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Superconducting transition temperature of proximity-contact superconducting-normal double layers
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The transition temperature of a proximity-contact superconducting-normal finite double layer is dis-
cussed in the clean limit. The finite reflection coefficient R at the interface is explicitly taken into ac-
count. The thickness dependence and the R dependence of T, are discussed. It is shown that the transi-
tion temperature of a very thin double layer cannot be well described by Cooper's formula. The present
results qualitatively agree with experiments.

I. INTRODUCTION

A number of studies have been reported in proximity-
contact superconducting-normal (S-X double-layer or
multilayer systems. ' One of the fundamental properties
in such systems is the reduction of the superconducting
transition temperature T, as a function of the layer thick-
ness. An early theoretical work on this subject was re-
ported by Cooper. He expressed the transition tempera-
ture rather intuitively in terms of a spatially averaged
pairing interaction. In clean-layer systems, electrons al-
ways remember the effect by the S-N interface. The pres-
ence of the interface much complicates the problem and
no satisfactory theory that can be quantitatively com-
pared with experiments has been developed since
Cooper's work. On the other hand, in dirty-layer systems
the problem is much simplified by the impurity average
that smears the effects by the sharp S-N interface.
Theories of T, in dirty-layer systems have been proposed
by de Gennes and Guyon, Werthamer and have been
applied to various systems. Many experiments have
been analyzed using the de Gennes —Werthamer
theory, which is valid when the layer width is
sufficiently longer than the mean free path. However, re-
cent experimental work ' has been done sometimes in
thinner layers and the result does not always agree with
the de Gennes-Werthamer theory.

In a previous paper, " we proposed a formulation for
the Green's function in a pure superconducting-normal
double-layer system. In this paper, we apply the formula-
tion to the superconducting transition temperature. Our
model system is illustrated in Fig. 1. The 1V side is a pure
normal metal with the width LN and the S side is a super-
eondueting metal with the width L&. We assume that the
boundaries at z = —L~,L~ are completely specular. The
S-/V interface is also assumed to have translational sym-
metry in the x-y plane and is characterized by the
reAection eoefficient R for the electrons at the Fermi lev-
el. Here, the Fermi momentum pF is taken to have the
same value in both the sides, but the Fermi velocity UF in
the S side is not always equal to UF in the N side. This

yields a finite reAection coefficient

V~
R=

UF~+UF~

even in the case of ideal contact. In actual systems, R is
considered to be a parameter to be determined by experi-
ments. Throughout this paper we use the units A= kz =1
and we use the scaled layer width and temperature

271Tc8
~siv s~ ~s, N

UF'

t,:—T, /T, tt,
where T, and T,~ are the transition temperature in the
double-layer system and in the bulk superconductor, re-
spectively. Now, our system is completely specified by
three dimensionless parameters Es, Ett, and R. We con-
sider the superconducting transition temperature t, as a
function of these three parameters.

Using the general formulation for a double-layer sys-
tern proposed by Ref. 11, we derive the gap equation to
determine the transition temperature. The gap equation
is a rather complicated integral equation which is difficult
to have analytic solution in general cases. We solve it nu-
merically by expanding the pair function in a Fourier
series. In some limiting cases, however, we can treat it
analytically. When R = 1, we can use perturbation
theory to obtain an explicit expression for t, . We can
show for general R that, when L~~~, there exists a
critical length Lz, of the S side below which there is no
superconducting phase transition (see Appendix A). This
fact has been already suggested by Bar-Sagi' in the case
of R =0 and by Ohmi et al. ' We can also show that,
when Lz is large, the pair function of the S side is well
approximated by a single cosine function (see Appendix
B).

When Lz is not so large, the single cosine function is
not a good approximation for the pair function itself. As
long as the transition temperature t, is concerned, how-
ever, we find that the single cosine pair function gives sa-
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a(Z)
/4

ing phase becomes unstable when Es is shorter than some
critical length Es, H. ere we discuss the R dependence of
Es, and we also derive the expression of the transition
temperature when Es -Es, . In Sec. VI, a very thin dou-
ble layer (Est, «1, ENt, «1) is treated. The transition
temperature is shown to de end not only on the thickness
ratio E&/Es but also on s, in contrast to the so-called
Cooper limit in which the transition temperature de-
pends only on the thickness ratio. The final section is de-
voted to discussion.

Ls
Z

tisfactory results which agree very well with the numeri-
cal calculation. Using this approximate pair function, we
propose some efficient formulas to calculate the transition
temperature. In particular, we study sufficiently thin film
double-layers (Es„Es«1) and show that the transition
temperature is not well described by Cooper's formula.
Bar-Sagi' has already treated the model of EN~ ac and
R =0 by assuming the single cosine pair function. How-
ever, this gap equation does not keep the symmetry that
the system should have and his results are different from
ours in many respects.

In Sec. II, we derive the gap equation near the transi-
tion temperature. The transition temperature when
R = 1 is also discussed in this section. In Sec. III, we cal-
culate the transition temperature numerically by expand-
ing the pair function in a Fourier series. Typical behav-
iors of t, as a function of Es, EN, and R are shown. In
later sections, we assume that the pair function is given
by a cosine function of z and derive approximate expres-
sions of the transition temperature. In Sec. IV, we con-
sider the case Est, )& 1 and we discuss the transition tem-
perature when E t, )&1 and Ezt, «1. In Sec. V, we
consider the case Ks,~ ac. In this case the superconduct-

FIG. 1. Typical S-lV geometry. A self-consistent pair func-
tion in the S-side is plotted by the solid curve when Ls =X+= 1,
R =0.5. The dashed line represents a constant pair function of
the corresponding bulk superconductor.

II. FORMULATION

In this section, we derive the gap equation in the
double-layer system by using the formulation proposed in
a previous paper. " According to Ref. 11, the gap equa-
tion for the pair function 5 is given by

b(z ) =UN(0)n T(gt(z) ), (2.1)

Here v is a pairing coupling constant in the S side,
N(0) is the density of states of the S side at the Fermi
surface, 8 is the polar angle of the Fermi momentum and
g&(z) is the off-diagonal element of the quasiclassical
Green's function. The above gap equation is valid at ar-
bitrary temperatures. To study the transition tempera-
ture, we approximate all the quantities up to first order in
b, (z). In this approximation, the quasiclassical Green's
function g t (z ) is given by

g, (z ) = cothA. — . cosh', (z —1) A,
cosh', sinhi.

X f dz'b, cosh', (z' —1)
0

+sinhA, (z —1)Afdz'8 , cosh'(z' —1)

+cosh'. (z —1 }A, f dz'6 sinhA. (z' —1), (2.2}
0

where the factor Q is defined by

where we have used the scaled coordinate z=zlLs and
the bracket denotes

m. /2
( ):—2 $ d8sin8( ) .

i'd )0

(1—R)tanhs
+(I—R) (tanh A, +tanh2I~)+2(1 —R ) tanhA, tanhs+4R tanh A, tanh s.

with tanh the hyperbolic tangent function and

2con L~ a)n 2LN

vF cosO vF cose

(2.3)

(2.4)

Here R is the reflection coefficient at the S-N interface. "
Except just at the S-N boundary z =0, the divergence in the ~„sum on the right-hand side can be removed by using

the conventional replacement

2nT g ~ln1

)0 n
h

2p coD

7TT

where y'=e~= 1.78, y is Euler's constant, and coD is the Debye cutoff frequency. Then the gap equation is rewrit-
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ten as

b,(z)
lnt, = —( 5g, (z ) ),

C

where t, = T, /T, s is the scaled transition temperature and

5g) (z ) = —g)(z )
b, (z )

COn

(2.5)

=f dz'b, ' cosh'(z' —z ) + . f dz'b ' sinhA (z' —1)+ . cosh' (z —1) A, f dz'6 cosh' (z' —1)
cosh', z

0 sinhk o cosh', sinhA, 0

(2.6)

with

dh
dz

(2.7)

When R =1, consequently, t, =1, we can easily esti-
mate t, . Let us take the spatial average of Eq. (2.5):

lnt, =— J dz: coshh (z —1)),c„cosh', 0
(2.8)

1 —R 1

2 tanhk
(2.10}

and we can replace b, (z ) by b, in the right-hand side of
Eq. (2.8). It follows that

1 —R
lnt =t —1=-

C C

1 —R
(2.11)

~n~ 16

Note that t, for R = 1 is a linear function of R and it does
not depend on the normal metal thickness Ez

For general R, the integral equation (2.5) is too compli-
cated to solve analytically. We solve it numerically in the
next section and discuss several special limits in later sec-
tions.

III. NUMERICAL RESULTS

In this section, we solve Eq. (2.5) numerically and show
the behaviors of the transition temperature as a function
of L~, L~, and R. We expand the pair function in a
Fourier series

&max

=ao+ g a &2cosk~(z —1),
C p=J

(3.1)

where k =pm. Then, the gap equation is reduced to the
following eigenvalue equation:

~max

a lnt, = —g (b )a
q=0

(3.2)

where c„=2n + 1 and Z is the spatial average of b, (z )

Z= f dzb(z) . (2.9)

Up to first order in 1 —R, Q is given by

Q tanhA,

n~
(3.3)

for p, q & 1 . (3.5)

Typical numerical results with p,„=20 are shown in

Figs. 2 and 3. When we take larger p,„, we find that
the pair function is modified only near z=0 to a more
rapidly increasing function but that the change in the
transition temperature itself is negligibly small. It im-
plies that the transition temperature is governed by the
global profile of the pair function.

In Fig. 2(a), we show the Es dependence of r, with
f&=0.5, 1, 2, ~ for R =0 by solid curves and for
R =0.5 by dashed curves. For comparison, a transition
temperature obtained from Eq. (2.5) with spatially uni-
form pair function is also shown in Fig. 2(b). We see that
when the spatial variation of 6 is neglected, the transition
temperature is reduced by about 10% or more.

The lack of data at Est, 5 1 does not mean the absence
of superconducting state. SufFiciently long-time iterations
give a nonzero solution of t„except for the case Lz ~~.
When L~~~, the superconducting state is unstable if
Ls is shorter than some critical length Ls, . The existence
of Es, is discussed in more detail in Appendix A. When

Lz & 1, the transition temperature is not sensitive to EN
because Es appears only through tanh~ in Q. In Fig. 3,
we show the R dependence of t, for L~ =1. When R =1,
t, increases linearly and does not depend on L~ in accor-
dance with Eq. (2.11).

IV. APPROXIMATE FORMULA WHEN Egt, » 1

In this section, we consider a system with a suKciently
1arge width superconductor layer, i.e., Lzt, »1, and we

present approximate methods to determine t, when

Lzt, ((1 and when Lzt, ))1. When Lst, &)1, the pair
function is shown to be well described by a single cosine
function (see Appendix B)

b =b =(—1K&2
—Q tanhA, A,

os so
A,'+k' for p & 1 , (3.4)

7f

3 k
p+q2 Q A, tanhA, + 1 p

(A, +k )(A, +k ) ~ A, +k

where 6(z)=b(1) cosk(z —1), (4.1}
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A. Case A: f t »1
%'hen L t )N, ))1, the exp[ —2x] in F and F s also

, so I an F2 are reduced to

0

0. 8

1 k 1

2
—=—ln cosh —k

(4.11)

Q. 6

O
0. 4—

F2=f2(k), (4.12)

where fz is already given by Eq. (4.8}. From E s. 4.
and (4.6) together with Eqs. (4.11) and 4.q . . an ( .12), wefindaset

0. 0 '

0

tank =tan(L k 1+R f,(k)
' (4.13)

(4.14)

FIG. 4. Re"uced transition temperature vs S- 'T ~

ness in the half-infin'
a ure vs S-side layer thick-

Solid curves are obtained by Fourier serie
'

s p io m thodi
approximate solutions given
es are calculated f Eq.

to determine the parameter k and t . The tra

ey show good agreement even wh
lar e. T

w en &t, is not so
ge. The dash-dotted curves shall b

later section.
s a e discussed in a

When R =1 and L is finite , we can expect k=O and

, t erefore, Eq. (4.13) is easily solved to give

(k }— ~( 16 /st
(4.15)

and the transition temperature from

ut =n /2. We find in this case that

2
1

(4.16)

B. Case B: E~t, && 1

Next we consider the case E t, «1 and a r
2 rs or er in t . Since

the parameter ~p meter ~ varies from very small value to infinit

i er 2. e rewrite F2 as

Thts agrees with Bar-Sagi' except for the nu
tor on the right-hand

or t e numerical fac-

en asymptotic behavior can be ob-

1

1 —R c

F (L t Rk)—cs
1 —R s„ 1+k /A, A, 1—

—e 2a 1
2

1 Re„ 1+k'—/1 '
A,
'

2lk f, (k)+1 k
2K

(4.17)

k 1 I dx
0

—2K

1 —Re
2~ 1 1

1 —R

=k O(l lnl) .

Thus, up to first order in L&tXtc

where l is thee thickness ratio defined by 1 =L /L .
evaluate the second term b usinerm y using the trapezoidal formu-

e integral (see Appendix C) and find that it
higher-order terms, i.e.,

n t at it g~ves

The function F, is rewritten as

1 —e 1 k

1 —Re n

1 —e 1 1

1 —Re " 1+k /A, A,

1 —e " 1 2lk

1 —Re-'" e

(4.19}

F2(L~t„R,k}= f (k) .21k (4.18)
The first term is that which a ears wpp

engt see Appendix A). Putting b, =b and re-



SUPERCONDUCTING TRANSITION TEMPERATURE OF. . . 833

placing Es by E» in Eq. (A2), we get

F&(E&t„R,k)= ln —1nt, —f2(k)
N

and

G, (Est„R,k ) =
1
—Re ~ E 1+k'/A. ') (5.4)

21k ~s~o
1-R'" . (4.20)

In the above, the last expression is obtained by using
Eq. (4.5). Here Es,o is the critical length with the con-
stant pair function (see Appendix A).

Substituting Eqs. (4.18) and (4.20) into Eq. (4.6) and us-

ing Eq. (4.5), we obtain an equation

k tank= Esf» ln
N

(4.22)

t, =1—l ln
CO

(4.23)

On the other hand, when E& +00 and—E& is fixed, the
wave number k goes to n/2 and the transition tempera-
ture is given by Eq. (4.16).

In the case when Es is fixed and E&~0, the wave num-

ber and the transition temperature are given by

12 disco

7g(3) E»

G(fr Rk)= 2e 1 1 k

1 Re— &„ I+k /A2 &
(5.5)

When Es -Es„—c onseq ue ntly, t, =0, we can neglect
the higher-order terms in Est, . From Eq. (4.8), we obtain

f (k)= —1nt +ln k
2 c (5.6)

=FP'(R, k),

F,(E,r„R,k)= f, (k)

2A

+
2A

(5.7)

2A, 1 k
$2+k 2

(5.8)

G, (Est„R,k)= f dA,
1 —Re "A, +k~

Using the trapezoidal formula in Appendix C and
neglecting terms of order (Est, ), we find that F„F2,G„
and Gz are reduced to

2A

F(E st„Rk)= f dA,
0 1 —Re A +k

V. HALF-INFINITE SYSTEM E» = m, fg —fg, — =G', '(R, k), (5.9)

G2(Est„R,k)= f, (k)

2A, 2A, 1 k

1 —Re 1 —R & A +k

E,r, ln2
=G,'"(R,k)—

1 —R k
(5.10)

Here, the functions F'2 ' and G2 ' are given by

2A,
1 k2

F2 '(R, k) = dA,
1 —Re ~A, +k

(5.11)

Since the transition temperature depends on E» only
through tanha. , the t, when E»t, &)1 is very close to that
in the half-infinite system E»=00. In this section we
neglect such a small correction by exp( 21.&) and con-—
sider the half-infinite system E» = 00. In this system, we
can rigorously show that there exists a critical length Es,
(see Appendix A). Here, we consider the case Es-Es„—
consequently, t, =0.

We start again from Eqs. (4.2) and (4.3). When

E»~~, the function Q becomes

1 —R 1+e
(5.1)

R 2A

and Eqs. (4.2) and (4.3) are rewritten as GP~'(R, k)= f "dX
0 1 —Re

—2k g2+k2 (5.12)

—lnt, =f2(k ) + G, (Est„R,k ) cosk1 —R
2

1+R
2

G2(Est„R, k) sink, (5.2)

Using Eqs. (5.6}—(5.12), we rewrite Eqs. (5.2) and (5.3)
as

lnt, =f2(—k )+h, (R,k}+Est, (ln2}'1—R

—lnt, =f2(k)+ F&(Xzt„R,k) cotk1 —R
2

F2(Est„R,k ),
—lnt, =f2(k)+h2(R, k)+Est, ln2,1+R

'1—R
(5.3)

where h& and h2 are given by

(5.13)

(5.14}

where the functions fz, F„and F2 are already defined by
Eqs. (4.8), (4.9), and (4.10}. The functions G, and G2 are
de6ned by

h&(R, k}= GP (R, k) cosk — GP (R, k) sink,1 —R 0 1+R 0

(5.15)
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hz(R, k)= F', '(R, k) cotk — Fz '(R, k) .
2

(5.16)

From Eqs. (5.13) and (5.14), we can determine the wave
number k through

Ls
ln +1—y —Ii (R, k)

2k
sink

k

+ - [h, (R, k) —h z(R, k }j =0 (5.17)

and using this k, the transition temperature is given by

1 —R 1 1 Es 1 —y
—h&(R, k)

1+R ln2 E 2k
(5.18)

Lsc =2k, e (5.19)

where k, is the wave number at t, =0 determined by

We plot this approximate transition temperature in
Fig. 4 by dash-dotted curves. Since the result agrees very
well with the numerical result in Sec. III, we use Eq.
(5.18) to estimate the critical length. Putting t, =0 in

Eqs. (5.17) and (5.18), we obtain
—1+@+62(R,k )

et alt. As can be found in Fig. 4 and was also shown by
Ohmi et al. , the transition temperature t, is linearly pro-
portional to L~ —L~, when L~-L~, in contrast to Bar-

Sagi' who suggested that t, ~ (Lz L—s, )'

lnt, =Qo t A, + Az+ A3k I, (6.1)

where A
&

is the logarithmically divergent term given by

1 1

1+(Qo/Q„)A,

1

2

Qo I ( 1/2+ Q „/Qo2Lq t, )

VI. SUFFICIENTLY THIN FILMS Xr t, « 1,E» t, « 1

Finally, we consider the case Est, « 1, E»t, «1. We
start again from Eqs. (4.2) and (4.3). For small Est, and
E»t„we can approximate them by logarithmically diver-
gent terms and constant terms in t, . We also approxi-
mate them. up to second order in k. By a similar method
to that used in Sec. IV (see also Appendix C), we divide
Eq. (4.3} into three terms, a logarithmically divergent
term when t, —+0, a convergent term with the uniform b„
and the correction term from the spatial variation of 6:

h, (R,k, )=hz(R, k, ) . (5.20) =lnt, +ln Es —ln2 —y+1+ . (6.2)

A 2 is the convergent term with the uniform 6

Egin p 1+ o ~ Ar

J o gz Q 1+(Qo/Q„)A,

and A &k is the correction term given by

A,
2

1+ tanhA, —k
3Qo s„A,'

We plot the critical length obtained from Eqs. (5.19) and
(5.20) in Fig. 5 by a solid curve. The dashed curve in this
figure is Es,o, the critical length with the constant pair
function (see Appendix A). When R = 1, we expect that
the pair function is almost uniform in the system, there-
fore the critical length is well approximated by Es,o In.
fact, two curves in Fig. 5 show good agreement when
R =1.

The existence of the critical length in the case of R =0
was first pointed out by Bar-Sagi' and numerically dis-
cussed by Ohmi et al. ' who also treated a finite R case
where a superfiuid He film is adsorbed on a bulk He-
He mixture. When R ~0, our result agrees with Ohmi

(6.3)

1. 0

0. 8

1+ = tanhA, —k
3

=J d~Q ', (6.4)
o Qo g~

In the above, I =E»/Ls, Q is given by Eq. (2.3) with (r

replaced by II(,, and we have introduced Qo and Q„
defined by

0. 4

Q. 2

Q. Q
Q. Q 0. 6 1.0

I

V 1+I +2I(1+R)/(1 —R)

From Eqs. (6.1) and (6.2), we find that

t, =(CL, )
'

where

(6.5)

(6.6)

(6.7)

FIG. 5. Reduced critical length vs reflection coefficient.
Dashed curve represents Zz, with a uniform pair function, aud
the solid curve is obtained with a cosine pair function.

Qo
lnC =la —ln2 —y+1+ A2+ A3k (6.8)
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The term 33k expresses the effect of the spatial varia-
tion of h(z }. The wave number k is determined by Eqs.
(4.2) and (4.3}. Subtracting Eq. (4.2) from Eq. (4.3) and
expanding the result in k up to k, we Snd

B1
(6.9)

where

1 —Q 1 182=

and

Q
E„A, coshk,

A' A,
2

1+ — sinhA, —A, 1+
3 2

(6.11)

(6.12)

)
1 1

sinhA,
(6.10) %e evaluate Bi 82 and 83 up to logarithmically

divergent terms and constant terms in t, :

a) Q 1 1B,=I dA~ tanhA,
o X A, sinhA,

J

1 —
Qo ~6 1 —

Q
6 @st eA, A, sinhA,

-Qo "
= ——ln &6

6 2%6 Q„

1 —
Qo

—
—,'(1—y+QoA2)+ J dA,

1 —
Q 1 1

o g2 A, sinhA,

1 —
Qo

A, +6

(6.13)

(6.14)

B3—- dA,
A, cashed,

A'1+ sinhA, —}(, 1+ (6.15)

In Eq. (6.14), we have rearranged the terms so that the
trapezoidal formula can be applied and have used the ex-
pression (6.7) for t, with the higher-order terms in k
neglected.

The transition temperature obtained from Eqs. (6.7)
and (6.9) is plotted in Fig. 6 by dashed curves. The solid
curves are obtained by the Fourier series expansion
method in Sec. III. They agree quite well when Es &Es, .
In Fig. 7, we show the transition temperature of double
layers with the fixed ratio I as a function of Es. The
dashed curves are calculated from Eqs. (6.7) and (6.9) and
the solid curves are obtained by the Fourier series expan-
sion.

(a)
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I 1 i 1 I I I I
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0. 8

(b)
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CJ

CP

0. 4 -"~-
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I 0. 6
CP

O
0. 4 =

0. 2

0. 00. 01

0.

0.

0.

0. 1. 0

10
0. 0 '

0

Ls

FIG. 6. Reduced transition temperature vs S-side layer thick-
ness when 8 =0, X& =0.5, 1, 2, ~. Solid curves are obtained
by the Fourier series expansion method in Sec. III. Dashed
curves represent approximate solutions given by Eq. (6.7).

Ls
FIG. 7. Reduced transition temperature vs S-side layer

thickness with a fixed thickness ratio I =L~/I. + =0.1, 0.2, 0.3,
0.4, 0.5, and 1.0 when (a) R =0 and (b) R =0.5. Solid curves
are obtained by Fourier series expansion with the self-consistent
pair function. Dashed curves represent approximate solutions
given by Eq. (6.7) with the cosine pair function.
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Note that t, thus obtained depends not only on l but
also on Ls. It is in contrast to Cooper's theory, in which
the transition temperature is determined only by the
thickness ratio l, i.e.,

l
UX(0)

(6.16)

VII. SUMMARY AND DISCUSSION

We obtained the gap equation to determine the transi-
tion temperature of S-N double-layer system with the
finite reflection coefficient R in the clean limit. First, we
solved it numerically by use of the Fourier series expan-
sion. Then we derived some approximate formulas ac-

Banerjee et al. measured the thickness dependence of
the transition temperature in Nb/Cu superlattices, in
which both the layers have the same width. Their transi-
tion temperature monotonously decreases when the layer
width decreases. Our result qualitatively agrees with the
experiment. A more detailed comparison between our
theory and experiments needs the information on the Fer-
mi velocity U+' and the reflection coefficient R, since the
transition temperature is sensitive to the scaled layer
widths and R as shown in Fig. 7.

cording to the range of the parameters Es, Ez and R.
Every formula, in its proper parameter range satisfactori-
ly reproduces the result by the Fourier series expansion.
We studied a very thin-film double layer and showed that
the transition temperature cannot be explained by
Cooper's formula. The present theory may be applied to
multilayer systems with the layer width Is& by replacing
our length Ls w by Ls N

= Is N /2. "
When Ez~~, there exists a critical length Ls, .

When fv &Es„ the superconducting state is unstable at
any temperature. We discussed the R dependence of the
critical length. We have shown that the pair function is
well described by a single cosine function when Es t, ))1.
When Est, =0, the pair function is no longer a cosine
function. Nevertheless, the transition temperature can be
well estimated by using a cosine pair function. It implies
that the transition temperature is not sensitive to the fine
profile of h(z) but dominated by the global profile of
b, (z).

It was shown that the transition temperature is sensi-
tive to the layer width Ls N, the Fermi velocity uz' and
the reflection coefficient R. More precise information on
the parameters are necessary to compare the present
theory with experiments. The reflection coefficient R
may be determined from the measurement of the contact
resistance of the double layer in the normal state.

APPENDIX A: CRITICAL LENGTH Zs,

In this appendix, we show the existence of critical length E&, when Ez~ ~. The critical length can be derived from
the spatial average of the gap equation Eq. (2.8). When L~ +DO, Q is red—uced to

1 —R
(1+R ) tanhA, + (1—R )

and Eq. (2.8) is rewritten as

(Al)

1 —R 1 f &

d
5

(
~t, ~) ~ e g,

))
1 —Re

1 —R f dz —g RJ'1.st, f 'dx ln
2 o Q ()

—(2+2p —Z)/x 1+ —(2p +&)/x
+ln

1 e
—(2+2p —f)/x ~ —(2p +Z)/x1 —e

(A2)

When t, ~0, the left-hand side of Eq. (A2) has a logarithmic divergence. We pick up a similar divergent term and con-
stant terms from the right-hand side,

1nt, =1n
eLstc + f dz —g Ri'ln[(2+2p —z)(2p+z)] .

2 2 0
(A3)

Subtracting the logarithmic divergence from both the sides, we obtain the critical length as

in'&, = —1+ln2 — f dz: g R~ln[(2+2p —z)(2p+z)] .1 —R
2 0

When I.z is finite the logarithmic divergence in Eq. (2.8) is not canceled, as a result the critical length does not exist.
In other words, the superconducting state is stable for any Ls when f~ is finite. The explicit calculation of Es, needs

the profile of h(z ). In order to estimate L,s„we rewrite the critical length as a sum of the critical length for a constant
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pair function and a correction term. Let us define the critical length when b (z ) =const=b, by Es,o. Then, the critical
length is rewritten as

ln = — f dz g R~ln[(2+2p —z)(2p+z)],
L„, 2 o Z

where

(A5)

fs,a=exp —(1—R) g R~ 'p lnp
p=2

=(1—R) exp —R (2 ln2 —1)—g Rt' p ln 1—
p=2

=(1 R) e—xp[ —R (2ln2 —1) R2 —(ln —",, —
—,')] .

1 +l @+1 1

p2 p 1 p

(A6)

The final expression of Eq. (A6) is obtained by retaining the terms up to p =2.

APPENDIX 8: PAIR FUNCTION WHEN fgt, » 1

In this appendix we consider a double layer with sufficiently large width superconductor, Est, » 1, and show that the
pair function in this case can be well described by a cosine function. We start with Eq. (2.2). For convenience, let us
extend the system symmetrically across z = 1 and transform the variable z to y =Est, (z 1}. The—n Eq. (2.2) is rewritten
as

—A,e
sinhk

en ~",b, (y'} &n
dy' cosh (y' —y)

cosh', sinhi, 2 cos0 —&~~, co„ cos8

Est Q(y } (Bl)

gl(y)= f" dy'~(y') exp — " ly'-yl
2m.t, cos8 cos8

hy).1
" cosi'8 d~~,it+i d zt~c =o &„

(B2)

In the above expression„ the integral range was extended
to infinite range, which is allowed when y WEst, . Substi-
tuting Eq. (B2) into Eq. (2.1), we get a gap equation

When Est, »1, except just at y =+Est, and
y'= +Est„ the first term is exponentially small due to
the hyperbolic functions in the denominator. On the oth-
er hand, the second term always gives finite contribution
when y'=y. Thus, the first term can be neglected almost
always, except when we need the pair function just at the
S Nboundary. A-part from the S Nboundary, -Eq. (Bl) is
reduced to

—(n(, = x g ~, lk ( —(P '=f2(k),
p=1 Cn

where the function f2 agrees with Eq. (4.8).

(B&)

APPENDIX C: TRAPEZOIDAL FORMULA

In this appendix, we estimate the following quantity up
to first order in Lzt, :

I = f(a) =2 P f d8sin8 f(K),
&n n ——O

O &n
(C 1)

I =Ax g F(x„),
n=0

(C2)

where a=Et(tt, e„lcos8 We ass.ume that the function
f(a) goes to zero sufficiently rapidly when a.—+0 and
~~ 00. Integrating first over the angle 8, we obtain

cos 0 d
b, (y)lnt, = g . . . b.(y) .

E,„dg (B3)
where x„=b,x (n +—,

' ), hx =2fzt„and the function F is

given by

b, (y) =b, , cosky =6, cosk(z —1), (B4)

We can easily find that the above equation has a solution
F(x)=f dt f(t)lt .

X

Note that the sum in Eq. (C2) can be written as

(C3)

where k is defined by (4.7). From Eq. (B3) the transition
temperature t, and the wave number k satisfy the follow-
ing relation:

I= F(xo)+ g [F(x„)+F(x„+,)] .
2 2

(C4)

When Ax ~0, the second term is interpreted as the tra-
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pezoidal formula of the numerical integral; therefore, we
can put

Integrating by parts, we 6nally obtain

I = E(x, )+f "dx F(x)+O(hx') .
Xo

(C5) I=f dx f(x)+O(bx ) .
Xo
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