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Ab initio calculation of the electronic, structural, and dynamical properties of A1As and CdTe
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The scalar-relativistic version of an accurate first-principles full-potential self-consistent linearized
muffin-tin-orbital (LMTO) method has been employed for describing the physical properties of the III-V
and II-VI semiconducting compounds. Results for the two prototypes, A1As and CdTe, are presented.
The presently employed modified version of the LMTO method is quite fast and goes beyond the usual
LMTO-atomic-sphere-approximation (ASA) method in the sense that it permits a completely general
shape of the potential and the charge density. Also, in contrast to LMTO-ASA, the present method is
capable of treating distorted lattice structures accurately. The calculated value of the lattice parameter
is equal to the experimental value for the III-V compound A1As and lies within 2.5% of the measured
value for the II-VI compound CdTe. The computed density of states is quite close to the photoemission
data available for CdTe. The calculated values of the bulk modulus and the elastic constants are in good
agreement with the experimental data except for C44 in CdTe. The values of the phonon frequencies at
some symmetry points are also in close agreement with the experimental data wherever available. The
present method is thus capable of predicting many physical properties of the polar semiconductors both
qualitatively and quantitatively.

I. INTRODUCTION

In the past decade it has been observed that the
structural and lattice-dynamical properties can be deter-
mined ab initio with reliable accuracy if one can calculate
the electronic energy of the solid as a function of the
atomic positions using the usual density-functional
theory.

Recently, the linear-muffin-tin orbital (LMTO) method
has drawn much attention towards its application to the
study of the electronic structure of molecules as well as of
crystalline solids. The method has several advantages, (i)
Only a minimal basis set is required in the method, thus it
enables its application to large unit cells with high
efficiency. (ii) The method treats all the elements of the
Periodic Table in a similar manner. Thus the atoms with
a large number of core states and the metals having
prominently d or f character can be treated easily. (iii)
As the augmentation procedure generates the correct
shape of the wave function near the nuclei, it is quite ac-
curate. (iv) The use of atom-centered basis functions be-
longing to the different values of the angular momentum
in the method helps one to have a quite clear physical
picture.

Usually in the application of the standard LMTO
method, an atomic sphere approximation (ASA) is used
to make it efficient. However, this LMTO-ASA method
suffers from several disadvantages. (i) It neglects the
symmetry-breaking terms by discarding the nonspherical
parts of the electron density. (ii) The method discards the
interstitial region by replacing the muffin-tin spheres by
space-filling Wigner spheres. (iii) It uses spherical Hank-
el functions with vanishing kinetic energy.

It has been noted that quite reliable results could be at-
tained by employing a LMTO basis set if all the potential

terms are determined accurately. For this the sizes of the
atomic spheres are shrunk so as to make them nonover-
lapping. The potential matrix elements are then split into
two parts, one contribution coming from the atomic
spheres and the other from the complicated interstitial
region. The first part, i.e., the atomic sphere one, is easy
to evaluate by expanding it in terms of the usual spherical
harmonics. On the other hand, the evaluation of the in-
terstitial contribution is quite difficult and very time-
consuming if done by standard techniques. Efforts have
been made to find an efficient and quick way to determine
the interstitial contribution. In the method used in the
present work, the interstitial quantities were expanded in
terms of the spherical Hankel functions. The involved
three-center integrals were expressed as the linear com-
bination of the two-center integrals by numerical means.
These two-center integrals involving Hankel functions
can easily be evaluated analytically. The method does
not employ the plane waves and is thus applicable to the
periodic as well as the nonperiodic systems which so
often need to be treated especially when there occur im-
purities, defects, and the lattice distortions or atomic re-
laxations.

The present LMTO method is seen to produce the elec-
tronic structure, cohesive energy, lattice constants, elastic
constants, phonon frequencies, mode Griineisen and
strain parameters for the simple systems like Si, C, etc. '

Very recently, the method has been successfully applied
also for the III-V and II-VI semiconducting compounds
like AlAs, CdS, GaSb, ZnSe, Zn Te, ZnS, etc. The
inAuence of structural relaxation of the atoms on the
valence-band offset at the lattice matched interfaces of
II-VI and III-V semiconductors ZnTe/GaSb (110) and
the lattice mismatched interface ZnS/ZnSe (001) has been
investigated.
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We have employed a scalar relativistic version of an ac-
curate and fast first-principles full-potential self-
consistent LMTO method for the calculation of the elec-
tronic structure, statical and dynamical properties of the
III-V and II-VI semiconducting compounds. Section II
contains a brief summary of the modifications employed
in the present version of the method using Hankel func-
tions. This section also includes a brief discussion of the
internal energy after deformation and the evaluation of
elastic constants. The results for the two prototypes of
the III-V and II-VI semiconductors, i.e., A1As and CdTe,
are presented in Sec. III. The main conclusions are in-

cluded in Sec. IV.

expansions.
We then make the one-center expansion near the site p,

ynL(r) = +[a„"xH„x(r)+b„"zJ„x(r)], (4)

ILI I I= g (a„"x'D„xx.a„"x +a„"x'D„Icx.b„"x

where H&x is given as in Eq. (3) and J„x is defined in a
similar way for the spherical Bessel function both at the
same kinetic energy as g„L .

For the interstitial matrix elements one can then write

+b„"„"D„xxa„"~.+b„"x'D„xxb„"x ) . (5)

II. METHOD

One needs to evaluate the interstitial potential matrix
elements

VnL, n'L' f XnL(r)VI(r)Xn'L'(r)«I
Here, I denotes the interstitial region having the potential
VI, y„L denotes a LMTO envelope function centered at
the site n with angular momentum L, and the integration
is over the volume element dr to be done in the intersti-
tial region. Here L denotes the angular momentum quan-
tum number set (I,mL ), etc.

The above problem is related to finding a tractable
form of the output charge density in the interstitial re-
gion which is expressed as a linear combination of the
products g„'Ly„.L . In the present method a linear com-
bination of atom-centered Hankel functions of negative
energy is fitted to the charge density. As the contribution
of the higher angular-momentum varies quite strongly,
one may employ a cutoff.

In the interstitial region one determines the coefficients
of the linear expansion

y L(r)y L(r)= g A„"~" H„x (r),
p, E,a

Elastic constants

The change in the total energy with distortion may be
utilized to evaluate the elastic constants of a solid. For
uniform deformation let a lattice point at R in any undis-
torted Bravis lattice be shifted to a new lattice point R' in
the distorted lattice. The Cartesian components can be
described by

3

R;= g ajRj . (6)

The matrix I a; ] is then given by its elements,

Here D's are matrices which are all k independent.
For the evaluation of the nonspherical potential terms

inside the atomic spheres, one obtains an expression of
form similar to Eq. (5) with the D&xx replaced by the in-
tegrals which give the coupling between the augmented
"heads" and "tails" on the pth sphere. Hence once the
matrices in Eq. (5) are determined, the corrections to the
muffin-tin potential from inside the spheres and from the
interstitial can be treated together. The full-potential cal-
culation thus reduces to the evaluation of the effect of
nonspherical potential in the spheres.

where

H„ir (r)=hir(iA, ~r
—R„~)Yir[(r—R„)/~r —R„)~] (3)

a; 5, +e,

The strain tensor (e;j ) is defined as

Here the functions H„z 's have a general form similar to
LMTO envelope functions and hz's and Yz's are the
atom-centered Hankel and spherical harmonics, respec-
tively.

The coefficients A's in Eq. (2} have to be determined
numerically. The substitution of the expansion (2) in Eq.
(1) reduces the matrix elements into a linear combination
of integrals of the functions H„& times the interstitial
potentia1 which itself can be expanded into functions of
H„z type. This procedure is convenient because the
Poisson equation can be solved analytically in the
Hankel-function basis. Hence the three-center integrals
of Eq. (1) have now been expressed as a linear combina-
tion of integrals of products of pairs of Hankel functions.
Employing Gauss's theorem and the fact that H„z are
eigenfunctions of the Laplace operator, the two-center in-
tegrals can be expressed as surface integrals over the
spheres which are easy to evaluate by structure-constant

eij eij +eji ( 1 5ij )

One may expand the internal energy of a distorted
solid per unit-cell volume Vo (Vo being the unit-cell
volume of the undistorted lattice) in powers of the com-
ponents of the strain tensor {e; ] as

E(e)=E(0)+ gr,~e,~+ —,
' g pc,jkie,j.e.ki+

ij k, l

(9)

where E(0) is the internal energy of the undistorted lat-
tice; rj=(BE/Be;. )0 is the first energy derivating tensor
and cjki =(B E/BejBe„i )0 are the second-order adiabatic
elastic constants. A subscript "0" on the parentheses
denotes that all the strains except the e, . or e; ekl are kept
constant while differentiating with respect to e; or e;- and

ekl, respectively. After utilizing the symmetry properties
of the individual tensors and the standard notation
11=1,22—=2, 33—= 3, 23=4, 31:—55, and 12=6, Eq. (9}
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has the simple form

E(e)=E(0)+ gr;e;+ —,
' gc,"e,.e.+ (10)

Now the summation runs from 1 to 6.
At equilibrium, the tensor w should be zero. In the cal-

culations, we have always taken the experimental
geometry as the starting point for the elastic energy ex-
pansion. In A1As, the calculated minimum energy is ob-
tained for the experimental geometry. However, for
CdTe, the energy minimum is obtained for a value of the
lattice parameter which is different from the experimen-
tal value by 2.4%. It results in the existence of the non-
vanishing values for the tensor ~.

In order to determine the three elastic constants of the
cubic A1As and CdTe lattices we have employed the fol-
lowing two independent deformations: Case (i),

e = —c,3

2e, =2e2=a, ,

and case (ii)

III. CALCULATION AND RESULTS

In the present calculation, the basis employed for mak-
ing expansions of the products of the LMTO envelopes
includes functions with I &4 and of energies —0.01,—1.0, and —2.3 Ry and with decay given by A. = —1

and —3 Ry. The set will include 50 functions for each
atomic sphere. The local density potential of Hedin and
Lundqvist has been employed. An absolute convergence
to better than 1.0 mRy/atom is obtained with spd basis of
22 LMTo's for each atom. The number of atoms in the
unit cell was taken to be four.

The muffin-tin (MT) spheres were chosen to be slightly
smaller than touching and the radii for cation and anion
in each compound were chosen to be equal. The values
of the radii of spheres for A1As and CdTe were taken as
2.22 and 2.54 a.u. , respectively.

An equal number of empty spheres of sizes equal to
cation or anion were introduced in the vacant interstitial
positions available in the zinc-blende structure.

A. Electronic structure

A two panel calculation was performed for each sub-
stance to investigate the important role (usually not ap-
preciated) played by the semicore 3d and 4d states. In
A1As, in the first panel we consider Al(3s, 3p, 3d) and
As(4s, 4p, 4d) as valence states whereas, in the second
panel, we consider almost completely filled As(3d) states

e6 2E'

In the above two deformations the unit-cell volume of the
crystal has been kept unchanged. Case (i) determines the
value of the combination (C» —C,2) whereas case (ii)
gives C44. The third constraint is the evaluation of the
bulk modulus B=—,'(C»+2C&z). These three equations
are able to give the values of C&&, C&2 and C44, separate-
ly.
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FIG. 1. Variation of crystal energy (in units of milliRydberg)
with the ratio of unit-cell volumes Vo and V are th experimental
and calculated volumes for A1As.

as the semicore ones. Similarly in CdTe, in the first panel
Cd(5s, tp, 4d) and As(5s, 5p, 5d) states are taken as the
valence states, and in the second panel As(4d) states are
assumed to be the semicore states. A set of appropriate
( spd ) states were also included on all the empty spheres.
The semicore As(3d) and Te(4d) electrons are thus treat-
ed as bands in a way similar to valence electrons. The
core electrons are treated not in the frozen-core approxi-
mation but are allowed to relax. This means that the
core-electron charge density is recalculated in each itera-
tion in the self-consistency loop.

In all the calculations, the relativistic effects have been
included. The variation of the total electronic energy
with the volume of the crystal V has been shown in Figs.
1 and 2, Vo being the experimental volume of the solid.
For A1As (Fig. 1), the energy minimum appears at a
value of the lattice parameter equal to 5.66 A which is
just equal to the experimental value. On the other hand,
for CdTe (see Fig. 2), the energy minimum appears at
a =6.32 A (experimental value is 6.48 A) which shows a
deviation of approximately 2.4%.

The charge out of the muffin-tin sphere, i.e., the
difFerence between the atomic number and the charge ly-
ing within the MT sphere for the atoms Al, As, Cd, and
Te is 1.71, 1.85, 1.52, and 2.30 electron charges (e),"re-
spectively. The total charge per unit cell outside the MT
spheres is 2.87e in A1As and 3.16e in CdTe.
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FIG. 2. Same as for Fig. 1 except for CdTe.
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FIG. 3. Dispersion curves for AlAs.

1. AlAs

The calculated dispersion curves along some important
symmetry directions for AlAs are shown in Fig. 3. The
symmetry points are I (0,0,0), X (1,0,0), E
(0.75,0.75,0.0), I. (0.6,0.6,0.6), and W (1.0,0.5,0.0).

In A1As (Fig. 3) at the most symmetric I (0,0,0) point,
the lowest valence state at —11.9 eV is the bonding
Al(3s)-As(4s) singlet. The top of the valence band which
has been set at zero energy is formed by the triply degen-
erate hybridized Al(3d)-As(4p) orbitals. The conduction
state appearing at 1.8 eV is the antibonding Al(3s)-As(4s)
singlet state. The higher conduction states are formed by
the hybridization of the Al(3p, 3d) and As(4p, 4d) in an
antibonding manner.

At the symmetric point X(1,0,0), the low-lying singlet
valence states have bonding character and are composed

of the Al(3p)-As(4s), Al(3s)-As(4p), and Al(3p)-As(4p}
states. The conduction states have the same nature ex-
cept that they have the antibonding character. Their oc-
currence in the energy scale is similar to the valence
states. The semicore As 3d states lie quite below near—34.3 eV.

In the calculation of the electronic density of states
(DOS), a sampling method with Gaussian broadening of
energy 0.2 eV was employed over a mesh of 19 points in
the irreducible part of the Brillouin zone. The calculated
DOS for the self-consistent calculation for AlAs is shown
in Fig. 4. The valence-band states are distributed over an
energy interval of 11.9 eV. The lowest peak at —11.9 eV
arises from the Al(3s, 3p) and As(4s) orbitals which
posses a bonding character. The other main peaks ap-
pearing at —5.2, —3.2, —2.3, and —1.6 eV are
comprised of the Al(3s)-A1(4p), Al(3p)-As(4p), and
Al(3d)-As(4p) having antibonding character. The top of
the valence band is formed by the bonding states of the
3d states of Al and 4p states of As. The bottom of the
conduction band is formed by the antibonding Al(3p) and
As(4s) states. The other peaks in the conduction states
originate from the antibonding states Al(3s)-As(4p),
Al(3s)-As(4p), Al(3p)-A1(4p), Al(3d)-As(4d), etc. The
calculated energy gap is an indirect one and its value of
1.31 eV is quite small as compared with the experimental
value of 2.3 eV. This behavior of obtaining a reduced
value for the energy gap has always been seen in all calcu-
lations using the local-density-functional theory. Thus
the calculated conduction states seem to be reliable in
their character, although their overall location may be
shifted somewhat towards the low-energy side by a mag-
nitude equal to the difference between the experimental
and the calculated values of the energy gap. We are not
aware of any photoemission data available for AlAs for
comparison.

Contour plots of the self-consistent valence charge den-
sity for A1As in the (110) plane is shown in Fig. 5. The
contours are plotted in steps of 0.005e a.u. up to a
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FIG. 4. Electronic density of states for AlAs.
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FIG. 5. Contour plots of the self-consistent charge density
for the (110) plane of AlAs. The plots are in steps of 0.005e
a.u. ' up to a maximum of 0.07e a.u.

maximum of 0.07e a.u. . The bonding between Al and As
atoms reveals a mixed character.

2. CdTe

The computed dispersion curves for the electron states
are depicted in Fig. 6. At I (0,0,0), similar to AlAs, the
lowest valence states are composed of the singlet bonding
Cd(Ss)-Te(5s) orbitals with dominant contribution from
Te(Ss) states. The next higher triply and doubly degen-

crate valence states arise mainly from the Cd(4d} orbitals
with some mixing with the Te(Sp) orbitals. The top of
the valence band originates from the Te(Sp} orbitals pos-
sessing triply degenerate character. The bottom of the
conduction band appearing at 0.75 eV is comprised of the
antibonding Ss states of Cd and Te atoms. The results
are in agreement with those of Wei and Zunger.

AT the X point extra valence states appear either from
the bonding Cd(5s)-Te(Sp) orbitals or from the Cd(Sp)-
Te(5p } orbitals next below the valence-band edge. Again
the semicore Te(4d) states appear much below around
—36. 1 eV.

The total DOS for CdTe is shown in Fig. 7. The
valence-band states appear in an energy interval of 11.8
eV. The major peaks in the valence states region appear-
ing at —11.2, —8.3, —4.8, —2.8, —2. 1, —1.6, and
—1.0 eV originate mainly from the antibonding

Present
Photoemission and BIS data
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FIG. 7. Electron density of states for CdTe.
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Cd(5s, 5p)-Te(5s), Cd(4d), Cd(5s)-Te(5p), and Cd(5p)-
Te(5p) states, respectively. A number of peaks in the
conduction-band region arise from the similar mixed
states but possessing antibonding character. The calcu-
lated energy gap of 0.75 eV is quite small as compared to
the experimental values of 1.56 eV.

Recently, the photoemission data and the
bremsstrahlung-isochromat-spectroscopy (BIS) data
determining respectively the occupied and the unoccu-
pied states for a single crystal of CdTe are available.
We have compared them with the computed DOS in Fig.
7.

In the valence state region, one observes a double peak
structure at —11.0 and —10.5 eV, two peaks near —4. 5
and —1.5 eV and two shoulders near —9 and —3 eV.
The calculated main peaks around —11.2, —8.3, —4.6,—3.7, and —2 eV are quite close to the experimental
data. In fact, the calculated DOS if shifted towards the
higher energy side by about 0.5 eV is in excellent agree-
ment with the measured data. The only important
discrepancy lies in the appearance of a double peak struc-
ture around —10.5 eV. However, the x-ray photoemis-
sion spectra (XPS) of Kowalczyk et al, does not reveal
any such double peak structure.

Coming to the unoccupied states, the calculated fine
structure is again in very good agreement with the BIS
data. For example, the calculated peaks appearing at 2.5,
3.0, 4.0, 4.7, 5.5, 7.0, 9.0, 10.25, 11.5, 11.75, 12.5, 14.5,
and 17 eV, etc. , are in very close agreement with the BIS
peaks at 4.0, 4.5, 6.2, 7.0, 9.5, 10.25, 11.25, 11.75, 12.5,
14.0, 16.5, and 17.5 eV, etc. The only discrepancy is the
occurrence of the theoretical peaks near 3 eV which have

CdTe(0 1 1)
—0. 'l 8 —0.01 0. 'l 6 0.32 0.49

0.63 I I I I I I I I I I I I I I I I

TABLE I. Computed physical quantities for AlAs. The elas-
tic data are in units of mbar whereas the phonon frequencies are
in cm

Sample number Quantity Present Expt.

'Reference 10.

Bulk modulus 8
C11

Cl2

LTO(I )

LAO(X)
TOl(X)
TO (X)
TA(X)

0.70
1.15
0.477
0.68

372
334
368
221
126

372'

not been seen in the experiments.
Contour plots of self-consistent valence charge density

for CdTe in the (1,10) plane are shown in Fig. 8. The
contours are plotted in steps of 0.003e a.u. up to a
maximum of 0.07e a.u. . The bonding between Cd and
Te atoms reveals a mixed character.

B. Elastic constants

For the evaluation of the energy derivatives, we have
used five different values of c.. The maximum value of c is
taken as +0.04. The change in the internal energy given
by Eq. (10) is fitted to polynomials of order 0,2, and 3 and
the coeScients of the various polynomials are evaluated
which are equal to some multiple of the different com-
binations of the elastic constants.

The results for the elastic constants for A1As and CdTe
are included in Tables I and II, respectively, which also
contain the experimental data wherever available. No
elastic data are available for A1As. For CdTe, the
presently computed values for the bulk modulus, C&&

and C&2, are in very good agreement with the experimen-
tal values. However, for C44, the calculated value of

0.29

0.46

0.29

TABLE II. Computed physical quantities for CdTe. The
elastic data are in units of mbar whereas the phonon frequencies
age in cm

Sample number Quantity Present Expt.

0.13

—0.04

I I I I I I I I I I I I I I I I 0--0 'l 8 —0 01 0 16 0.32 0 49

FIG. 8. Same as for Fig. 5 but for CdTe.

'Reference 14.
Reference 9.

'Reference 11~

Reference 12.
'Reference 13.

Bulk modulus

C12
C44
LTO(I )

LAO(X)
TO, (X)
TO (X)
TA(X)

8 0.417
0.532
0.360
0.318

165
165
130
114
52.5

0 445'
0 535
0.368b
0.199

167(LO)c, 167 (TO)'
152

36'
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0.318 mbar is much higher than the experimental value
0.199 mbar. The large difference in the experimental
values of C,2 and C44 is somewhat unexpected keeping in

view the observed values for those elastic constants for
other substances.

data" keeping in view the complicated distortion in-
volved in these phonon modes and the complexity of the
total energy calculation in the local-density formulation
and the inherent uncertainty in measurements. The
agreement seems to be satisfactory.

C. Phonon frequencies

The variation of the internal energy with different
types of static deformations in the small deformation lim-
it can be utilized for the determination of some of the
frozen symmetry points of the Brillouin zone. Calcula-
tions have been performed for the longitudinal-
transverse-optical mode at the k=O (I') point and the
longitudinal-acoustical-optical (LAO), transverse-optical
(TO), and transverse-acoustical (TA) modes at the point
X (100). The transverse-optic mode splits because of the
motion of the single atom in the mode, each atom pos-
sessing different mass. The results for AlAs and CdTe
have been included in Tables I and II, respectively.

For A1As, (see Table I) the only available data' are for
the transverse-optical mode k=O (I') and are equal to
372 cm which is in agreement with the presently calcu-
lated value of 372 cm

For CdTe (see Table II), the calculated frequencies are
in close agreement with the available experimental

IV. CONCLUSIONS

The modified version of the first-principles full-
potential self-consistent LMTO method has the capacity
to predict most of the physical quantities which are in
very good agreement with the experiments both in a qual-
itative and quantitative manner. The application of the
method to the representative of the III-V and II-VI semi-
conducting compounds A1As and CdTe and the compar-
ison of the computed data with the available data are
seen to support this statement.
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