from the positive-ion background prescribed by the
usual jellium model. The total electrostatic potential en-

ergy V(r) is identified as the sum Vz(r)+V, (r) The.

constant coefficients appearing in Eq. (1) are given by

ck = —'(3n ) c =—' c =—'(3/n )k ip i 8~ e 4

The Euler-Lagrange equation follows from Eq. (1) by
minimizing E with respect to variations in the density
n (r) while ensuring that the total number of electrons,

N= f n(r)dr (5)

remains fixed. This leads to the variational principle

5(E —[EF+V(R)]N}=0,

where EF is the Fermi energy and where the electro-
chemical potential EF+ V(R ) plays the role of the
Lagrange multiplier. The resulting master equation for
the TFD-A, W model is

'2
V n(r) 1 Vn(r)

n (r) 2 n (r)

—4c,n'~ (r)+V(r) Ez —V(R)=0, —r ~R . (7)

For positive values of Z, there are two distinct regions of
space around the impurity ion. The dispersive dielectric
response of the semiconductor extends from the point
probe located at the origin (r =0) to the screening dis-
tance R which is comparable to the nearest-neighbor dis-
tance. The second region is the rest of space from R to
infinity, at each point of which the bare Coulomb poten-
tial is screened by the macroscopic dielectric constant e.
For negative values of Z, the potential V(r) becomes
infinitely positive as r approaches the origin. This leads
to the complication of a Coulomb hole, a physical region
inside of which the electron density vanishes, leaving only
the uniform background positive charge. TF and TFD

Equations (7) and (9) show that the inhomogeneity
correction leads to a nonlinear differential equation for
the electron density in terms of the potential. In the TF
and TFD approximations, Eq. (9) reduces to an algebraic
relationship between these quantities which conveniently
combines with Poisson s equation to give the basic non-
linear differential equations for the screened potential in
these theories. In these special cases, it follows directly
from Eq. (9) that p(r) vanishes as r tends to zero, while

p(r) is R&n at r =R. These boundary conditions are
maintained by Eq. (9) which is solved self-consistently
with the potential function

U(r) = + (R —r) (2R +r) 4n f p (r'—)dr'
E 3

+4mr f, dr', r ~RR p2(r')
r'

under the screening charge constraint

(10}

P(R) =4m p (r)dr — nR —Z 1 ——=0 .&2 4m 3 1

0 3 E'

Equation (10) embodies all the properties expected of
U(r). Twice differentiated with respect to r, it repro-
duces Poisson's equation for U(r) In the lim. it as r tends
to zero, it shows that U(r) approaches its unscreened
value, —Z. Continuity of both the electric potential and
the electric field, at the screening radius R, are
guaranteed by Eq. (10). Equations (9) and (10) are the
basic equations of the TF-A,W and TFD-A,W models with

c, =0 in the former.
The complete analogy between TF screening in a metal

and a semiconductor and the TF theory of atoms and
positive ions, respectively, has been noted by II'esta. ' TF
metals and atoms are alike in that the screening charge
extends over the entire crystal and all space, respectively.
On the other hand, TF semiconductors and positive ions
have in common the existence of a finite screening radius
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and a finite ionic radius, respectively. It goes without
saying that this analogy is also enjoyed by the TFD,
TFDS, TF-A,W, TFD-A,W, and TFDS-A,W extensions of
the Thomas-Fermi theory. Application of these various
models to the problem of impurity screening in metals
also is a subject of relevant interest. In this regard, it has
been shown' that the linearized TF approximation, the
nonlinear TF theory, and the nonlinear TFD model lead
progressively to more effective screening of a positive im-
purity. Since these investigations also are without con-
sideration of correlation effects and gradient corrections,
it may be useful to study this problem within the context
of the TFDS-A W description of screening.

III. NUMERICAL METHOD OF SOLUTION
OF THE NONLINEAR TFD-A,W EQUATIONS

There are basically two main approaches to the numer-
ical solution of the nonlinear TFD-A, W equations, name-
ly, the finite-difference method' and the spline-
representation method. ' This paper works with the first
scheme and follows the procedure used by several au-
thors. ' A very effective way for solving Eqs. (9) and (10)
deals with the linearization of Eq. (9). This is done by let-
ting p(r) =pc(r)+ hp(r) and neglecting higher-order
terms in the small quantity b,p(r}. Under these condi-
tions, formal expansion of Eq. (9) yields

d
4g P " ssc „—4/3 4/3(r) to —2/3 2/3(r)

Ep p(r)—U(R)

2oc r
—4/3 7/3(r)+ sc r

—2/3 &/3(r)

(12}

which is then replaced by a set of second-order difference
equations and solved by iteration until convergence is
reached. The procedure is as follows. (1) Make an initial
guess for the screening radius R and set up a uniformly
spaced radial grid r; (i =1,2, ...,M} with the assignments

rt =0 and rsvp
=R . Discretize the density function Ip; I

on this grid with boundary conditions p, =0 and

p~ =R on '/2. (2) Use linearize TF and TFD results to ob-

tain a starting form po(r) for the density profile po(r) T. he
former is given by

p~o. (r)=r, (2. / /3' ) Ez — +2 Z Z
R e rFr,

3/2 1/2

e(r; ) =eqR /I sinh[q (R r, )—]+qr; I . (14)

The input parameters are the point-ion charge Z, the
Weizsacker coupling coeScient A, , the static dielectric
constant e, and the valence Fermi momentum kF.
Characteristic quantities for silicon and germanium are
given in Table I. (3) Compute the corresponding poten-
tial function I U; (r) I of Eq. (10). (4) With R and I U; I

solve Eq. (9) by iterating Eq. (12), each iteration requiring
the solution of a tridiagonal system of equations, until
convergence to a new density Ipo, ] is achieved. (5) Use

I pc; ] to check the charge constraint, Eq. (11). If it is not
satisfied, the whole process is repeated with a new value
of the screening radius until the density represented by
some I pc; I satisfies Eq. (11). To assure convergence, the
new tpP are mixed equally with the original Ipo~, I to
form the next guess I p&; j as input to step (3). The itera-
tion scheme is repeated until a consistent tpt; J and
screening radius are found. The entire procedure contin-
ues until consecutive solutions converge to within an ac-
curacy of

~ Ap;/p; ~

& 10,giving the desired result.
The following features of the numerical method are

noted. (1) The initial R was selected such that P(R) )0.
The screening radius was then decreased in increments of
0.01 until P(R) &0, thereby establishing a reasonably
small R interval within which P(R) vanishes. At this
stage, a bisection routine was used to continue the solu-
tion process. (2) The screening radius and the potential
function are held fixed during the iteration under step (4).
(3) The boundary conditions on the density function are
maintained throughout the calculation. (4) The calcula-
tions reported here employ M =1000. The grid spacing
is a function of R and typically converges between 0.002
and 0.004.

r, &R (13)

where the spatial dielectric function in Eq. (13) has the
form

TABLE I. Listing of physical parameters and characteristic quantities concerning the linearized TF
and TFD models of dielectric screening in silicon and germanium.

Silicon Germanium

Nearest-neighbor distance (a.u. )

Static dielectric constant e
Valence Fermi momentum kz (a.u. )

Uniform valence electron gas
density n =kz/3+
TF k 2/'2

ETFD ETFF F F
q»=(4k+/~)' '
qTFD qTF [kF l( kF & /~)]-
TF screening radius (a.u. )

TFD screening radius (a.u.)

4.44
11.94
0.96

0.0296
0.461
0.155
1.106
1.352
4.280
3.500

4.63
16.0
0.98

0.0318
0.480
0.168
1.117
1.359
4.540
3.740
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IV. NUMERICAL RESULTS AND DISCUSSION

In a previous paper, I, the nonlinear TFD screening
equation for the electron-gas-model semiconductor has
been solved numerically, giving both spatial dielectric
functions and screening radii with an ion charge as the
parameter. The results for impurity donor ions show a
reduction in the TF screening radii, meaning that attrac-
tive potentials are more effectively screened in the TFD
theory. For acceptor ions, TF screening radii and
Coulomb-hole radii are reduced and increased, respec-
tively, showing that repulsive potentials are enhanced in
the TFD theory. A more recent paper, III, gives the nu-
merical solution of the nonlinear TFDS screening equa-
tion for donor ions and includes a variational principle
equivalent which leads to approximate analytical expres-
sions for the dielectric functions in close agreement with
the exact results. It is found that a continuous increase in
the exchange-correlation parameter from 0 to 1 corre-
spondingly reduces the screening radii and attractive po-
tentials set up around donor ion-charges. ' Linearized
versions of TF, TFD, and TFDS theories yield closed
analytical expressions for both wave-vector and spatial
dielectric functions. In this regime, these Z-independent
quantities already make manifest the screening trends de-
scribed above.

The nonlinear TFDS-A,W theory provides an opportun-
ity for investigating the behavior of R and F(r) as func-
tions of the Weizsacker coupling coefficient and the
exchange-correlation strength, for various values of the
ion charge. For present purposes, the discussion is re-
stricted to the TF-A,W and TFD-A, W models. The nurner-
ical method described in Sec. III, for solving these cases,
has been applied to the screening of a monovalent donor
ion in silicon and germanium. Screening radii and dielec-
tric functions have been calculated for nine values of k
(0, —,', —,', —'„—,', —', , —,', —', , 1). Figure 1 shows a comparison be-

tween TF (a=O; A, =O) and TF-A,W (a=O; A, = —,', 1)
screening functions for silicon [Fig. 1(a)] and germanium
[Fig. 1(b)], parametrized by Z =+ l. In each figure, the
vertical (dotted-dashed) line defines the single-bond
length characteristic of the semiconductor. The dotted
and solid curves represent TF and TF-kW results, respec-
tively. In the latter case, the Weizsacker (A, = 1) screen-
ing function has the smaller values over most of its
length. Although the screening radius associated with
this function is the smallest of the three radii in each of
these figures, it is seen that the impurity potential is less
effectively screened for X=1. The close agreement be-
tween the TF and TF—

—,
'%' screening functions is espe-

cially noteworthy. Calcu1ations of donor binding ener-
gies in these semiconductors show that better results are
obtained as the impurity potential is more effectively
screened in the following order: linear TF, nonlinear TF,
linear TFD, and nonlinear TFD. It follows that the value
of A. which is justified by formal gradient expansions of
the kinetic energy is the appropriate one to use here. In
that case, the main consequence of the gradient term is to
reduce the screening radius from its TF value (4.060 for
silicon and 4.330 for germanium) by about 7.5% and
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FIG. 1. Exact spatial dielectric functions for silicon (a) and

germanium (b) for the monovalent donor ion-charge state in the
nonlinear regimes of TF and TF-A,W screening theory.

8.4% in silicon (3.757) and germanium (3.965), respec-
tively.

Figure 2 gives a comparison between nonlinear TFD
(a = —', ; A, =0) and nonlinear TFD-A W (a =—', ; A, = —,', 1)

screening functions for silicon [Fig. 2(a)] and germanium
[Fig. 2(b)], parametrized by Z =+1. The dotted and
solid curves represent TFD and TFD-A, W results, respec-
tively. In the latter case, the Weizsacker (A. = 1) dielec-
tric function has the smaller values between the limits 1

and e. Also, it has the largest screening radius of the
three radii in each of these figures, and tends to enhance
the impurity potential over its entire length. The close
correspondence between the TFD and TFD-—,'W dielec-

tric function, again, shows that the natural choice of A, is

9 On the basis of results obtained in Ref. 9, it is con-
cluded that impurity potentials derived from these
gradient-corrected functions will lead to preferred bind-

ing energies in these semiconductors. The gradient term
reduces the TFD screening radius (3.340 for silicon and
3.600 for germanium) by about 9.8% and 12% in silicon
(3.014) and germanium (3.158), respectively.

Screening radii for a monovalent donor ion and nine
values of A. , in the range of 0 ~ A, ~ 1, are displayed graph-
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ically in Fig. 3 for silicon [Fig. 3(a)] and germanium [Fig.
3(b)]. It is evinced from the TF-A,W and TFD-A W data in
these figures that the screening radius begins with its
largest value at A, =O, decreases with increasing A, until a
minimum value is reached, and then increases beyond
that point. Thus, in some instances two diferent values
of A, lead to the same screening radius. The TF (A, =O),
Weizsacker (TF-1W), and theoretically preferred (TF-
—,W) screening radii identified in Fig. 1, and correspond-
ing TFD-A,W quantities in Fig. 2, occur as subsets of the
numerical data in Fig. 3. It is clear that TFD-A,W screen-
ing radii are smaller than their TF-A,W counterparts for
all values of A. in the range under consideration. In par-
ticular, a comparison between TF-—,'W and TFD-—,'W
screening radii shows a diff'erence of about 20% for both
semiconductors. Dielectric functions for values of A, oth-
er than 0, —,', and 1 are not illustrated here for simplicity
of presentation.

It is straightforward to apply the numerical method of
Sec. II to the screening of divalent, trivalent, and tetra-
valent donor impurity ions in silicon and germanium.
Without going through a repetitious discussion of the re-
sults, it is noted that TF-A,W and TFD-A,W screening ra-
dii, parametrized by these donor ion-charge states, are
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FIG. 3. Screening radii in silicon (a) and germanium (b) vs
nine values of the gradient coupling coefficient (A, ) in the non-
linear regimes of TF-A,W and TFD-A, W screening theory for a
monovalent donor ion.

single-valued functions of A., in the range 0~ k ~ 1, which
generally behave like the monovalent curves. In both
theories, the screening radius decreases as Z increases,
for a given value of A, . For example, the TF-—,'W screen-
ing radius in silicon and germanium, for Z = + 1, is about
5% larger than its value for Z =+4. Similarly, the
TFD-—,W screening radii in silicon and germanium, for
Z =+1, are about 13% and 11% larger, respectively,
than their values for Z =+4. Full numerical results con-
cerning these other charge states will be reported else-
where. Also, semiconductors such as carbon, gallium ar-
senide, gallium phosphide, and Ga, Al„As are readily
included in the investigation initiated here. Linear and
nonlinear TF and TFD models of dielectric screening in
these semiconductors already have been developed in the
literature for various donor and acceptor ions. Numerical
work dealing with these semiconductors is in progress.

O.00
~ ~ ~ I ~ ~ t I ~ I ~ I 'I ~ ~ ~

0.68 1.36 2.04 2.72 3.40

r( a. U. )

4.08 4.76

V. SUMMARY AND FURTHER REMARKS

FIG. 2. Exact spatial dielectric functions for silicon (a) and
germanium (b) for the monovalent donor ion-charge state in the
nonlinear regimes of TFD and TFD-A,W screening theory.

The TF-A,W and TFD-A,W descriptions of impurity
screening in semiconductors (and metals) represents a
generalization of previous applications of TF and TFD
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methods to these problems in that an attempt is made in
the former to include effects of the inhomogeneous elec-
tron gas. Mathematically, this modification appears
through the presence of an additional term in the TF and
TFD Euler-Lagrange equations for the electron density
which converts them from nonlinear algebraic to non-
linear differential equations to be solved self-consistently
with the potential function, subject to charge constraint
and proper boundary conditions. The latter equations
are linearized and expressed in finite-difference form for
numerical solution by successive iteration. Linearized
TF and TFD electron density profiles, with known
analytical forms, serve as input data for this solution pro-
cess. Results for silicon and germanium concerning a
monovalent donor impurity show that nonlinear TF-—,'W
and TFD- —,'W response functions are in close agreement
with their TF and TFD counterparts, except that the
former have smaller screening radii than the latter. This
is a satisfactory result for at least two reasons: (1) the
natural value of I, is —,

' and (2) nonlinear TFD dielectric
functions lead to binding energies for silicon and ger-
manium that are quite close to experimental values. The
reduction in screening radii accompanying the nonlinear
TFD- —,'W response functions is expected to further im-

prove this already good agreement.
The TFD-XW theory cannot be regarded as a complete

description of screening in semiconductors and metals,
no more than it can be considered as a rigorous approach

to atomic and molecular structure. The inhornogeneity
correction included in this work is concerned solely with
the second-order contribution to the TF kinetic energy.
Aside from higher-order terms in the gradient expansion
of this energy, also there are gradient corrections' to the
Dirac exchange energy, not to mention the correlation
energy. It is of obvious interest to introduce the standard
second-order exchange inhomogeneity correction into the
total-energy functional and study its effect on the present
numerical results. This problem is currently under inves-
tigation. Another source of difhculty with the approxi-
mate energy functional of Eq. (1) is that both the
electron-electron interaction and the exchange-
correlation energy contain spurious self-interaction
effects. A proposed solution of this problem gives reason-
able results in atomic calculations, ' but difhculties
remain, especially the elimination of self-interaction
effects in extended systems. '
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