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The interaction between a laser field and a crystalline solid is considered. The electron wave function
in the crystal is obtained from an appropriately chosen pseudopotential. The dipole approximation is in-
troduced, and only vertical transitions are taken into account. We present a nonperturbative method
based on the numerical computation of solutions of the Schrodinger equation, to obtain the generation
of harmonics of the incident laser. Particular numerical results are presented for the case of pure silicon.
The mechanisms to enhance harmonic generation without excessive excitation of electrons to the con-

duction band are analyzed.

1. INTRODUCTION

High-order harmonic generation is a promising tech-
nique to obtain new sources of coherent radiation in the
ultraviolet and soft-x-ray regions. A lot of theoretical
work!"? and some experiments>* have been reported that
study the high-order harmonic generation accompanying
multiphoton ionization of atoms in intense laser fields.
These studies show that, to reach high-order harmonics,
an intense pump laser is necessary which implies short
pulses and total destruction (ionization) of the interacting
material.

In this paper we study the response of a semiconductor
to a very short (femtosecond) and very intense (over 10'°
W/cm?) laser pulse. Our objective is to analyze the possi-
bility of harmonic generation without the necessity of a
total destruction of the material. This should open the
possibility of obtaining longer interaction regions and
better repetition rates. To do this we propose using a
crystalline solid structure instead of a low pressure gas.
From atomic studies, it is clear that a new domain of
nonlinear optics is encountered in the regime of very high
pump intensities, possibly associated with the breakdown
of conventional radiative perturbation theory. Therefore,
a nonperturbative approach is presented to study the in-
teraction of an intense laser pulse with a crystalline solid.

To illustrate these ideas, we will restrict our discussion
to the case of pure silicon, and to harmonics up to the
ninth. However, the presented formalism is quite gen-
eral, provided that a pseudopotential can be introduced
to account for the electronic states. Due to the relatively
small gap of silicon, all harmonics considered in this pa-
per are close to the visible region. A proper scaling of
the conclusions to other crystalline structure is obviously
possible.

II. ELECTRON-STATE MODEL

It is well known that a proper description of the elec-
tron properties in the crystal can be obtained using a
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single-electron model with a convenient choice of the
crystal potential ¥,(r). Therefore, the crystal Hamiltoni-
an is of the form

H (r)=—1V+V.(1), (1

where atomic units have been used (i=m =e =1).

Due to the periodicity of the crystal Hamiltonian, one
may choose to work in a basis of Bloch functions, ¢, ,(r),
satisfying

Y (rHD)=e™®ly (1), 2)

k being a vector of the first Brillouin zone, L a lattice
vector, and n a label for the energy bands. These Bloch
states are eigenfunctions of the crystal Hamiltonian
H (r),

H (t)Y (1) =EX¢ (1), 3)

and the E,‘,‘, for the same k and different n, correspond to
different electron energy bands.

II1. SILICON BAND STRUCTURE

In this paper we want to discuss the processes that lead
to harmonic generation by the interaction of a laser beam
with a solid crystalline structure. A general analysis of
the relation between energy bands and harmonic genera-
tion would be desirable, but this is too long and implies
many different possibilities. Therefore we have restricted
the scope of this paper to a particular crystalline struc-
ture. We have chosen to study silicon (see Fig. 1).

At present, the state-of-the-art silicon technology is ad-
vanced enough to achieve large and high-quality single
crystals, and thus to match our specifications. In addi-
tion, optical properties, such as absorption coefficients,
reflectivities, dielectric constants, and nonlinear suscepti-
bilities for different frequencies, have been extensively
studied and compared with the pseudopotential calcula-
tions.> Under a practical point of view, silicon offers an
almost constant direct-gap interval, which helps in the
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FIG. 1. Silicon electronic band structure considered. (a) The
band structure obtained from the pseudopotential given in the
text. (b) A detail of this band structure around the gap. The in-
set represents the first Brillouin zone, indicating the symmetry
lines represented.

determination of the resonance-photon energies for tran-
sitions from the uppermost valence band to the lowest
conduction bands. On the computational side, the choice
of a semiconductor whose base is formed by two identical
atoms implies the use of only symmetrical pseudopoten-
tial terms, and thus the use of real arithmetics, which
means a reduction in computing time and memory
storage requirements.

Before the study of the interaction with the laser field,
we prefer to introduce some considerations related to the
energy bands that will be relevant later on. The energy
bands are obtained from (1) with a convenient choice of
the pseudopotential, ¥,,.°"® The pseudopotential terms
for the diamond structure are given by

VPs(g)=Sfcc(g)VTSIZCOS(g'T) ’ 4)

where Sg.(g) denotes the structure factor for a face-
centered-cubic lattice, 7=a,/8(1,1,1), a, being the
length of the conventional cell. In the case of silicon,
ay=5.43 A=10.26 a.u. The coefficients V* p are the

. lg
symmetric form factors’

V3=—0.21 Ry=—0.105 a.u., (5a)
V§=+0.04 Ry=+0.020 a.u., (5b)
V%, =+0.08 Ry=+0.040 a.u., (5¢)

where |g|? has been computed in units of |27 /a,|>.
The eigenvalues and eigenstates of (3) with the crystal
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potential have been obtained by a tridiagonal reduction
followed by the diagonalization of the tridiagonal ma-
trix.'®!! The number of calculated energy bands ranges
from 60 to 100, depending on the point of the reciprocal
space we are considering and on the photon energy we
are going to use for the temporal evolution. Before scan-
ning through the reciprocal space, an initial value of the
number of bands to be computed is obtained from the I'
point, k=(0,0,0). It is the highest symmetry point, and
thus will show the highest degeneration. We use it to
evaluate the lowest limit of the considered energies: we
have chosen the number of bands so that this limit is over
30 photon energy units. Due to this truncation we expect
higher-energy bands not to be properly defined, so we re-
strict ourselves to the study of absorption of less than 20
photons.

The last consideration related with the cutoff of the en-
ergy bands is that for any point k one needs to take into
account whole sets of degenerate bands. Otherwise sym-
metry will be broken and the matrix elements between
the states will be severely disturbed. Thus, the final num-
ber of bands must be flexible and chosen for every point
in the reciprocal space.

IV. LASER-ELECTRON INTERACTION

The dynamics of each electron is given by a Hamiltoni-
an of the form

H(r,t)=H_ (r)+H;,(t), (6)

where H, is the crystal Hamiltonian, introduced in (1),
and H,, is the laser-electron interaction Hamiltonian. In
the dipole approximation and in the Coulomb gauge, H;,
is given by

1

1 9
2¢?

3’ 7

1
H, ()= Az(t)—i-;A(t)
where a linearly polarized laser, along the z axis, has been
considered. A (¢) is the vector potential, which is in-

tegrated from the electric field,

an=—2L['E(rdr, (®)
cvo
where
E(7)=E\(7)sin(wy ). 9)

For the computations presented in this paper, the
electric-field envelope E(7) has been taken in the form of
a half-period square sine function,

|, (10)

Ey(7)=E sin?
Tp

7, being the pulse duration. Here we will always consid-
er pulses with a duration equal to 30 optical cycles, i.e.,
with 7,=607/w, .

Our objective is to obtain exact, nonperturbative solu-
tions of the time-dependent Schrédinger equation,

iéﬁ;’—’)=[ﬂc(r>+flim(t)]¢(r,z) ) (11
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Because the dipole interaction has been introduced, the
laser field E(7) is considered to be independent of the po-
sition of the electron. Therefore, we can take advantage
of the spatial periodicity, since it is the only space depen-
dence appearing in the Hamiltonian.

If we consider the basis of Bloch functions, ¥ ,(r),
eigenfunctions of H,, it is straightforward to see that H;,
couples only Bloch states ¢ ,(r) and ¢ ,.(r) with k=k’
(k',k’ belonging to the first Brillouin zone). Therefore,
the dipole approximation is equivalent to considering
only vertical optical transitions, in which the change of
pseudomomentum, k’—k, induced by the absorption of
laser photons is neglected.

In conclusion, k is a good label for the solutions of the
time-dependent Schrodinger equation (11) in the dipole
approximation. This means that each point of the re-
ciprocal space evolves as a multiple-level system indepen-
dently from its neighbor points.

A general solution can be written in the form

d(r,0)=3 cX(DP (1) . (12)

V. HARMONIC GENERATION

The harmonic generation, i.e., the rate for generating
photons at a frequency equal to a harmonic of the in-
cident laser, is calculated from the quantum-mechanical
dipole moment of the solid. For a given value of k, the
expected value in the p- A gauge is

3
pk(t)=<¢>k(r,t) (=)< ¢k(r,t)>
+<¢k(r,t) %A(r) ¢k(r,t)> : (13)

that is,

., 0 1
pk(t)=<¢k(r,t) (—z)g ¢k(r,t)>+?A(t), (14)

and, integrating over the first Brillouin zone,

<¢k(r,t) (—i)i ¢k(r,t)>+%A (1)

3z (15)

p(=3

k

The rate for generating photons of frequency w is given
by the Fourier transform of p(z), which we will denote
plw). Therefore the photon spectra that we present in
this paper is, as usual, |p (w)]%.'> All our present physical
discussion is related to these harmonic spectra; propaga-
tion effects will be not considered.

To calculate the expectation values p,(?), it is more
convenient to consider a plane-wave basis instead of the
Bloch expansion,

o(r,1)= 3 By(t)e kTET, (16)
g

g being the vectors of the reciprocal lattice, because in
this basis py (¢) is simply given by
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pk(t)=Zlﬁg(t)lz(kz+gz)+%,4(t). (17)
g

The connection between the Bloch basis and the plane
wave expansion is given by a collection of coefficients,

ag"’, such that

lpk,n(r): zag,nei(k*—g%r . (18)
g

These coefficients were calculated when we diagonalized
the crystal Hamiltonian H..

VI. ELECTRON POPULATIONS

Up to now we have considered the dynamics of a single
electron. However, we have to describe the overall in-
teraction of the electrons with the laser field. To do this
we have defined what is the interesting range of parame-
ters and we introduce adequated approximations.

First of all we must remember that a pseudopotential
has been introduced to describe the energy bands. For
this model to be valid we need to have most of the elec-
tron population remaining in their lowest-energy states.
In other words, if the laser excites an important number
of electrons, the pseudopotential must change. However,
this is not a problem for us because we want to propose
harmonic-generation schemes in a ‘“‘nondestructive way,”
i.e., exciting a reduced number of electrons but giving
rise to relative high-order harmonics. Therefore the cal-
culations presented in this paper correspond to situations
where just a small number of electrons are promoted
from the valence to the conduction band.

Apparently, as one increases the laser intensity, higher
harmonics could be generated. However, this is not com-
pletely true, because the increase in the laser intensity
pumps more and more electrons from the valence to the
conduction band. When the number of electrons pumped
to the valence band is a significant fraction of the electron
density, our description of the crystal is no longer valid
because the pseudopotential has to include the different
effect of the excited electrons.

It is important to indicate the range of times we will
consider. As pointed out before, only pulses 30 cycles
long will be studied. With laser frequencies in the region
between 0.05 and 0.2 a.u., this implies pulse durations of
942 to 3770 a.u., i.e., from 22 to 91 fs. This is a long time
for electron dynamics but very short for phonon excita-
tion. Therefore it seems reasonable to neglect collisional
relaxation of excited electrons during the interaction
time.

After the excitation, however, the energy absorbed
might be non-negligible, depending on the amount of
electrons excited to the conduction bands. In the worst
case, where the laser is resonant with the direct gap, the
remaining valence-band population after the pulse is
about 95% for the two upper bands and almost 100% at
the two lower bands. In such a nonequilibrium condi-
tion, nonradiative Auger processes become dominant.
Neglecting heat conduction, a simple calculation indi-
cates that the temperature rise is enough to exceed the
melting point of Si (1690 K). Therefore, the interaction
region will be melted. However, the released energy is
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not enough to melt the whole sample, and the surround-
ing crystal will act as a heat absorber and as a recrystalli-
zation seed. As a matter of fact, the case is analogous to
the laser-annealing technique. Typically, if the cooling
time is longer than the time required for epitaxial re-
growth, we can expect to recover the sample complete-
ly.!3 After recrystallization the solid is ready to start a
new lasing cycle. Observe that the pulses considered here
are extremely short. With longer pulses other mecha-
nisms rather than coherent electron-photon interaction
dominate the energy absorption and lead to damage of
the crystal.

Initially we have four valence bands, with two elec-
trons each. Obviously transitions from one valence band
to another are forbidden by Pauli’s exclusion principle.
Our approach to this is very simple and effective. For a
given k, instead of solving the time evolution equation
(11) just once for the eight electrons, we propose solving
this equation four times, one for each valence band,
neglecting the other three.

VII. SPLIT-OPERATOR METHOD

We obtained numerical solutions of the time-dependent
Schrodinger equation (11) considering the split-operator
method. Itis well known that a general solution of

%|¢(r)>=H(:)I¢m> (19)
is given by
() =exp i [ H(n1d |Igi10)) . (20)
0

This can be used to obtain an algorithm to calculate the
wave function at a time ¢ + 8¢, provided that the wave
function is known at the time .

Moreover, if the step 8¢ is small enough, it is possible
to consider that the Hamiltonian is nearly constant be-
tween ¢ and ¢ +8¢. Then the evolution operator is consid-
erably simplified,

lp(t +6t))=e "HD¥ p(z)) . 21)

This expression for the evolution operator is not suitable
for an easy numerical computation. It is much better to
split the evolution operator into two parts, one with the
crystal Hamiltonian, and apply them consecutively,
which can be done, of course, for small time steps 6¢. It
is well known that the split-operator algorithm suitable
to calculate the time evolution of the wave function is

|§(t +8t)) =exp[ —iH (¢ +80)8t /2]

X exp[ — iH ()52 /2]|(2)) . (22)

The application of each of the exponential operators is
preceded by the projection of the time-dependent wave
function over the basis of eigenfunctions. The action of
the operator on each element of this basis is reduced to a
multiplicative phase. Therefore, using the plane-wave ex-
pansions of the Bloch functions (18) and the time-
dependent wave function (16) one finally obtains the algo-
rithm for calculating at each time step the S coefficients,
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Bi+gt +8t)=exp | —i [$A2+%A(kz+gz) St]
X3 Be+g(ty(8',8) (23)
with :
y(g,g)= Zagr"*e—iE:Sta‘;’" ) 24)

The advantage of this method is that one directly obtains
the B coefficients, from which it is straightforward to cal-
culate the dipole moment, therefore the method is abso-
lutely appropriate for the final variables we want tc com-
pute.

Observe that in (23) the coupling between two Bloch
functions ¢, , and ¥, ,. is accounted for in the y(g’,g)
coefficients. The useful point is that these couplings are
time independent, therefore one needs to calculate them
just once at the beginning of the computation.

VIII. COMPUTED RESULTS

We show in the present paper numerical results for
different values of the laser frequency, analyzing how
they lead to different harmonic spectra. We have chosen
the frequencies, that we consider more representative,
from the joint density of states weighted by the squared
transition matrix elements,

I@)=3 3 fBZS(w,.j(k)—w)lM,.,-(k)|2d3k, 25)

i,VB j,CB

where o;;(k)=E }‘—Eik is the difference of energies be-
tween the bands i and j for this value of k, M;;(k) is the
transition matrix element, and the index i scans the four
valence bands while the index j scans all the conduction
bands considered.

This joint density of states is helpful in these kind of
treatments because it is closely related to the imaginary
part of the complex dielectric constant,” and gives an es-
timation of the one-photon transition probabilities. The
joint density of states Jy(w) calculated for pure silicon,
with the considered pseudopotential, is shown in Fig. 2.

TTIrr [ rTr T rrrr [ rrrr[rrrrrrr

JM(a)) (arb. units)
T

M I I S S ET N U ST U RSN T U B S SN S S I

0 0.1 0.2 0.3 0.4 0.5 0.6
Frequency (a.u.)

FIG. 2. Joint density of states weighted by the squared tran-
sition matrix elements, J(w), calculated for pure silicon, with
the considered pseudopotential.
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It vanishes below w; =0.11 a.u., then increases abruptly
and presents a sharp peak at w; =0.16 a.u. After the
maximum, the joint density drops off very quickly, be-
cause the weighting matrix element rapidly decreases. It
has a local minimum at w; =0.18 a.u., and then for
higher frequencies the behavior is smooth and steadily
decreasing, as is well known. We will use these two fre-
quencies, w; =0.16 and 0.18 a.u., as reference points to
understand the numerical results.

Observe that all calculations have to be integrated over
k. This introduces some extra numerical complexity.
What we have done instead, to introduce a set of points
in the reciprocal space to account for the integration, has
been to randomly generate values of k in the first octant
(ky Z0;k, Z0;k, 20). To keep parity very accurate, we
make the calculation for k and —k. And finally, because
of the symmetry around the field polarization axis, we
multiply the result by 4. With these considerations we
have observed that spectra are clearly defined with 125
random points in the first octant. Introducing more
points in the numerical integration does not affect
significantly the profile of the harmonic spectra.

Results for oy =0.160 a.u. This corresponds to a laser
frequency resonant with the direct gap, and therefore is
associated to the maximum in the joint states density
shown in Fig. 2.

In this case the one-photon process from the top of the
valence band to the bottom of the conduction band is res-
onant and is expected to be the dominant feature in the
harmonic-generation spectra. This is clear in Fig. 3,
which shows the spectra for three different intensities of
the laser field. Figure 3(a) corresponds to E;=0.0003
a.u., a rather low value, which is consequently absolutely
dominated by the one-photon process giving just the fun-
damental frequency with the corresponding power
broadening. Figure 3(b) corresponds to E;=0.001 a.u.,
still a low value, which again just presents the fundamen-
tal frequency with the corresponding power broadening.
Figure 3(c) corresponds to E,=0.003 a.u., 100 times
more intense than in the first case, showing now a small
three-photon peak.

In this paper we want to study harmonic generation in
a nondestructive way. We restrict ourselves to intensities
such that just a small fraction of the electron population
is promoted to the conduction band. To be more precise,
we plot the population of the four valence bands and
neglect intensities such that more than five % of the elec-
trons are promoted to the valence band. Results for the
highest field considered, E;=0.003 a.u., are shown in
Fig. 4. This figure indicates the time evolution of the
electronic population of each of the four valence bands,
integrated over the first Brillouin zone. The population
in each band has been normalized to unity. It is clear
that one of the bands, the lowermost—Ilabeled as the first
band in the figure—does not contribute to the electronic
excitation, just because it is far below the band gap. The
contribution of the second band is also very small. How-
ever, the contribution of the third band and the fourth
band —the uppermost—is important. Both show a typi-
cal characteristic profile during the evolution of the
pulse. They present a minimum at the peak of the pulse

and they come closer to the initial state at the end of the
pulse. This is due to our choice of a smooth pulse en-
velope (10), and is well understood in terms of adiabatic
following in a two-level system.!* The depletion of the
fourth band is greater than the depletion of the third one
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FIG. 3. Coherent harmonic-generation spectra, for an in-
cident frequency w; =0.160 a.u. and three values of the peak
electric-field amplitude, E, =0.003, 0.001, and 0.003 a.u. Figure
shows photon spectra |p()|? in a.u. vs harmonic frequency,
scaled to the incident laser frequency w; .
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because it is closer to resonance. The laser frequency
chosen is very close to the difference between the highest
valence band and the lowest conduction band. The de-
pletion of the valence bands indicates a strong absorption
of the laser field. Therefore a laser pulse of this frequency
cannot penetrate the bulk material. To avoid this prob-
lem we will consider laser frequencies smaller than the
energy gap.

Results for o; =0.080 a.u. This corresponds to a two-
photon resonance with the direct gap. Figure 5 shows
the harmonic generation in this case. Because this is a
two-photon resonance, some signal tries to appear at
twice the initial frequency, however this is forbidden by
parity and therefore is very small and noisy. A three-
photon peak [Fig. 5(a)], a five-photon peak [Fig. 5(b)],
and a seven-photon peak [Fig. 5(c)] can be clearly seen.

Results for w; =0.053 a.u. This corresponds to a
three-photon resonance with the direct gap. Figure 6
shows the harmonic generation in this case. Because this
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FIG. 4. Time evolution of the population of the four valence
bands, for w; =0.160 a.u. and E,=0.003 a.u. Bands are labeled
according to their energy, for each k. The first band is the
lowest and the fourth the highest. Time corresponds to the
pulse duration, the pulse peak being just at the middle.

is a three-photon resonance, a stronger signal appears at
three times the initial frequency. A three-photon peak
[Fig. 6(a)] and a five-photon peak [Fig. 6(b)] can be clear-
ly seen. The seven-photon peak [Fig. 6(c)] is very small.
Because this is a three-photon resonance, the three-
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FIG. 5. Coherent harmonic-generation spectra, for an in-
cident frequency w; =0.080 a.u. and three values of the peak
electric-field amplitude, E,=0.0003, 0.001, and 0.003 a.u.
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photon peak shows a broadening that looks like the
broadening of the one-photon peak in Fig. 3.

Results for w; =0.180 a.u. This corresponds to a laser
frequency equal to the minimum in the joint density of
states show in Fig. 2. Figure 7 shows the harmonic gen-
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FIG. 6. Coherent harmonic-generation spectra, for an in-
cident frequency w; =0.053 a.u. and three values of the peak
electric-field amplitude, E,=0.0003, 0.001, and 0.003 a.u.
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FIG. 7. Coherent harmonic-generation spectra, for an in-
cident frequency w; =0.180 a.u. and a peak electric-field ampli-
tude E;,=0.003 a.u.
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pulse duration, the pulse peak being just at the middle. Com-
pared with Fig. 4, much less electronic population is excited for
the same value of the electric field.
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Harmonic Spectrum
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FIG. 9. Coherent harmonic-generation spectra, for an in-
cident frequency w; =0.090 a.u. and a peak electric-field ampli-
tude E;=0.003 a.u.

eration in this case. Because this is again a one-photon
resonance, the stronger signal appears just at the initial
frequency. The harmonic spectra shown in Figs. 3 and 7
are very similar. The only difference is that the first cor-
responds to the maximum in the joint density and the last
to the minimum. However, the important difference be-
tween these two cases is the time evolution of the electron
population. Figure 8 shows the time evolution of the
electronic population of each one of the four valence
bands integrated over the first Brillouin zone. The popu-
lation in each band has been normalized to unity. It is
again clear that one of the bands, the lowermost, does not
contribute to the electronic excitation, just because it is

far below the band gap. Observe that the minimum of
the population of the valence bands at the pulse peak is
now much higher than that in the case of Fig. 4.

Results for o; =0.090 a.u. This corresponds to a two-
photon process resonant with the minimum in the joint
density of states shown in Fig. 2. The harmonic spec-
trum for E;=0.003 a.u. is shown in Fig. 9. Again, it is
similar to the spectrum in Fig. 5(c), with the only
difference being that now much less population has been
excited to the conduction band.

IX. CONCLUSIONS

A nonperturbative method to numerically compute
solutions describing the interaction of an intense laser
pulse with a crystalline structure has been presented.
The crystal electrons are described in terms of a pseudo-
potential, and the laser field is described classically. The
case of pure silicon has been specifically studied. Special
attention has been paid to the possibility of nondestruc-
tive harmonic generation. We have studied laser frequen-
cies below and above gap resonance. Harmonic genera-
tion proves to be more feasible in the first case, since res-
onant one-photon processes are weak. Also population
pumping to the excited states is much weaker, therefore a
pulse may reach deeper regions into the bulk.
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