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As far as its optical properties are concerned, the EL2 defect seems to be the same as the isolated Asg,
arsenic antisite defect in GaAs. Although it is widely accepted that lattice relaxation plays a role in
determining the optical absorption of EL2, there are now reasons to question just how much lattice re-
laxation occurs. As an initial step towards resolving this issue, this paper presents a calculation of the
optical absorption of the isolated Asg, defect in which the calculational emphasis is on a realistic
description of the electronic states. In this calculation, we ignore lattice relaxation altogether and, con-
sequently, we find neither the experimentally observed zero-phonon line nor the multiphonon replicas.
Aside from these and one other interesting discrepancy that can probably be explained by our neglect of
lattice coupling, the spectra are reasonably similar to what is observed. One conclusion from the
analysis presented here is that the hole cross section for the main donor level of EL2 has not been
correctly measured in any of the experiments reported to date.

I. BACKGROUND

EL2 is a metastable native donor defect in GaAs
which has been intensely studied for over a decade now. !
There are two reasons for the intensity of this study. On
the one hand, the defect is important technologically for
its role in producing semi-insulating GaAs. On the other,
it exhibits an optically driven metastability at low tem-
perature. The challenge to understand both the micro-
scopic structure and composition of this defect, and how
the absorption of light causes the defect to transform
from its ground state to its metastable state, has been fas-
cinating in its own right.

The amount of experimental information and theoreti-
cal interpretation for this defect makes it one of the two
most studied deep-level point defects in any material.
(The other is the DX center in Al Ga,_,As alloys.) In
spite of all this study, there is still no microscopic model
that satisfies all the present interpretations of all the ex-
isting experiments. As far as its optical properties are
concerned, however (including mechanisms for the trans-
formation between the ground and metastable states?),
the EL2 defect seems to be the same as the isolated Asg,
arsenic antisite defect in GaAs. The present paper is con-
cerned with calculations of some of the optical properties
of the isolated Asg, defect, and for comparison with ex-
periment, we shall refer to optical experiments on EL2.

Let us review the optical processes that can occur for
an isolated Asg,. The isolated Asg, has a state of A4,
symmetry with an energy roughly midgap. When the 4,
state is doubly occupied, the defect is neutral. The 4,
state can also be singly occupied or empty. It gives rise to
two levels, (+/++) at E,=E,+0.54 ¢V,? and (0/+) at
E,=E,—0.742 eV.* As shown in Fig. 1, the two levels
give rise to four optical cross sections for transferring
electrons between the bands and the levels.

Since the defect can exist in any of three different
charge states, let n,, n, and n,, be the concentrations
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of the neutral, singly ionized, and doubly ionized Asg,
defects. These concentrations satisfy the constraint

ng+n,+n,, =N, (1.1

where N is the total Asg, concentration. The optical ab-
sorption a(hv) can then be expressed in terms of the
cross sections shown in Fig. 1 as

alhv)=(noo,,th op+tn o, +ny0,) . (1.2)

Similarly, the total (positive) charge density associated
with this population of defects is, in units of the charge
on a hole,

Q=n,+2n,, . (1.3)

The concentrations themselves are determined by N
and by kinetic and statistical considerations. At low opti-
cal flux, there are four occupation regimes at low temper-
ature. These depend on nj and n 4, the shallow donor
and shallow acceptor concentrations, and on N. The four
regimes are characterized as being n-type, semi-insulating
with Eg...=~F,, semi-insulating with Eg.;~E, and p
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FIG. 1. Diagram defining the two energy levels and the four
optical cross sections for transfer of an electron between the 4,
midgap state and the extended valence and conduction bands.
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type. When the optical flux is high enough (optical tran-
sitions occurring more rapidly than do spontaneous hole
and electron generation, which normally establish equi-
librium), then the occupations will depend on the cross
sections via the following kinetic equations:

dn,
———=<D(~n00,,2+n+0'p2) , (1.43)
dt
dn

a =®(ngo,,—n40,,—n,0,,tny0,), (1.4b)
dn

d2t+ =¢(n+0'n1—n2+0p1) . (1.40)

These equations can be solved to give equilibrium con-
centrations from which the equilibrium absorption or
charge density can be evaluated using Egs. (1.2) or (1.3).
Alternatively, they can be solved to give the transient
concentrations evolving from some specified initial situa-
tion after time-independent light flux ® has been turned
on. In that case, the time-dependent total absorption
a(hv) or the time-dependent charge density Q can be
evaluated by using these transient concentrations in Eq.
(1.2) or (1.3).

These considerations give rise to various optical spec-
troscopic techniques for evaluating the cross sections
themselves. As shown by Chantre, Vincent, and Bois,>
there is an advantage in measuring the initial slope of the
capacitance transient (i.e., the initial rate of change of the
charge Q) from an initial condition having all defects in
the same charge state, for instance, ny=N, n =0,
n,+ =0. This condition can be obtained by starting with
n-type material where np >n , . A measurement of the
initial dQ /dt, N, and @ in this case will give o ,,.

Similarly, by starting with p-type material where
(n4—np)>2N, one can achieve the initial condition
ny=0, ny =0, n,, =N. A measurement of the initial
dQ/dt, N, and ® in this case will give 0,;. Measurement
of the other two cross sections by this technique are
much harder to do, and we shall see later that there is
reason to doubt the reported results or interpretations.

The electronic structure of the defect is such that if the
GaAs forbidden gap were about 0.5 eV larger than it is,
there would also be a T, bound state associated with the
Asg,. As it is, instead of a discrete state, the T, state
mixes with the other conduction-band states and is
broadened into a resonance that shows up in the optical
absorption.® This resonance is strongly coupled to the
lattice, in the sense that an electron excited into this reso-
nance can cause the defect and the nearby atoms to relax
to a position of minimum energy, just as if the resonance
were indeed a discrete state. We have begun a model
theory of optical absorption into a lattice-coupled reso-
nance,’ which can exhibit a variety of effects. A realistic
application of the theory, however, requires input from a
realistic calculation of the electronic cross sections. This
is the motivation for the calculations to be described in
this paper.

This paper presents a calculation of the purely elec-
tronic part of the four optical cross sections depicted in
Fig. 1. The computational emphasis will be on the realis-
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tic description of the electronic states. In this calcula-
tion, we ignore lattice relaxation altogether and conse-
quently, we find neither the experimentally observed
zero-phonon line nor the multiphonon replicas, nor are
we able to calculate the experimentally observed cross
section for internal transition.® These last will be dis-
cussed in some detail in a later section of the paper.

In the next section, we present details of the calcula-
tion. In Sec. III, we give our calculated results, and in
Sec. IV, we compare the calculated and experimental re-
sults. Section V contains a discussion of the role of lat-
tice coupling. Section VI contains a summary, a discus-
sion of our findings, and the implications that follow
from them.

II. CALCULATIONAL DETAILS

As Petit, Allan, and Lannoo® have shown, a particular-
ly useful expression for the optical absorption associated
with transitions between ¥, , the bound state of an isolat-
ed defect, and the band states of the semiconductor con-
taining the defect is

B

v

o(hv)= Im{¥, |p,G(E,thv)p,|¥,) , (2.1a)
where Im denotes the imaginary part, E; is the energy of
the bound state, and the sign +(—) denotes transitions to
the conduction (valence) band. G (E) is the Green’s func-
tion for the perturbed crystal. The other symbols are

defined by

d
=—ih—, 2.1b
p; i (2.1b)
2
2 E
_4re’h | Er (2.1¢)
m2en | E,

The quantity »n is the index of refraction, and E 4/E| is
the so-called local-electric-field enhancement factor. In
the absence of a reliable way to calculate this factor of or-
der unity, we shall take it as being equal to n'/2, which
makes [ a materials-independent constant. Our ig-
norance of E_z/E, could result in an uncertainty of
perhaps a factor of 10 in the overall amplitude of the
cross sections. The error will be the same for all four
cross sections, and will be independent of /v in the range
of interest here.

The Green’s function for the perturbed crystal is relat-
ed to G, that of the perfect crystal, by Dyson’s equation,

G=G"+G%G . (2.2)

A general discussion of evaluation of G° and the solution
of Eq. (2.2) is given in Ref. 9. Briefly, we first solve the
local-density approximation (LDA) Kohn-Sham equa-
tions self-consistently for the perfect crystal. We use a
Gaussian local orbital basis set consisting of 19 orbitals
per site; s, p, d, and an additional r? function with decay
constant @=0.6, and longer range s, p, and d functions
with a=0.2. This set has been selected to yield reason-
able results for group-IV elemental and III-V compound
semiconductors when compared with converged plane-
wave calculations. We employ standard norm-conserving
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pseudopotentials and we use the Ceperly-Alder form of
electron-gas correlations, as parametrized by Perdew and
Zunger. Self-consistency is achieved with 10 k points in
an irreducible portion of the Brillouin zone.

The 38-orbital-per-cell set gives an LDA gap for GaAs
ong=0.89 eVatI,l.1eVatX,and 1.17eV at L. A k-
dependent “‘scissors-operator” adjustment (described
below and, in more detail, in the Appendix) is subse-
quently carried out prior to the evaluation of the Green’s
function.

For the orbital expansion in G° and G, we retain the
Asg, antisite, its 4 As neighbors, and their 12 Ga neigh-
bors, 3 atomic shells in all with a total of 323 orbitals.
Since we are interested in details of the optical cross-
sections near threshold, we use a fine k-space sampling
grid, corresponding to 615 k points in the irreducible
portion of the Brillouin zone. This gives an energy reso-
lution of ~0.03 eV. The symmetry of the system is the
T, point group: no lattice distortions are considered.

Dyson’s equation (2.2) is iterated to self-consistency us-
ing a complex contour integration scheme for evaluating
the charge density in the fully occupied valence band,
and occupying the A4, gap state with O, 1, or 2 electrons
corresponding to the + +, the +, or the O charge state of
the antisite. The optical cross sections are then evaluated
using analytic dipole matrix elements between the Gauss-
ian orbitals, and numerical sums over the products of op-
tical matrix elements and Green’s-function matrix ele-
ments.

We now discuss certain new features of the present cal-
culation. Self-consistent LDA calculations systematically
underestimate the band gaps of semiconductors.!® At the
present time, the only fully satisfactory way to remedy
this problem is to perform quasiparticle calculations. '! It
has been found that quasiparticle wave functions agree
closely with those calculated by LDA, even for such lo-
calized states as those that appear at the surface of a
semiconductor. !? Applying this finding to Eq. (2.1a), the
cross section can be accurately calculated using LDA
wave functions, provided that the energy of the bound
state and those of the extended states (as contained in the
Green’s function) are given correctly. There are limita-
tions on what we can do calculationally in the self-
consistent defect problem. For this reason, we shall use
LDA wave functions and the LDA Green’s function to
calculate the cross section, but we shall make three
empirical adjustments to the energies of the states in-
volved. The first is an adjustment to the energy of the
states of the perfect crystal to overcome the problem of
the incorrect LDA band gap. For this purpose, we em-
ploy the k-dependent scissors operator, a generalization
of the so-called scissors operator!® we introduced into
LDA defect calculations.'* (The specific k-dependent
form we use here is described in the Appendix.) The
second adjustment is a slight scaling of the overall
strength of the defect potential. The purpose of this scal-
ing is to allow us to study how the A4 ,-T, transition gains
intensity and sharpens up when the T, final state moves
downward through the lower part of the conduction band
as it might do under the influence of external parameters,
e.g., hydrostatic pressure. (More accurately, the T, state
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moves up slightly relative to the valence-band maximum,
but the conduction-band minimum moves up so much
more rapidly that the net effect is to move T, state into
the gap.) The last adjustment is to the energy of the A4,
localized state. We set that energy to its experimental
value (E, or E,) because we recognize that simply using
the k-dependent scissors operator while adjusting the
strength of the defect potential alters the calculated ener-
gy of the A, state. None of the conclusions we reach are
dependent on these adjustments; they are simply calcula-
tional conveniences allowing us to carry out this study.

III. CALCULATED RESULTS

One of the main points made in the paper of Petit, Al-
lan, and Lannoo® was that the presence of a point defect
in the semiconductor has two strong effects on the elec-
tronic structure. The first is that it introduces localized
states in the gap. The second is that it strongly modifies
the band states in its immediate neighborhood, a fact that
had been almost universally overlooked in earlier calcula-
tions of optical cross sections. They illustrated this point
by calculating the optical cross section using two
different formulas, namely

o%hv)=—L MOUE, +hv) (3.1a)
hv
o(hv)=—-L-M(E, +hv) (3.1b)
hv
where
MYE)=Im{(¥,|p,GYE)p,|¥,) , (3.2a)
M(E)=Im{V¥,|P,G(E)p,|¥, ) . (3.2b)

0%hv) is thus the cross section calculated using the lo-
calized state of the defect crystal and the band states of
the perfect crystal, while o (hv) is the cross section calcu-
lated using that same localized state and the band states
of the defect crystal. Petit, Allan, and Lannoo exhibited
o and o for several defects and showed that, in general,
there were large differences between the two.

The same situation as that illustrated by Petit, Allan,
and Lannoo is also true here: Here, the defect modifies
the conduction-band states by, among other things, creat-
ing a fairly strong T, resonance. This can be most easily
seen in Fig. 2 where we have plotted M°(E) and several
different M (E) for energies E in the conduction band.
The various M (E) differ from each other because we
have artificially varied the position of the resonance peak.
To produce these different plots, we have replaced V, the
self-consistently determined defect potential used in Eq.
(2.2), by V/A. Since the defect potential for Asg, is
essentially attractive, increasing A makes the potential
less attractive and allows the T, resonance to shift to
higher energies.

Referring still to Fig. 2, for A <0.9, (not shown) the
resonance lies below the L-band minimum. Any scatter-
ing state near the resonance energy developed from an
unperturbed state whose k vector lay in the T
conduction-band valley. Not only is the overall density
of states small in the T valley, but the density of T, states
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M(E) AND M°(E) (arb. units)

1.7 1.8 19 20 21 22
FINAL-STATE ENERGY (eV)

FIG. 2. M(E) and M%E), proportional to the square of the
transition probability from the A4, state to states at energy E in
the conduction band. M? is calculated using the conduction-
band states of the perfect crystal. M is calculated using the
states of the defect crystal. It depends sensitively on the energy
of the T, conduction-band resonance. This energy is controlled
by the parameter A.

is particularly small. For this reason, there is a very weak
background of T, symmetry states to interact with and
broaden the T, resonance. The resonance produces
essentially a 8-function cross section (not shown). As A
increases, the resonance moves into the L band and very
quickly broadens and loses intensity. By the time it is
~0.15 eV above the L-band edge, it has completely lost
its independent identity. As the resonance moves and
changes its width, the oscillator strength of the nearby
background also changes.

The difference between M°(E) and M (E) for energies
E in the valence band is shown in Fig. 3. Spin-orbit cou-
pling is not included in our calculations. The presence of
the defect reduces the density of states at the top of the

N W esE OO N o

M(E) AND M°(E) (arb. units)
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0 -0.2 -0.4 -0.6
FINAL-STATE ENERGY (eV)

FIG. 3. M(E) and M°E) for states in the valence band. The
sensitivity of M (E) to the value of A is far less because there is
no resonance at these energies.

0 p1(hv) (10°18 cm?)

ol ] | | | |
05 06 07 08 09 10 11 12

hv (eV)

FIG. 4. Solid curve: o,(hv) evaluated for A=1. Dashed
curve: measured values as given in Ref. 3.

valence band near the defect, as would be expected for an
attractive potential. This can be inferred because M (E)
for final energies near the valence-band maximum is
smaller than M%E), the value for the unmodified
valence-band states. Although varying A does vary the
potential and thus the perturbed states to some extent,
small changes in A produce proportionately small effects,
unlike the situation in the conduction band where a small
change in position of the resonance has a profound effect
on whether or not the resonance was broadened. Figure
3 also exhibits a small amplitude oscillation which we at-
tribute to k-space and energy-grid sampling noise in the
calculations.

In Figs. 4-7, we exhibit calculated values of 7, 0,
0,y and 0,,, respectively. The self-consistent potential
used in evaluating these cross sections was that calculat-
ed for the neutral Asg,. We verified that there were only
small changes in cross section if we used the potential for
singly ionized Asg,, except for those changes directly as-
sociated with the position of the T, resonance. The ener-
gy of the A, state, as was explained in Sec. II, has been
set by hand for the purposes of evaluating the cross sec-
tions. The hole cross sections O p and O p2s which are
very weakly affected by the value of A in the range
0.9<A < 1.0, as can be seen in Fig. 3, were evaluated for
A=1.0.

N W s o e N ®
|

a,(hv) (10-18 cm?2)

FIG. 5. o,,(hv) evaluated for various values of A.
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FIG. 6. 0,,(hv) evaluated for A=1.
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FIG. 7. Solid curves: o ,,(hv) evaluated for various values of
A. Dashed curve: measured value as given in Ref. 5.

a(hv) (10-18 cm?2)

0.7 08 09 10 1.1 12 1.3 1.4
hv (eV)

FIG. 8. Optical absorption a(hv) evaluated for n-type ma-
terial in which 5% of the Asg, have been ionized into the singly
ionized state by the action of the light itself, or for semi-
insulating material where the ionization is caused by a small
concentration of lower-lying acceptors.

0.7 08 09 10 1.1 12 13 14
hv (eV)

FIG. 9. Same as Fig. 8 except that the fraction of ionized
Asg, is 10%.

There are two factors to note in these figures. First of
all, there is a generic similarity in shape between o, and
0,,- All the differences between these two cross sections
can be understood in terms of the 0.24-eV difference in
energy of the final 4, midgap state. The calculated
M (E) agrees to within 10% when V° for the neutral de-
fect is replaced with V' * for the singly ionized defect. We
are not aware of a physical mechanism which should
make these two cross sections inherently different in
shape. The same is true (except for the changes engen-
dered by the shifts of the T, resonance) for the pair of
cross sections o, and o ;.

The second factor to note is that the density of T, sym-
metry states below the L-band minimum is so small that
there is very little electron cross section o,; or o,, to
final states whose energy lies within the I" valley range.

In Figs. 8 and 9, we exhibit the optical absorption as
evaluated using Eq. (1.2) and concentrations appropriate
for semi-insulating type material. These have been evalu-
ated using ng=f,, n. =1—f,, and n,, =0, 0= f( =1.
For f,=1, the optical absorption is identical to o ,,, as
shown in Fig. 7. This has an extremely small cross sec-
tion in the range 0.77 eV <hv<1.04 eV and is zero
below 0.77 eV. With as little as 5% (Fig. 8) or 10% (Fig.
9) of the defects in the singly ionized state, the cross sec-
tion in the range 0.77 <hv < 1.04 approaches experimen-
tally observed values. However, it is clear that the in-
crease in this range is due to the onset of the hole cross
section o, and not the electron cross section @ ,,.

IV. COMPARISON WITH EXPERIMENT

The first measurements of the optical cross sections of
EL?2 (then known as the “O” defect) were made by Chan-
tre, Vincent, and Bois® using the deep-level optical spec-
troscopy technique they pioneered. At that time, howev-
er, the existence of a second donor level of EL2 was un-
known, and so, instead of Eqgs. (1.1)-(1.4), they interpret-
ed their experiments assuming that there were only two
charge states of the defect:
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no+tn,=N. 4.1)
The absorption would then be given by

a(hv)=(ngo,,+n,0,), (4.2)
the charge would be given by

Q=n,, (4.3)

and the kinetic equations governing the transient popula-
tions would be

dn
7=¢(_n00n2+n+0'p2) 5 (4.43)
dn

dt =¢(n00n2_n+0p2) . (4-4b)

Their technique was to measure the initial slope of a
photocapacitance signal. To obtain o ,,, they achieved
the initial condition ny =N, n . =0 (and, unbeknownst to
them, n,, =0) by using an electrical pulse to flood all the
centers with electrons. Analyzing the results using either
Egs. (1.1)-(1.4) or Egs. (4.1)-(4.4) leads in this case to the
same result: the initial slope provides a direct measure of
0 .2, the electron cross section. Their results for o ,, at 77
K are shown as a dotted curve on Fig. 7. The normaliza-
tion of their cross section was not determined, and we
have chosen a normalization which is convenient to the
scale of the calculated results.

In order to measure the hole cross section (0 ,, in our
notation), Chantre, Vincent, and Bois started from an ini-
tial condition ny=0, n =N, which they achieved by
emptying the (0/+) level thermally. (The initial value of
n,4 that this would have produced is not clear to us.) In-
correctly using the equations of this section to analyze
the data would make it appear that the initial slope of the
capacitance transient is proportional to o ,,. If the data
is analyzed correctly using the equations of Sec. I, then
(under the assumption that n,, =0), the quantity being
measured is really 0,,—0,;. If some of the defects are
initially in the doubly ionized state, then the quantity
measured is even less directly related to o ,,.

Another measurement of an optical cross section was
done by Lagowski et al.> Knowing that EL2 was a dou-
ble donor, they measured the initial slope of capacitance
transient in p-type material. Starting from an initial con-
dition no,=n, =0, and n,, =N, they obtained o,
Their analysis gave the best estimate of the level E,
namely E|=E, +0.541+0.02 eV. They also gave an order
of magnitude for the absolute value of the cross section
they measured, namely ~107!7 cm?. We have repro-
duced the cross section they obtained as the dotted curve
on our Fig. 4. The exact normalization is not given in
Ref. 3, and we have normalized the experimental and
theoretical curves to agree at hv=1.0€V.

Omling, Silverberg, and Samuelson'>!¢ also were con-
cerned with measuring EL2 cross sections. For some
reason, the analysis in their earlier paper'’ is carried out
ignoring the second donor level. The intent in this paper
is to obtain absolute values for o,, and o p2> and to deter-
mine that energy for which the two cross sections are
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equal. As was the case in the work of Chantre, Vincent,
and Bois,> the quantity assumed to be Op2 is, at best,
0,,—0,;. Since, however, 0,,=0 for hv<0.97 eV, the
analysis and the consistency checks they use are valid in
this photon energy range. It is fairly straightforward to
reanalyze the work presented in Ref. 15 using the equa-
tions of Sec. I and to assess, thereby, the validity of the
hole cross section at energies above 1.0 eV. There is no
problem with their measurement of o ,,, and they were
able to obtain not only its shape, but also its absolute
magnitude.

In Ref. 16, the same authors measured o0, in n-type
material over an energy range 0.5 eV <hv<0.8 eV by
using photons of energy Av=1.38 eV to fully ionize all
the EL2 before the start of the capacitance transient ex-
periment. The results confirm those of Ref. 3 obtained in
p-type material, but now there is also a determination of
the absolute value of the cross section. This paper also
presents an ingenious method of measuring o,;. The
method relies on having previous knowledge of o ,.
Since the papers cited above which claimed to have mea-
sured o, have at best measured 0,,—0,,, the o, spec-
trum presented in Ref. 16 cannot be accepted without a
discussion of whether the o,, used in deriving it is, in
fact, correct. The biggest question here is whether the
decrease in o, at hv>1.0 eV>1% is real, or whether it
reflects the onset of 0 ,,;.

The measurement of 0, in Ref. 3 on the one hand, and
those of Op in Refs. 5 and 15 on the other hand, yield
cross sections that are profoundly different in shape. Our
calculations yield two cross sections that are generically
similar, basically because the calculated M (E) for the
two situations are virtually the same. This discrepancy is
no surprise because, as we have just noted, the actual
cross section measured could not have been o ,.

There is another striking discrepancy between our cal-
culated result and the experimental one, namely for o ,,.
Experimentally, this cross section has a threshold at
about 0.77 eV, corresponding to the transfer of electrons
from the A, localized state to states near the T
conduction-band minimum. The calculated cross section
is extremely small from 0.77 eV up to 1.03 eV, the L-
band minimum. The reason for this is that the final state
of an optical transition from an 4, symmetry initial state
will have T, symmetry, and there is an exceedingly small
density of T, states in the I" valley. (There are T, states
even at the bottom of the L minima.) As we shall discuss
in the next section, the most likely reason for the
discrepancy is that the forbidden A, —T valley transi-
tion is made possible by emission of LO phonons of T,
symmetry, an effect not included in our purely electronic
calculation. This same effect borrows oscillator strength
from transitions higher in the band. Both features are
apparent in the comparison of calculated and measured
cross sections in Fig. 7.

V. ROLE OF LATTICE COUPLING

The cross sections discussed in Sec. III were calculated
using a purely electronic Hamiltonian, with no coupling
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between the electrons and the lattice. Experimentally,
however, there are several manifestations of the role of
the lattice in the various optical cross sections. The first
piece of evidence is that some of the cross sections are
temperature dependent.>!” The second piece of evidence
is the appearance of zero-phonon lines (ZPL’s) and pho-
non replicas, both in the absorption spectra® and in emis-
sion spectra.'®!® The third piece of evidence is the ex-
istence of an internal transition.® There has recently
been some controversy about the interpretation of the
ZPL and the amount of lattice relaxation associated with
the internal transition. For that reason, it is useful to re-
view the situation with regard to the second and third
items above.

Discovery of the metastability of EL2 occurred in a
series of photocapacitance experiments'® 2! in which it
was demonstrated that the stable state of the defect and
the metastable state have the same charge. From the fact
that they do have the same charge, it is likely that the op-
tical absorption causing the transformation would leave
the excited electron on the defect center, i.e., would be an
intracenter transition. This was demonstrated to be so by
Kaminska et al.® in an experiment where optical absorp-
tion and photocurrent were measured simultaneously.
These were found to track each other except over a limit-
ed range of photon energies. In the range 1.05 eV
<hv<1.32 eV, there were photons absorbed for which
no electrons were collected. The difference between the
optical absorption and the photocurrent gives o, (hv),
the cross section for exciting an intracenter transition.

The large width of o, (hv) suggested to Kaminska
et al.® that lattice relaxation was responsible for broaden-
ing the absorption line. In such cases, there is often ZPL
marking the lowest energy in the broadened line and pho-
non replicas above it. A high-resolution study of the
EL? optical absorption at low temperature did find such
features, seemingly confirming that lattice relaxation was
indeed involved in the absorption process. By using uni-
axial stress to split the ZPL, Kaminska, Skowronski, and
Kuszko?? identified the intracenter transition as an
A,-T, transition. This finding was taken as proof that
EL? was an isolated Asg, defect.

The reasoning behind ascribing the width of the ab-
sorption feature to lattice coupling was based on the clas-
sical Huang-Rhys?? description of optical absorption in a
system with lattice coupling. Figure 10 illustrates the
essence of the Huang-Rhys theory. The theory applies to
absorption between two discrete electronic states which
are coupled to the lattice. The intensity distribution of
the transitions is governed by the overlap of the initial-
and final-lattice wave functions and is greatest for the
transition that corresponds classically to the lattice being
fixed in the initial configuration. This is the so-called
vertical transition and is indicated on the configuration
coordinate diagram of Fig. 10. (Strictly speaking, howev-
er, adjustments to the Huang-Rhys theory are called for
in this situation because the vertical transition is not to a
discrete state but to a T,-symmetry electronic resonance
lying low in the conduction band. This situation has been
studied by us in Ref. 7.)

For the EL?2 intracenter absorption, the peak in the ex-
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FIG. 10. Schematic representation of the Huang-Rhys theory
of optical absorption in a two-level electronic system coupled to
molecular degrees of freedom.

perimental absorption spectrum was ascribed to a vertical
transition at 1.18 eV. Since the ZPL was observed at 1.04
eV, the lattice relaxation energy, dpc, was 0.14 eV. The
phonon energy fio observed in the high-resolution ab-
sorption spectra was 11 meV. Consequently, the Huang-
Rhys factor Sygr =dpc/%iw was close to 13. However,
this aspect of the interpretation was soon attacked on the
grounds that, according to the simple Huang-Rhys
theory, the integrated intensity of the ZPL should be a
fraction exp(—Sygr )=~ 107 of the total, a fraction much
smaller than observed.

Various suggestions for overcoming this difficulty have
been put forward. One is that the 11-meV phonon ob-
served was really the transverse optical phonon of the
GaAs crystal, while the lattice relaxation phonon was
really 24 or 33 meV, approximately two or exactly three
of the observed 11-meV phonons.?* Either would be close
to the 29-meV phonon energy needed? to account for the
0.15-eV half-width of the optical absorption. Another
suggestion is that the ZPL and the peak are really
features which belong to different electronic transitions, >
which means that different final electronic states of the
same defect are involved. Still another is that the ZPL
and its phonon replicas are not lattice vibration features
at all, but are instead the lowest and higher-lying transi-
tions in a hydrogenic series of states?’ arising from the
effective-mass states split off from the L valley by the
Coulomb potential of the defect.?®?°

There has been evidence accumulating to support some
of these explanations: Under hydrostatic pressure, the
ZPL is observed to ride up to onto the shoulder of the
peak ascribed to lattice broadening of the electronic tran-
sition.?® Since the ZPL is supposed to mark the lower
limit of the lattice-broadened transition, this would seem
to be a conclusive argument that the broad peak is not
simply a lattice broadened electronic transition or that
the “ZPL” is not really a zero-phonon line.?’ %

Additional information about the lattice coupling and
degree of electronic relaxation has been extracted from
reanalysis of the uniaxial stress-splitting experiments. 22
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Baraff®® has shown that the total amount of lattice relaxa-
tion that can be assigned to the € and 7 models of lattice
relaxation is far smaller than the 0.14 eV assigned to dpc,
and he made crude estimates that the a-mode coupling
might possibly be enough to account for the rest.
Davies,*! in a more thorough analysis of the same prob-
lem, identified and removed one of the tacit assumptions
used both in the original analysis of the stress splitting
data and in Baraff’s reanalysis. He reconfirmed the limit
Baraff had found on relaxation caused by the 7-mode cou-
pling. Davies and Steele’? were able to estimate the re-
laxation associated with the a-mode coupling and found
it be much smaller than Baraff’'s maximum estimate.
They concluded that the temperature dependence of the
ZPL intensity was consistent with an overall weak lattice
coupling, i.e., with a small energy separation between the
vertical transition and the zero-phonon line. Taken to-
gether, these last studies’® ™32 suggest either that (i) there
may be a lattice-broadened transition which does give
rise to a zero-phonon line, but for which the vertical tran-
sition is at a lower energy than the 1.18-eV peak, or (ii)
the vertical transition is at 1.18 eV, with small lattice
broadening which is masked by some purely electronic
aspects of the transition. In the former case, there is a
need to identify the source of the broad absorption peak
at 1.18 eV that masks the lower-energy vertical transi-
tion. In the latter case, there is a need to explain the ex-
istence of the zero-phonon line.

Considering both Lannoo’s argument that the “ZPL”
is really a transition to a hydrogenic state,?’ and our cal-
culation that purely electronic broadening of the T', reso-
nance (see Fig. 7) gives more or less the correct overall
shape of the absorption, one might conclude that there is
no need to invoke lattice relaxation at all for these
features of the spectrum. That conclusion cannot be to-
tally correct either, because of the existence of the intra-
center transition. Experimentally, the intracenter transi-
tion extends over an energy range where the electron is
excited from the A, state to the conduction band. An
electron placed in the conduction band will move away
from the defect and eventually contribute to the photo-
current, and not to an intracenter transition. Even if this
electron were excited into the electronically broadened
T, resonance, it would still eventually leak away from the
defect unless the lifetime of the resonance were long com-
pared to the lifetime against deexcitation. This latter
occurs only if the resonance is sharper than the natural
line width, which is never the case. Thus, in order for an
intracenter transition to occur, there must be some
energy-loss mechanism operating (e.g., lattice relaxation
via multiphonon emission) that can reduce the energy of
the electron sufficiently to where it cannot leak away
from the defect before deexcitation takes place. Al-
though we have proposed one purely electronic mecha-
nism that could allow an intracenter transition to
occur, 3 there is no experimental evidence yet to confirm
that proposal.

On balance then, the shape of the intracenter cross sec-
tion does suggest that lattice broadening of the T, level
exists as was correctly proposed by Kaminska et al.®
even though there is inherently electronic broadening su-
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perposed over it. This vastly complicates the analysis. It
could explain how the ZPL, under pressure,? rides up
over the lower limit of the broadened absorption, since
the part over which it rides could well be the electronical-
ly broadened part. On the other hand, Lannoo’s argu-
ment that the “ZPL” is really a hydrogenic state attached
to the L minima perhaps provides an explanation for the
same effect, because the position of the hydrogenic state
is not connected to the amount of lattice relaxation.
Lannoo’s presentation?’ is interesting in that it leads to a
Hamiltonian virtually identical with the one under which
the stress dependence of the ZPL was analyzed. This sit-
uation challenges all analyses of lattice-relaxation
broadening of the T, level since they all were based on
the validity of the ZPL being associated with a dynamic
Jahn-Teller effect in a 7XT, system.?>3°732 (Clearly, a
resolution of this point is of utmost importance. Very re-
cent experimental evidence®*3* tends to support Lannoo’s
suggestion.

Finally, we turn to the question of the discrepancy be-
tween the calculated and measured 0, cross sections for
transitions whose final state is in the I' valley. High-
precision studies of the emission from EL2*%'® indicate
that some of the emission originates from A ,-symmetry
effective-mass-like state attached to the I' minimum. The
evidence for this is to be found in that part of the emis-
sion spectrum where the 4, midgap level is the final
state. What is seen is nondegeneracy of the initial state, a
very small zero-phonon line, and a very strong intensity
of the one-phonon LO peak. In other words, a LO pho-
non of T, symmetry enables this otherwise-forbidden
A,— A, transition to occur. The mechanism by which
this occurs is exactly the same as the one by which a pho-
non supplies the momentum needed for band-to-band op-
tical recombination an indirect band-gap semiconductor.
The difference in detail is that here, there is no k-
conservation rule because of the localized nature of the
final state. Instead, the phonon supplies the needed
change in symmetry to the initial A4;-symmetry hydro-
genic electronic state. It should be particularly easy for
the phonon to do so because of the high density of nearby
electronic states of T, symmetry from which it can bor-
row strength.

It is reasonable that this effect will also be strong in the
A -to-T'-valley absorption: the same physics is involved.
In this case, the phonon borrows amplitude from the
nearby states of T, symmetry and supplies it to the final
states of 4, symmetry in the I valley. Since the occupa-
tion of the enabling phonon is temperature dependent,
the cross section for this transition should also be temper-
ature dependent. Temperature dependence of this part of
0 ,, has been measured,!” but the interpretation of this
measurement was that an electronically allowed transi-
tion is broadened in the usual way via lattice relaxation.
This interpretation is suspect, because the transitions
should be electronically forbidden. The question of the
spectral shape and temperature dependence for the
A, —(I'+ LO phonon) transition, and whether such a
transition is in accord with what has been measured, is
under study and will be reported elsewhere. 3
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VI. SUMMARY AND CONCLUSIONS

We have calculated the purely electronic part of the
four cross sections 0, 0, 0,,, and 0, for the isolated
Asg, defect. The two calculated electron cross sections
were generically similar, as were the two calculated hole
cross sections. The differences between the two members
of each pair could be understood mainly on the basis of
the energy difference between E, and E,, the two local-
ized levels involved. Although the experimental results
on the two hole cross sections show them to differ in
shape, we argued that the conditions under which o,
had supposedly been measured were such that, at best, it
was 0,,—0,; that had been obtained. Therefore, com-
parison between the two published experimental hole
cross sections is invalid.

Our calculated cross sections do have the experimen-
tally measured order of magnitude and do correspond in
shape fairly well to 0,, and 0,,, the two cross sections
that have been measured correctly. Some deviations
from experiment are to be expected because these purely
electronic calculations ignore the role of the lattice in
affecting the spectral shape. The three most prominent
differences are (i) the absence of the zero-phonon line; (ii)
the absence of the phonon replicas (even if it should turn
out that the zero-phonon line and phonon replicas are
not lattice related but are, instead, hydrogenic states at-
tached to the L-band minima,?” % they do not appear
here because our calculation truncates the long range
Coulomb potential needed to create them); (iii) the very
small purely electronic cross section for transferring an
electron from the A, localized state into the I" valley of
the conduction band.

We attributed the larger experimental cross section for
optical transition between the A4, state and the I" valley
to the effect of LO phonons. These can enable this other-
wise forbidden transition to occur. We cited experimen-
tal evidence that makes this a likely explanation. If this
should indeed be the explanation, then the lattice relaxa-
tion of the A, localized state (which has been measured
via the temperature dependence of this optical cross sec-
tion!”) will have to be reevaluated. This is because the
LO phonon will contribute its own temperature depen-
dence to the cross section in this energy range.

The question of the relation of the vertical transition to
the zero-phonon line could not be settled in a definitive
way, primarily because of Lannoo’s demonstration that a
hydrogenic state attached to the L bands would be
governed by the same Hamiltonian as had been used to
analyze the zero-phonon line.?” Nonetheless, we were
able to show that the vertical transition is markedly
broadened by electronic mixing with the background
states of T, symmetry, and we demonstrated how that
broadening depended on the exact position of the reso-
nance relative to the L-band edge. We also argued that,
in spite of an electronic broadening that seems to repro-
duce the shape of the cross section, the existence of an in-
tracenter transition implies that there is still significant
lattice relaxation also contributing to the broadening.

Initially, the purpose of these purely electronic calcula-
tions had been only to serve as input for a more complete

G. A. BARAFF AND M. A. SCHLUTER 45

calculation to investigate the effect of lattice relaxation
and, in particular, its effect on the T, conduction-band
resonance. In spite of this limited objective, the informa-
tion derived from these calculations should be useful in
filling in some gaps in the present understanding of the
EL?2 defect in GaAs.

Note added in proof: Equations (1.4) were previously
given in Ref. 16. We have, unfortunately, reversed the
definitions of states 1 and 2 from that used in Ref. 16,

thereby adding an unnecessary complication to a compar-
ison of the results.
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APPENDIX: k-DEPENDENT
SCISSORS OPERATOR

The scissors operator is a name that has been given to
the technique of adjusting the energy of the states of the
perfect crystal prior to evaluating the Green’s functions
G%E). Originally,'* the adjustment raised all the con-
duction bands by the same constant energy A. Now, we
want to raise €.(k), the calculated energy of the lowest
conduction band, by an amount A(k) such that E_(k),
the lowest conduction-band energy used in evaluating G°,
will be

E,(k)=¢,(k)+A(K) . (A1)

E(T), E.(X), E.(L), and €.(k) are known, either from
experiment or from the LDA calculation.

The function A(k) has the full translational and rota-
tional symmetry of the Brillouin zone. For this reason, it
can be expanded in the form

AK)=3 C,4, k),

m=1

(A2)

where the individual functions 4, (k) are symmetrized
sums of plane waves. (See, for example, Ref. 36.)

For the fcc lattice appropriate to GaAs, the first three
functions 4,,(k) are

A,(k)=1, (A3a)
=1 x Y y z
A, (k) 3 |08 |5 |08 |5 + cos 5 cos |~
+cos | = | cos | = (A3b)
2 2 ’
A;(k)=1(cosx + cosy + cosz) . (A3c)

Experimental data on optical cross sections seemed at
first> to exhibit thresholds at the three conduction-band
minima. Therefore, in the calculation, it is especially im-
portant to place these minima at the correct energy and
we use A(k) to do so. It is only necessary to guarantee
that Eq. (A1) is satisfied at ', X, and L. For this reason,
only three nonzero constants C,, are needed. They are
given by
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C,=1[A(T)+3A(X)+4A(L)], (Ada)
C,=3[AT)—AWX)], (A4b)
C;=1[A(T)+3A(X)—4A(L)] , (Adc)

8309

where A(T') is the correction needed for the energy of the
I" valley, etc. This choice places the valley minima at the
correct energy while making the smoothest possible
correction to the other energies in the lowest conduction
band.
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