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The local vibrational modes of Ge-rich c-Si& Ge„alloys (x 0.75) are calculated using a parameter-
free, mass-defect Green s-function approach. A microscopic expression of the Raman-scattering
efficiency is then evaluated for inelastic light scattering from these modes. Particular attention is paid to
the modes which are responsible for the 6ne structure in the phonon spectra which is observed in addi-

tion to the strong Ge-Ge, Si-Si, and Si-Ge modes. The corrections to the extended Ge-Ge modes due to
alloy disorder are calculated with use of the coherent-potential approximation and also included in the
Raman susceptibility.

I. INTRODUCTION

The elastic and vibrational properties of semiconductor
alloys have recently received renewed attention, particu-
larly those of the technologically important Si& Ge al-
loys and Si/Ge superlattices. A continuing problem with
these materials is the 4% lattice mismatch between bulk
Si and Ge, which leads to misfit dislocations or strained
layers in Si/Ge superlattices. ' Related effects, such as
strain-induced ordering in molecular-beam-epitaxy-
(MBE) grown Si, „Ge„alloy films and layers, have been
studied in Refs. 3—5; Monte Carlo simulations suggest
that such ordering is not a bulk effect. Certain strain re-
laxation mechanisms have recently been reported in Ref.
7.

Questions such as the presence of ordering may be ex-
amined by studying the phonon spectra of the alloys.
The vibrational properties are also of interest due to the
multiple-mode behavior observed in the phonon spectra
of some of these materials. Infrared absorption and
Raman-scattering studies of the vibrational modes of c-
Si, Ge„alloys include Refs. 9—15. Many of these mea-
surernents show the existence of considerable fine struc-
ture in the phonon spectra in addition to the stronger
Ge-Ge (-300 cm '), Si-Ge (-400 cm '), Si-Si (-500
cm ') modes' which are observed for most choices of x
from the pure Ge and pure Si limits. A fundamental
question concerning the fine structure is the microscopic
origin of these vibrational modes. They have been inter-
preted as signatures of long-range order, ' or as intrinsic
features of disorder. "' A fit to the composition depen-
dence of the Si-Si, Ge-Ge, and Si-Ge mode frequencies
has been made by Zinger et al. ' using a random element
isodisplacement model (REIM) however, this model
does not provide a correct microscopic picture since a11

modes are assumed to be extended, yet some modes in
Ge-rich c-Si& Ge„are localized. ' Morover the REIM
is ill-suited to describe the detailed fine structure that is
seen experimentally. A recent model of the vibrational
properties of c-Si, Ge (Ref. 14) avoids the REIM by
considering supercells with lattice sites randomly occu-
pied by Si and Ge atoms and calculates the phonon
modes using a Keating potential. Unfortunately this

model was insufficiently precise to identify many of the
modes between 400 and 480 cm ' responsible for the fine
structure in the Raman spectra of Ge-rich c-Si, „Ge„.
This may be a consequence of deficiencies in the
Keating-model dynamics or possibly statistical efFects due
to the supercell approach.

To conclusively identify the vibrational modes respon-
sible for the fine structure observed in the Raman spectra
of Ge-rich c-Si& „Ge we use a parameter-free cluster
approach. As described in Sec. II, a mass-defect
Green's-function method is employed to obtain the fre-
quencies and modes of local phonons due to the most
probable cluster of Si atoms that occur in the Ge-rich
material. We then calculate the Raman-scattering
efficiency due to inelastic light scattering from these local
modes, together with scattering from the extended Ge-Ge
mode. In Sec. III, a comparison with experimental data
is made, and results are summarized in Sec. IV.

II. CALCULATION OF THE LOCAL
VIBRATIONAL MODES AND THE RAMAN SPECTRA

The disorder present in semiconductor alloys leads to
the possibility of localized electronic and vibrational
states. Since localized states are nonperturbative with
respect to extended states, it is not possible to employ any
computational scheme based on perturbation theory to
describe such states. In this section, a nonperturbative
approach to calculate the localized vibrational states of
semiconductor alloys is presented. Also, the expressions
for the Raman-scattering efficiency for inelastic light
scattering from such localized vibrational modes are ob-
tained.

To calculate the local phonon modes of Ge-rich c-
Si, Ge we employ a mass-defect Green's-function ap-
proach. After the pioneering work of Lifshitz, 21 the ear-
liest works employing such an approach include the
study of the local vibrations of single isolated mass de-
fects by Dawber and Elliott, ' and defect pairs in silicon
by Elliott and Pfeuty. Here, we extend these methods to
model c-Si, „Ge with somewhat higher concentrations
of Si atoms (1—x as much as -0.25) than previous calcu-
lations of this type have been able to consider.
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The model we employ for c-Si, Ge„ is that of isolated
clusters of Si atoms embedded in the virtual crystal. In
the results to be described, all 32 possible clusters of a
single atom and its four nearest neighbors (with each of
the five atoms being either a Si or a Ge atom) are con-
sidered. For Ge-rich alloys, the larger the number of Si
atoms in a cluster the more improbable this type of clus-
ter is. To approximate the effects of a distribution of Si
and Ge atoms outside of the clusters, the latter are as-
sumed to be embedded in the virtual crystal of the alloy
rather than in pure Ge. To obtain the total vibrational
spectra the contributions of different clusters are weight-
ed by their probabilities of occurrence, assuming a corn-
pletely random mixture. This model describes, in an ap-
proximate fashion, the possible configurations of Ge-rich
alloys (it could also be used to model Si-rich materials),
becoming better the lower the concentration of Si atoms.

The general equations for the local vibrational frequen-
cies and normal modes of mass defects in otherwise per-
fect crystals may be derived from the relevant equation of
motion. ' To indicate how these equations are employed
in our cluster approach we present some of the main re-
sults of Ref. 19 and describe our modifications. The vi-
brational modes of a lattice with substitutional defects
may be described by the displacements.

' 1/2

u~(l)= gy (f, l) [at(f)+a(f)],
2' f

(2 1)

where f labels the modes of frequency if in an ¹nit-
cell crystal with masses M (1) in unit cell 1 at position R(,
the lower case greek letters denote the six Cartesian com-
ponents of the two atoms per unit cell, a (f) is the de-
struction operator for mode f, and the g (f, 1) are ob-
tained by solving the equation of motion

y (f, l)= g Q G p(l, l",co)C(( (l",l')yr(f, l') .
P, I' y, 1"

(2.2)

Here, G is the virtual-crystal-phonon Green's function

o "(k)o((((k)e
G~(((l, 1 ', co) =

vcr g, j. coj(k)

(2.3)

where (j,k) label the mode branch and wave vector of
the virtual-crystal phonons of frequency coj (k) with

MvcA = (1—x)Ms;+xMG, being the virtual-crystal
atomic mass, and the cr~(k} are the polarization vectors.
In the approach described in Refs. 19 and 22 the Green's
function was that of the pure host material rather than
the virtual crystal. The latter eliminates trivial first-order
perturbation corrections. The defects are described by
the matrix

C (cl(, l')=[ MvcA M(l)]a) 6 g5—((+b, A p(l, l'),
(2.4}

where the first term represents the mass defects and the
second force-constant changes. In Ge-rich c-Si, „Ge
the ratio of the defect (Si) to host (Ge) masses is 0.387,
whereas the corresponding force-constant ratio in a Keat-

ing model is us; s;/ao, 6,=1.13.' Thus the mass-
defect contributions are expected to dominate and the
second term in (2.4) may be neglected. The normaliza-
tion condition for the y is taken to be

a, l

(2.5)

The above expressions are valid for both local and res-
onant modes. However, for resonant modes, the Green's
function (2.3) has poles on the real axis and (2.2) becomes
an 6NX6N set of equations for y . As a consequence,
the numerical study of resonant modes is considerably
more diScult than that of local modes. Thus we concen-
trate on local modes in this study. However, it is diScult
to decide a priori which modes are resonant and which
are local. If the mobility edge (that is, the energy bound-
ary between local and extended modes} moves linearly
with the alloy composition ratio, as it does in the virtual-
crystal approximation, one would expect that Raman-
active modes above 400 cm ' will remain local for Si
concentrations up to 1 —x -0.5. Thus it may be assumed
that for any reasonably smooth behavior of the mobility
edge the Raman-active modes will all be local up to
1 —x -0.25, which is therefore the most Si-rich alloy we
study.

The vibrational frequencies and normal modes are ob-
tained by solving the eigenvalue equation (2.2). For local
modes in Ge-rich c-Si& „Ge„a further simplification is
possible due to the large mass difference between the de-
fect and virtual-crystal atoms. This involves solving (2.2)
and (2.5) only for those 1 which are defect atoms in the
clusters under consideration, thus neglecting the small vi-
brational amplitudes of the more massive Ge atoms in
modes which are strongly localized on defect sites. Then
(2.2) is a 15 X 15 equation for the largest (five-atom) clus-
ters we consider.

The computational procedure that was employed was
to evaluate the virtual-crystal Green's function (2.3) with
phonon frequencies and polarization vectors obtained
from an adiabatic bond charge model at 2361 points in
the entire Brillouin zone. The bond charge model is

among the best methods for computing the phonon spec-
tra and normal modes of ordered diamond-structure
semiconductors. The vibrational frequencies and nor-
mal modes of the local vibrations of the 32 five-atom clus-
ters (calculations are simplified when one notes that many
of the configurations are equivalent to one another) were
then obtained by solving for the eigenfrequencies and
eigenvectors of (2.2} for each cluster configuration. As a
check on the validity of neglecting the force-constant
changes in (2.4), the frequencies of the clusters with ex-
actly two adjacent Si atoms were computed both with
and without nearest-neighbor force-constant changes as
given by the Keating parameters used in Ref. 14. The
differences were found to be approximately l%%uo.

The results of the computations are a large number of
modes, those involving clusters containing three or more
Si atoms typically being rather complicated and asym-
metric. To test the validity of our results we have calcu-
lated the first-order Raman spectra of the local modes.
This selects the most Raman-active modes from all those
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that were calculated and thus makes comparison with ex-
periment easier. The calculation was done employing the
microscopic method of Ref. 25 by summing over the
dominant 12 Feynman diagrams (six for the electron
emitting a phonon, and six for the hole) which contribute
to off-resonance first-order Stokes Raman scattering to
obtain the scattering efficiency. These diagrams are
shown in Figs. 1(a) and 1(b). The diagrams are isomorph-
ic to those discussed in Ref. 25 except that phonon crys-
tal momentum is no longer a quantum number for local
modes, only energy can be used to label these states. The
electronic structure is calculated using local empirical
pseudopotentials in the virtual-crystal approximation,
that is, contributing electronic states are assumed to be
we11 away from mobility edges on the extended-state side.
In these cases, the effect of disorder on the electronic
structure is known to be small. We note that the usual
phonon q=0 crystal momentum selection rule of first-
order Raman scattering in ordered crystals holds only ap-
proximately for scattering from local modes. The local
phonon can scatter the electron from any state to any
other, but overall crystal momentum conservation re-
quires less probable (due to the low concentration of
scattering centers) diagrams of the type shown in Fig.
l(c) to describe those scattering events where the phonon
emission does not preserve the electron crysta1 momen-
tum. Our calculations only include the twelve dominant
diagrams Figs. 1(a) and 1(b) which describe zero-
momentum transfer during phonon emission.

In terms of the plane-wave expansion of the Bloch
function

4)L(a) (dg + 5 perrnutations

yk

ck
4)g

+ 5 perrnutations

GAL(c)
k

----- +23perrnutations4)S

yk

FIG. 1. Feynman diagrams describing first-order Stokes Ra-
man scattering where the electron (a) or the hole (b) emits a lo-
cal phonon. The diagrams not drawn are obtained by permut-

ing the vertices of the shown diagrams. (c) Shows a less prob-
able (for Ge-rich c-Si& „Ge ) contribution arising from the elec-
tron scattering from a Si potential after emitting a phonon.

l
n k ) = —g c„z(G)exp[i (k+ G ) r],1

V
(2.6)

where V is the volume of the virtual crystal, the
deformation-potential electron local-phonon interaction
1s

(nkIH, vhln'k'&I=
2N 2coI

1/2

g g c„"l,(G )(k—k'+ G —G') Vvc(k —k'+ G —G')c„ 1,
(G' )

l, a G, G'

—i(k —k'+ G —G') ~ (R) +v)
Xe ' y(f 1), (2.7)

where r gives the positions of the two atoms in the unit cell in a bond-centered coordinate system [r=a(1, 1, 1)/S if
a (3, r= —a(1, 1,1)IS if a) 4; a being the lattice spacing], and Vvc are the virtual-crystal pseudopotentials, obtained
from Cohen and Bergstresser. Since the index a may run from 1 to 6, the wave vectors and reciprocal-lattice vectors
in the term (k —k'+G —G') may be taken to be six component vectors with the first three components equal to the

last three.
In the notation of Ref. 25, the scattering e%ciency is given by

4
BS

BQBcog

3

I~pysel ~e I zesge zs,
a, P, y, 5=1

where, in terms of the Raman tensor a &, I & & is

1I & s=—pa &(f)a s(f)5(co+ —co&)[n (co&)+1],E
(2.9)

a p(f)= — g [y'p(kvv'cc')(5„(vklH, „lv'k)I —5„, (cklH, „lc'k)I)+ . ] .1

k, c,c', v, v'

(2.10)
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The ellipsis in (2.10) represents the ten other terms
obtained by permuting the vertices of the diagrams
in Figs. 1(a) and 1(b), the Bose function is
n (co)= [exp(ficolks T ) 1—] ', and the differential suscep-
tibility y is defined in Ref. 28. The numerical procedure
employed to evaluate the above expressions is detailed in
Ref. 25; the wave-vector sum in (2.10) was performed
over 89 points in an irreducible —„wedge of the Brillouin
zone.

The above procedure provides the frequencies and nor-
mal modes of the local vibrations associated with a low
concentration of Si defects. To treat the extended pho-
non modes associated with the vibrations seen in pure
Ge, we employ the coherent-potential approximation
(CPA). Using this method the frequency shifts and
broadenings of extended modes due to alloy disorder may
be computed using, for example, the pure Ge modes
given by the bond charge model as reference spectra. We
have employed the CPA and bond charge model to calcu-
late the shifts and broadenings of O(I ) Ge phonons as a
function of Si concentration and have included their con-
tributions to the Raman spectra calculated for the local
modes. Further details concerning the application of the
CPA method may be found in Ref. 30, and the calcula-
tion of the Raman spectra of extended modes in Ref. 25.

III. DISCUSSION
p

2N

g(u, u, )
j=1

2N
'2 (3.1)

angle) disorder. These results are reported elsewhere. '

Since the CPA method we have employed includes only
diagonal disorder, it underestimates the initial rise; how-
ever, it does provide a good overall description of the real
self-energy shift of the phonon. The O(I } frequency for
pure Ge is about 5 cm ' too high, a deficiency of the
bond charge model parameters used. Also shown in Fig.
2 (vertical lines) is the calculated full width at half max-
imum (FWHM) broadening of the O(l } phonons due to
alloy disorder. The calculated widths, plus the lifetime
broadening due to anharmonic decay, agree well with
measurements reported in Ref. 13.

For local modes in the limit of a very low Si concentra-
tion, the calculated frequency of vibration of an isolated
Si atom in a Ge host is 378.5 cm '. The TA(2I 3 ),
TO(2I 3+), and LO(l,+) modes of a pair of adjacent Si
atoms in a Ge host have frequencies 371.9, 384.6, and
435.0 cm ', respectively. The LA mode for the defect
pair is found to be resonant with the background.

To estimate the degree of localization of the vibration
of an isolated Si atom, we have evaluated the participa-
tion ratio for this ratio, defined as

The calculated frequency of the O(I } Ge phonons is
shown in Fig. 2 and compared with two sets of experi-
mental data. An interesting feature of the measurements
is the strong initial rise in the Ge-Ge frequency with in-
creasing Si content, followed by a roughly linear down-
ward slope. The CPA calculations do not reproduce the
initial rise. We have been able to model the observed be-
havior by performing calculations which include both di-
agonal (mass defect) and off-diagonal (bond length and
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FIG. 2. Frequency of the Ge extended mode as a function of
alloy composition calculated with the coherent-potential ap-
proximation. The vertical lines indicate the broadening due to
alloy scattering. Open symbols are experimental data from Ref.
31, and solid symbols are data from Ref. 13.

Here, uj is the displacement of atom j for the mode un-

der consideration. For extended modes p
' is of the or-

der of 1 lN, and for modes strongly localized at a single
site p

' —1. For a single Si atom placed in a pure Ge
host, we find p '=0.85, and placed in an x =0.75 virtu-
al crystal p =0.79. This indicates that these single Si
atom cluster modes are strongly localized and we expect
larger clusters to be localized to a similar degree.

In Fig. 3 the computed Raman spectra of c-Si, Ge
are presented for three choices of the composition ratio
and for two (parallel and crossed} scattering
configurations. The position and width of the extended
Ge-Ge mode at co=30 cm ' were calculated using the
CPA [added to the width was the anharmonic decay
width of FWHM value 0.99 cm ' (Ref. 30)], and the po-
sitions and amplitudes of the other modes computed us-

ing the mass-defect Green's-function approach described
above, with a Lorentzian broadening of 10 cm ' FWHM
included for each mode. The calculations were per-
formed with the choice of laser energy of fuuL =2.41 eV
and at temperature T=293 K to facilitate comparison
with the observed spectra presented in Fig. 1 of Ref. 14
(the experimental spectrum for x =0.77 is reproduced in
Fig. 3). The samples measured in Ref. 14 were grown by
means of liquid-phase epitaxy (LPE) and are thus expect-
ed to have a random distribution of Si and Ge atoms.
The relative weakness of the calculated x =0.99 spectra
is probably due to the laser energy becoming resonant
with the E1 transition at x =0.83 in the virtual-crystal
band structure, thus strengthening the x =0.90 and 0.75
spectra.

The emphasis of this study is the local modes most
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Ge-Ge x=0.99
& xyxy

~ xxxx

Ge-Ge

clearly visible in the x =0.75 spectra of Fig. 3, labeled 2,
to 5, and Si-Ge. The notation NM refers to a mode aris-
ing from a cluster of N Si atoms, with M being a con-
venient index for labeling increasingly energetic modes.
The Si-Ge peak is due to isolated Si atoms with Ge
nearest neighbors. With decreasing probability are the 2
to 5 Si atom clusters 2, to 5&. Although in many cases
several different modes contribute to a single peak among
2& to 5&, generally there is a dominant mode and these are
shown schematically in Fig. 4 for each of the labeled
peaks in Fig. 3. As expected for Raman activity, the
strongest peaks in Fig. 3 are due to the most symmetric
TO-like vibrations since we see that all the modes in Fig.
4 have strong TO character. The less symmetric and the
symmetric but acousticlike modes are also input into the
Raman susceptibility calculation but do not contribute
significantly to the calculated spectra. Shown in Fig. 5 is
the phonon spectral function for Sio 0&Geo 99, displaying
features for all modes, not just the Raman-active ones. It
displays a multitude of acousticlike modes below the
main peak at approximately 380 cm ', and opticlike
modes above. Many of the clusters have a mode with fre-
quency close to that of an isolated Si atom; these contrib-

21 [11Q]

= (1QQ]

31 32

Q ~

41

0
~ Ge

FIG. 4. Eigendisplacements of the local vibrational modes la-
beled in the x =0.75 spectra of Fig. 3. All atomic positions are
projected onto the (001) plane. The atom in the lower-left-hand
corner of each cluster is located at —(a/8) {1,1,1), where a is
the lattice spacing, and the origin of the coordinate system is
midway between this atom and the central atom of the cluster.
The central atom is bonded with the corner atoms. Displace-
ments in the (001) plane are indicated by arrows, and displace-
ments with a component into or out of the plane are indicated
by triangles.
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FIG. 3. Calculated Rarnan spectra for three choices of the al-
loy composition ratio, and for parallel (I „)and crossed (I„„~)

scattering configurations. The crystal axes are defined as
x~~[110],y()[112],and x~~[111]. The vertical scale is in arbitrary
units, but is the same for all composition ratios. Eigendisplace-
ments for the labeled modes are given in Fig. 4. The thick line
marked "EXPT" is the observed unpolarized spectrum for
x =0.77 obtained from Ref. 14; it is scaled to give a Si-Ge peak
of the same amplitude as in the I „„„,x =0.75 calculated spec-
trum.
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FIG. 5. Phonon sPectral function for Sip p]Gep 99 Each local
mode for each cluster configuration (and the Ge-Ge extended
mode) contributes with equal weight to the spectral function,
thus this does not represent the phonon density of states. The
spectral function shows the contributions of all calculated pho-
non modes and thus is considerably more detailed than the spec-
tra of Fig. 3, where only Rama. -active modes contribute.
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ute to the significant strength of the main peak in Fig. 5.
Of the seven calculated Raman peaks 2, to 5„ five (3, to
4z) are visible in the observed x =0.77 spectrum of Ref.
14. The relative amplitudes do not always agree with ex-
periment, possibly due to having compared calculated po-
larized spectra with measured unpolarized ones, but more
probably because of the approximations involved in the
calculations, such as considering clusters involving no
more than five Si atoms (approximating larger clusters by
a virtual-crystal host around smaller clusters) and possi-
bly also due to neglecting the vibrations of the Ge atoms.
The frequencies of the various peaks do, however, agree
well with experiment, making our cluster assignments
quite conclusive. Our calculations place the 2, mode at a
slightly higher frequency than that of Si-Ge, whereas the
experimental data suggest that the Si-Ge peak is
broadened by it on the low-frequency side. A more de-
tailed incorporation of force-constant changes and anhar-
monic effects may improve the agreement between the
relative positions of the Si-Ge and 2& peaks. The weakest
feature in our calculations, 5„is not visible in the experi-
mental data.

IV. SUMMARY

Cluster calculations have been performed to determine
the frequencies and normal modes of local phonons in
Ge-rich c-Si& „Ge„alloys. We find that a mass-defect
Green's-function approach and a microscopic calculation
of the Raman susceptibility yield Raman spectra in excel-
lent quantitative agreement with observations, leading to
the identification of the various peaks in the fine structure
with particular local vibrational modes. We estimate that
this approach is valid for c-Si, „Ge„with x 0.75.

The calculations assume a completely random mixture
of Si and Ge atoms, and describe well the experimental
data for LPE-grown samples. Should the measured Ra-
man spectra of other samples differ appreciably from
those calculated here, this fact may be an indication of
the presence of ordering in those samples.
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