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We present the electronic density of states (DOS) in ordered and disordered CusyPds, and Cu,sPd,s al-
loys calculated by using the linear-muffin-tin-orbitals (LMTO) method. For ordered alloys the results
are obtained via a self-consistent standard LMTO method. We then show how the LMTO potential pa-
rameters for pure Cu and pure Pd (in the fcc phases) can be appropriately transferred to the ordered-
alloy calculation to produce results that are in excellent agreement with the self-consistent calculation.
For disordered alloys we present the electronic DOS calculated via LMTO-recursion and LMTO-CPA
(coherent-potential-approximation) methods, and study the effect of the relaxation of the lattice, i.e., the
deviation from the ideal lattice structure, due to different sizes of the Cu and the Pd atoms, on the elec-
tronic structure of these alloys. We also discuss how the above scheme of transferring parameters from
the pure components to the alloy can be used in the calculation for the disordered phase to obtain

nearly-self-consistent results.

I. INTRODUCTION

The electronic structure of the (substitutionally) disor-
dered Cu,Pd,_, alloy system has been the subject of con-
siderable theoretical' ™7 and experimental®~!® investiga-
tion in recent years. From a theoretical viewpoint the
disordered Cu-Pd alloys are interesting on several
grounds. (i) Off-diagonal disorder is much stronger than
the diagonal disorder in these alloys, rendering the split-
band picture of alloy theory totaly invalid. (i) There is
an appreciable size difference between the Cu and the Pd
atoms, the radius of the Pd Wigner-Seitz (WS) sphere be-
ing about 7% larger than that of Cu. This nonisochorici-
ty poses some problems in the calculation of the electron-
ic structure. (iii) They can be prepared in the ordered as
well as the disordered phase over a wide composition
range, and thus provide an important test case for
theoretical studies of alloy phase stability.

Considerable interest was generated recently about this
alloy system when the results of charge-self-consistent
Korringa-Kohn-Rostoker coherent-potential-approxi-
mation (KKR-CPA) calculations predicted features in
the electronic density of states (DOS) which disagreed
with experimental results. "> The case for this disagree-
ment has been investigated by several authors.’?16
Among the techniques applicable to random (substitu-
tionally disordered) alloys, the one that yields results in
best agreement with experiments for nonisochoric alloys
such as Cu-Pd seems to be the CPA version!”!8 of the
linear-muffin-tin-orbitals'° ~2' (LMTO) method. Noniso-
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choricity, i.e., the size difference between the component
atoms, gives rise to deviations from the ideal lattice struc-
ture. This relaxation of the ideal lattice, which has been
verified by extended x-ray-absorption fine-structure
(EXAFS) experiments for the Cu-Pd alloy system,'¢ can
be treated in a simple and physically transparent way
within the LMTO-CPA method. Because of the simplici-
ty of the scheme, only an approximate treatment of the
lattice-relaxation effect has been possible so far. Howev-
er, results based on this approximate treatment have been
found particularly encouraging."!”!%2223 In this paper
we present and discuss some results for the electronic
structure of ordered and disordered Cu,sPd,s and
CusyPds, alloys obtained by using the standard LMTO
(for the ordered state) and LMTO-CPA (Refs. 1, 17, and
18) and LMTO-recursion (Refs. 24 and 25) (for the disor-
dered state) methods. Suffice it to say that the results we
present are in good agreement with available experimen-
tal results.''® However, the primary object of the
present paper is not a comparison between theory and ex-
periments, but to illustrate some important aspects of the
LMTO method. We have chosen the Cu-Pd alloy system
as a test case to illustrate these aspects because it pro-
vides a nontrivial and interesting example from a theoret-
ical standpoint, as discussed above.

It is generally believed that a charge-self-consistent cal-
culation is necessary for an accurate description of the
electronic structure of alloys. Although charge self-
consistency within a given method offers the best possible
result for that method, it is usually expensive and time
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consuming. So the issue as to how we can avoid a
charge-self-consistent calculation and yet obtain reason-
ably accurate results is of interest. In particular, we may
want to know how the knowledge of the pure com-
ponents can help us in the calculation for the alloy. We
explore this issue within the framework of the LMTO
method using the example of Cu-Pd alloys. The LMTO
Hamiltonian depends on the structure (arrangement of
atoms in space) of the system via the structure constants
and the chemical properties of the atoms via the potential
parameters.?>2! Tt is interesting to study to what extent
the structure-independent quantities, i.e., the potential
parameters, are transferable from the pure-component
systems to the alloy. We illustrate simple and physically
transparent schemes of transferring parameters from the
pure components to ordered and disordered alloys.
Apart from enabling us to perform reasonably accurate
electronic-structure calculations using less resources,
such a study also clarifies some important physics under-
lying the method. In Sec. II we discuss the ordered-alloy
(Cu;Pd and CuPd) calculation, where results of self-
consistent LMTO calculations are compared with those
obtained with transferred parameters. In Sec. III we dis-
cuss various aspects of the disordered-alloy calculation.
In Sec. III A we show the effect of relaxation of the lat-
tice, due to the size difference of the Cu and Pd atoms, on
the electronic structure of disordered Cu;sPd,s and
CusyPds, alloys by applying the recursion method?* to a
tight-binding form of the LMTO Hamiltonian.?® In Sec.
IIIB we present a comparison of the LMTO-CPA and
LMTO-recursion results, and in Sec. III C we discuss the
best way to use the potential parameters of the pure com-
ponents in the calculation for the disordered alloy.

II. ELECTRONIC STRUCTURE OF ORDERED
Cu;Pd AND CuPd ALLOYS

The object of the present section is to discuss and test
the transferability of the LMTO potential parameters
from the pure components to the alloy as prescribed by
Andersen et al.?® In effect, we want to obtain the poten-
tial parameters for an intermetallic compound from those
of its constituents, without any self-consistent calcula-
tion. For structures that can be packed closely with
atomic (atom-centered) spheres, without the introduction
of empty spheres (spheres centered about interstitial
sites), the prescription of Andersen et al.? for estimating
the potential in the compound is simply to use the
atomic-sphere potentials of the elements. These frozen
atomic-sphere potentials correspond to neutral spheres,
and the lineup of the internal energy zeros is consistent as
long as the spheres remain neutral in the compound. Ex-
perience shows that this charge neutrality, defined with
respect to the atomic spheres of the elements, is main-
tained within a few tenths of an electron in most cases.
This means that for alloys obeying Vegard’s law, where
the volume per atom in the alloy is simply the
concentration-weighted average of the normal-pressure
atomic volumes of the constituents, the use of normal-
pressure values of the constituents’ potential parameters
should yield a sufficiently accurate potential and charge
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density. When the binding in the compound is different
from that in the constituents, there is no reason why the
atomic volumes of the elements should be taken at nor-
mal pressure, i.e., the same pressure as the volume of the
compound. For such alloys (showing deviation from
Vegard’s law) the potentials of the elements should be
calculated at such a pressure that the concentration-
weighted sum of the atomic volumes equals the actual
volume per atom in the alloy. Thus for binary 4,B,_,
alloys with volume V2! per atom, the atomic volumes of
the constituents, V< (Q = A4, B), should satisfy the volume
constraint

xVA4(1—x)yB=yaloy (1)

The assumption of a linear pressure-volume relation
yields

vA-vH/vivE—vE)/VvE=BE.B¢ , )
where V§ (Q=A4,B) are the normal-pressure atomic

volumes of the components and B§ (Q = 4,B) are the
bulk moduli. The solution to Egs. (1) and (2) is

BEyaloy+(1—x)vE(Bs —BE)
- xV§BE+(1—x)VEB¢

BV xy A (BE—B4)
T xV{#BE+(1-x)VEB{

A

A
4 0 »

(3)

VB B

0 -

The potential parameters in the alloy for the component
Q (Q=A4,B) should be calculated at new radius
s9=(3V%/4m)!3.

Using the atomic-sphere approximation (ASA),%%?! the
matrix elements of the one-electron Hamiltonian in a
nearly orthogonal LMTO representation can be written
as

— ’
HRL,R’L' - CRL SRR'SLL

TARZS 1 —yS)  Ip, ru ARE . @
Here, R and L(/,m) are the site- and the orbital-angular-
momentum indices, respectively. S° is the canonical
structure constant matrix, which depends on the relative
positions of the sites, but is independent of the type of
atoms that occupy the sites. The properties of the atoms
are completely described by the matrices X (X=C,A,y),
which are diagonal in the indices R and L and are in-
dependent of m, i.e.,

(X) =XgrrOgp b, =Xg/0

RL,R'L’ RR’SLL' :

Also, Xy, =XP, where Q is the type of the atom occupy-
ing the site R. The matrix elements Xy, are called the
potential parameters. The Lowdin-orthogonalized Ham-
iltonian in the ASA, O ~!“?HO ~!/2, can be obtained from
the knowledge of an additional (small) potential parame-
ter, prz =Prs> 2% which determines the overlap matrix
O:

O=I+hph, h=H—E, ,

where E, is the matrix of the reference energies, diagonal
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in the RL representation with E, g, =E, g, =EY. The
potential parameters are derived from the solution of the
radial Schrodinger equation or the scalar-relativistic
wave equation at the sphere boundary and its energy
derivative at the reference energies ES of the linear
method. The values of the potential parameters at the ra-
dii appropriate in the alloy phase s (Q = 4, B) can be ob-
tained from the normal-pressure radii s§ and the volume
derivatives of the potential parameters.!”?° As pointed
out in Ref. 20, for large differences between s and s§ it
is important not to interpolate linearly in s¢. In general,
it is safe to use the following equations using logarithmic
interpolation:

dcg
0_ 0 L 0 /0
Cr COL+d1nsQ1n(s /s§) ,
dy?
=y8& + In(s2/s8) ,
Vg YoL d 1ns @ 0

AP=A% (s2/58) InAY /d Ins?

(pLQ),l/zz(pOQL)AI/Z(SQ/Sg)dln(pLQ) 172 /4 ins .

The potential parameters of 33 elemental metals for nor-
mal pressure, as well as their radial derivatives obtained
via self-consistent s,p,d, f-basis LMTO-ASA calculations
(including combined corrections), are tabulated in Ref.
21. Thus, for most intermetallic alloys the component
potential parameters appropriate to the alloy phase can
be obtained “by hand,” i.e., without a computer. After
extrapolation of the potential parameters to new radii,
one must take into account the fact that the alloy WS ra-
dius is different from that of the pure components, where
the WS radii are the same as the sphere radii. This
affects only two of the parameters, viz., A and Y, which

should be multiplied by (s@/W)¥"!,  where
W =3V /477)1/3 is the alloy WS radius, i.e.,
(GLQ )alloy =(s Q/W)21+ 1( GLQ )pure component ? (6)

where G =A,y. Prescription (3) for obtaining the sphere
radii for the components in the alloy usually leads to only
a small charge transfer (within a few tenths of an elec-
tron) between the spheres, and hence the potential pa-
rameters obtained by using Egs. (5) and (6), appropriate
for neutral spheres, yield a reasonably accurate electronic
structure for the alloy. The charge transfer gives rise to a
Madelung term in the one-electron potential. The poten-
tial in a given sphere undergoes a constant shift depend-
ing on the charge transfer for that sphere. The effect of
this Madelung shift is present in the potential parameters
obtained in a self-consistent calculation. The potential
parameters obtained by using Egs. (5) and (6) are for neu-
tral spheres, and therefore do not show this Madelung
shift, resulting in slightly inaccurate positioning of the
bands. A small charge transfer, and consequently a small
Madelung shift, is the key to the success of the above
transferability scheme.

We calculate the electronic structure of the ordered
Cu,Pd and CuPd alloys using the above transferability
scheme as well as via the self-consistent standard LMTO
scheme. We consider Cu;Pd in the CujAu (fcc) structure
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with its experimental WS radius of 2.712 a.u. (Ref. 26)
and CuPd in the CsCl (bcc) structure with its experimen-
tal WS radius of 2.771 a.u.® The Vegard’s-law values of
the WS radii for Cu;Pd and CuPd are 2.723 and 2.775
a.u., respectively. Since these alloys obey Vegard’s law
extremely well, it is not necessary to strictly adhere to the
compressibility criterion [Eq. (3)] in determining ¥4 and
Vg, which are extremely close to the pure element values
V§ (C= A,B) in this case. Suppose we keep the radius of
the Cu sphere, s, the same as in pure Cu [2.669 a.u.
(Ref. 21)]. Then the sphere radii for Pd, s¥9, as obtained
from the volume preservation based on the experimental
WS radii of the alloys, are 2.865 and 2.833 a.u. in CuPd
and Cu;Pd, respectively, while s§¢ =2.873 a.u. (Ref. 21).
In Table I we present the potential parameters for the al-
loys obtained by using the above transferability scheme
[Egs. (5) and (6)]. These potential parameters were ob-
tained from those of pure Cu and pure Pd based on an
s,p,d-basis LMTO calculation. The latter vary only
slightly from the parameters based on s, p,d, f-basis calcu-
lation reported in Ref. 21. The numbers within the
parentheses in Table I are the potential parameters ob-
tained in a charge-self-consistent scalar-relativistic
LMTO-ASA (s, p,d-basis) calculation including combined
corrections?®?! for the alloys using the sphere radii quot-
ed above. The agreement between the numbers testifies
to the validity of the prescription used. If we transfer the
tabulated parameters from Ref. 21, based on an s,p,d, f-
basis calculation, the agreement with the results of the
s,p,d-basis calculation becomes only slightly worse and is
perfectly understandable. As shown in Figs. 1-4, the
DOS’s calculated via the self-consistent LMTO method
for the two alloys are indistinguishable from those ob-
tained by using the transferred parameters.

III. ELECTRONIC STRUCTURE
OF DISORDERED Cu,;Pd,;
AND CU50Pd50 ALLOYS

In this section we discuss the electronic structure of
substitutionally disordered fcc phase (a phase) of the
Cu,sPd,s alloy, which can be prepared by the rapid
quenching technique. Since these alloys show negligible
deviation from Vegard’s law, we use the radii of the Cu
and Pd atomic spheres for the pure crystalline phases in
the alloy calculation. Although the lattice parameters for
the ordered CuPd and Cu,Pd are known, it is not clear
whether the ordered and the disordered alloys have the
same lattice parameters. In view of the possible lattice
relaxation in the disordered phase, a small difference be-
tween the lattice parameters in the ordered and disor-
dered states is not unlikely. Since the exact lattice pa-
rameters for the disordered phase is not known, we have
assumed that Vegard’s law is obeyed fully in the disor-
dered phase. This is a reasonable assumption since the
ordered alloy is known to satisfy Vegard’s law very close-
ly. For the purpose of comparing the electronic structure
of the ordered and disordered states, this (the use of
slightly different radii for the ordered and disordered al-
loys) does not pose a serious problem. The potential pa-
rameters obtained by using the pure-component radii
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(s€*=2.669 a.u. and s¥9=2.873 a.u.) in a self-consistent
ordered structure calculation for CuPd and Cu;Pd are
presented in Table II. They differ very little from the pa-
rameters in Table I. This is not surprising since the
differences in the radii used are very small. The ordered-
structure DOS’s obtained (not presented in this paper) by
using the potential parameters from Table II are almost
indistinguishable from those presented in Figs. 1-4. This
indicates that the use of pure-component radii for the
disordered alloy should not result in DOS’s any different
from those that would be obtained for the slightly
different radii actually used in the ordered-structure cal-
culation.

A. Effect of lattice relaxation
on the electronic structure

Because of the appreciable difference in the sizes of the
Pd and Cu atoms, the fcc structure of the alloy is per-
turbed in the disordered phase. Such deformations are
missing in the ordered phase. The effect of such deforma-

TABLE 1. LMTO potential parameters for ordered Cu;Pd
(CujAu structure) and CuPd (CsCl structure) alloys obtained
from the pure-Cu and pure-Pd potential parameters, with
5€4=2.669 a.u. and s?¢=2.833 a.u. in Cu;Pd and 2.865 a.u. in
CuPd. The numbers in parentheses are the potential parameters
obtained using the self-consistent LMTO calculation for the al-
loys for the same sphere radii.

C (Ry) A (Ry) y p~* (Ry)
Cu,Pd
s (Cu) —0.4286 0.1641 0.4161 4.2209
(—0.4255) (0.1642) (0.4162) (4.2287)
p (Cu) 0.5682 0.1508 0.1066 5.9135
(0.5719) (0.1511) (0.1067) (5.9298)
d (Cu) —0.3069 0.0083 —0.0032 0.6184
(—0.2951) (0.0084) (—0.0035) (0.6197)
s (Pd) —0.3264 0.1762 0.4515 4.7522
(—0.3265) (0.1763) (0.4519) (4.7772)
p (Pd) 0.6960 0.1876 0.1353 6.2781
(0.6986) (0.1883) (0.1356) (6.5331)
d (Pd) —0.3003 0.0232 0.0081 0.9832
(—0.3048) (0.0231) (0.0088) (0.9849)
CuPd
s (Cu) —0.4287 0.1605 0.4073 4.2203
(—0.4265) (0.1606) (0.4073) (4.2224)
p (Cu) 0.5681 0.1414 0.0999 5.9135
(0.5726) (0.1421) (0.1003) (5.9707)
d (Cu) —0.3070 0.0075 —0.0029 0.6184
(—0.2957) (0.0076) (—0.0032) (0.6193)
s (Pd) —0.3423 0.1686 0.4463 4.5663
(—0.3387) (0.1690) (0.4469) (4.6077)
p (Pd) 0.6548 0.1765 0.1309 6.2781
(0.6594) (0.1770) (0.1311) (6.3389)
d (Pd) —0.3155 0.0208 0.0075 0.9414
(—0.3077) (0.0210) (0.0078) (0.9456)
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FIG. 1. Density of states (DOS) in the ordered CuPd (CsCl
structure) alloy obtained using the self-consistent standard
LMTO method. Panels (a) and (b) show the Pd and Cu com-
ponents (concentration weighted), respectively. The total DOS
in panel (c) is the sum of the DOS’s in panels (a) and (b). The
dashed vertical line shows the position of the Fermi levels.

tions should enter the electronic-structure calculation via
the structure constants SRL’R, L appearing in the Hamil-
tonian given by Eq. (4). These can be calculated if the ex-
act arrangement of the atoms in the disordered phase is
known. In the absence of this knowledge, one can resort

20 (a) Pd component
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States / (Ry atom)
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FIG. 2. DOS in the ordered CuPd (CsCl structure) alloy ob-
tained using potential parameters transferred from pure com-
ponents. Panels (a)-(c): same as Fig. 1.
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FIG. 3. DOS in the ordered Cu;Pd (Cu;Au structure) alloy
obtained using the self-consistent standard LMTO method.
Panels (a)—(c): same as Fig. 1.

to an approximate but effective treatment of the lattice
relaxation suggested by Kudrnovsky and Drchal.'!7 The
prescription is simply to use the structure constants for
the ordered phase, while absorbing some of the effect of
structural relaxation in the potential parameters. Ku-
drnovsky and Drchal!” argue that if the multiplication
by the factor (s2/W)**! in Eq. (6), which must be per-

20 M;&N(q Pd component
0 e
[ : (b) Cu component
30 E
—~ 1
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@ |
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FIG. 4. DOS in the ordered Cu;Pd (Cu;Au structure) alloy
obtained using potential parameters transferred from pure com-
ponents. Panels (a)-(c): same as Fig. 1.
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TABLE II. Potential parameters for ordered Cu;Pd (Cu;Au
structure) and CuPd (CsCl structure) alloys obtained in using a
self-consistent LMTO calculation using pure-component radii
s€=2.669 a.u. and s79=2.873 a.u.

C (Ry) A (Ry) % p 2 Ry)
Cu::,Pd
s (Cu) —0.4308 0.1632 0.4140 4.1972
p (Cu) 0.5668 0.1491 0.1054 5.9271
d (Cu) —0.3089 0.0082 —0.0031 0.6192
s (Pd) —0.3429 0.1709 0.4549 4.5093
p (Pd) 0.6474 0.1862 0.1387 6.2686
d (Pd) —0.3166 0.0227 0.0089 0.9363
CuPd
s (Cu) —0.4289 0.1601 0.4062 4.1930
p (Cu) 0.5692 0.1410 0.0997 5.9395
d (Cu) —0.3058 0.0075 —0.0029 0.6190
s (Pd) —0.3446 0.1676 0.4468 4.5325
p (Pd) 0.6469 0.1761 0.1313 6.2840
d (Pd) —0.3165 0.0207 0.0080 0.9367

formed for an ordered-lattice calculation, is omitted, then
the structural relaxation between nearest neighbors in the
disordered phase is taken care of. The arguments holds if
the distance between nearest neighbors, which is the ar-
ithmetic average (s@+59')/2, can be approximated by
the geometric average (s%<')!/2. This procedure, fairly
accurate for the nearest neighbors, leaves the treatment
of the relaxation involving more distant neighbors uncer-
tain and somewhat unsatisfactory. However, in
transition-metal alloys, the electronic structure is mostly
determined by the rapidly decaying d-d matrix elements,
and thus a reasonably accurate treatment of the nearest
neighbors results in a reasonably accurate description of
the electron states. We have used the above prescription
to calculate the electronic structure for the lattice-relaxed
disordered phase. For the sake of comparison, we also
calculate the electronic structure of the disordered alloy
using the factor (s¢/W)**! in Egs. (6), which corre-
sponds to an unrelaxed-lattice calculation. We have used
the recursion method of Haydock?* to calculate the DOS
for the disordered phase. The continued-fraction expan-
sion of the diagonal matrix elements of the Green’s func-
tion is terminated using the prescription of Allan.?’
Since the recursion method operates in a tight-binding
(TB) basis (i.e., with short-ranged Hamiltonian matrix
elements), we convert the potential parameters corre-
sponding to the standard (long-ranged) LMTO orbitals
into the TB-LMTO parameters using the prescription of
Refs. 19-21. The relation between the LMTO Hamil-
tonian H given by Eq. (4), in a nearly orthogonal long-
ranged basis, and the TB-LMTO Hamiltonian,
H*=E,+h),is given by

H=E,+h%1+0%%)"!
=H—h%®h*+h%®h%h%—--- . @)

The superscript a refers to quantities in the TB-LMTO
basis. The TB-LMTO Hamiltonian H® has a form simi-
lar to H:
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He=C+(A")'28%(A")' 2 . (8)

The TB-LMTO potential parameters, with superscript
a, are related to the standard LMTO potential parame-
ters via

(Aa)l/2=A1/2+(a_,y)(C_EV)A—I/Z ,
C*=E,+(A)VAC—E )A~'?, )
0%=(a—y)/(AA)?

a is the screening matrix (/-dependent and site-
independent), diagonal in the R representation, used to
construct the TB-LMTO orbitals from the standard
LMTO orbitals:

a=0.3485, 0.05303, 0.010714 for /=0,1,2,

and
a=0 forl>2.

The TB structure-constant matrix S is related to the
structure constants S° via

$=85%+528°=S5%1—aS®) ! . (10)

The recursion-method calculations for the disordered
phase are performed with the first two terms
(H*—h%°h® in the matrix series (7) for an 864-atom
cluster under periodic boundary conditions, using poten-
tial parameters that correspond to relaxed and unrelaxed
lattices according to the prescription of Kudrnovsky and
Drchal.!'7 In Fig. 5 we show the DOS for the disor-
dered Cu,sPd,s alloy. In Figs. 6 and 7 we compare the
Pd- and Cu-projected DOS’s with their crystalline coun-
terparts, respectively. The solid and dashed curves corre-
spond to the relaxed and unrelaxed (ideal fcc) lattices, re-
spectively. The deviation from the ideal fcc structure
gives rise to non-negligible changes in the electronic
structure. The narrowing of the Pd band as a result of
the relaxation is easily understandable in light of in-
creased Pd-Pd and Pd-Cu nearest-neighbor distances.
The center of gravity of the Pd LDOS (local DOS) shifts
slightly towards higher energy, and the low-energy peak
is broadened. Both effects are in agreement with experi-
mental data!® and also appear in the LMTO-CPA calcu-
lation of Kudrnovsky and Drchal.! In the LMTO-CPA
calculation, which uses the full infinite series of Eq. (7) in-
stead of the first two terms as in the recursion-method
calculation, the low-energy peak in the Pd LDOS is al-
most suppressed, in closer agreement with the experimen-
tal Pd Auger profile!® in the alloy. The increased Pd-Cu
distance also gives rise to additional structure in the Cu
LDOS, making the latter more Cu-like in ordered fcc
Cu;Pd.

B. Comparison between LMTO-CPA
and LMTO-recursion results

In Figs. 8 and 9 we compare the DOS calculated via
the recursion and CPA methods for disordered Cu,sPd,;s
and CusyPds, alloys. Both calculations are for relaxed
lattices. The ideal (unrelaxed) lattice is supposed to be
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fcc for both alloys. The recursion-method calculations
are for 864-atom clusters considered with periodic
boundary conditions. The Cu and Pd LDOS?’s, as well as
the total DOS, agree qualitatively for the two calcula-
tions. Some features of the DOS as obtained in the two
calculations are presented in Table III. The differences in
the results due to the two methods can be summarized as
follows. The recursion-method results are based on a less
accurate Hamiltonian, H*—h % *h %, than the Hamiltoni-
an H used in the CPA calculation, the former being given
by only the first two terms in an infinite-matrix series rep-
resentation of the other. The recursion-method results
carry errors dependent on the finite cluster size and the
nature of the terminator used, both of which cause the
electrons to experience a medium that deviates from the
intended structure away from the central sites. The re-
cursion method uses the LDOS calculated at a finite
number of sites (in our case, 50) and hence cannot
efficiently sample all the possible environments in which
the constituent atoms can be found. The CPA method
uses a k-space calculation and hence is more accurate. It
is suitable for substitutionally disordered alloys, where
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FIG. 5. Total, Pd-, and Cu-projected DOS’s (not concentra-
tion weighted) for the disordered Cu,sPd,s alloy obtained using
the LMTO recursion method; solid and dashed lines represent
results of relaxed- and unrelaxed-lattice calculations, respective-

ly.
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(b)
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06 Y Y
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FIG. 6. Pd LDOS in ordered and disordered Cu;Pd alloys:
panel (a) is for the ordered alloy, and panel (b) is for the disor-
dered alloy. The solid and dashed lines in panel (b) show results
of relaxed- and unrelaxed-lattice calculations, respectively.
Vertical lines show the positions of the Fermi levels.
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FIG. 7. Cu LDOS in ordered and disordered Cu;Pd alloys.
See caption of Fig. 6 for details.
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FIG. 8. DOS’s obtained using the LMTO-recursion method
for disordered Cu;sPd,s and CusoPds, (relaxed-lattice) alloys.
Solid line, total DOS; dashed line, Cu LDOS; dotted-dashed
line, Pd LDOS. Vertical lines show the positions of the Fermi
levels.

the underlying crystal structure is (more or less)
preserved. The strength of the recursion method lies, on
the other hand, in being able to handle positionally disor-
dered systems and explore truly local environment effects
not amendable to CPA.

As mentioned in the Introduction, we do not intend to

(a) Cu,sPd2s

units)

(arb.

DENSITY OF STATES

-0.8 -0.6 -0.4 -0.2 0.0

Energy (Ry)

FIG. 9. DOS’s obtained using the LMTO-CPA method for
disordered Cu;sPd,s and CusyPds, (relaxed-lattice) alloys. Solid
line, total DOS; short-dashed line, Cu LDOS, long-dashed line,
Pd LDOS. The vertical axis of this figure is in arbitrary units.
Vertical lines show the positions of the Fermi levels.
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TABLE III. Comparison of LMTO-CPA and LMTO recursion
results, with the Pd- and Cu-sphere radii the same as in pure Pd
and pure Cu (s€*=2.669 a.u., sP¥=2.873 au.). N(Ep),
NPY(Ep), and N®(Ey) denote the total DOS, and the Pd- and
Cu-projected DOS’s at the Fermi energy Er.

CPA Recursion
Cu;sPd,s (relaxed fcc)
Er (Ry) —0.16 —0.10
N(Ep) (states/Ry atom) 4.05 4.14
NPY(Ep) (states/Ry atom) 5.17 5.98
NCYE) (states/Ry atom) 3.68 3.53
Charge in Cu sphere (electrons) 10.88 10.92
Charge in Pd sphere (electrons) 10.36 10.24
CU50Pd50 (relaxed fcc)
Er (Ry) —0.19 —0.14
N(Ey) (states/Ry atom) 7.69 6.38
NPY(Ep) (states/Ry atom) 10.86 8.29

NCYEg) (states/Ry atom) 4.53 4.48
Charge in Cu sphere (electrons) 10.76 10.85
Charge in Pd sphere (electrons) 10.24 10.15

present a detailed comparison between the calculated and
experimentally obtained DOS in this paper. Our primary
object here is to illustrate some important recent develop-
ments within the LMTO method. However, for the
benefit of our readers, we reproduce in Fig. 10 the Cu-
and Pd-projected DOS’s in disordered Cu,sPd,s as ob-
tained using valence-band photoemission measurements
by Wright et al.'* Figure 10 is essentially Fig. 3 of Ref.
14, where the details about how the DOS curves were ob-
tained from the valence-band photoelectron spectra are
discussed. A comparison of Fig. 10 with Figs. 8 and 9
shows that the CPA result is better agreement with the
experimental curves (in terms of the relative heights of
the peaks). As mentioned in the preceding paragraph,
the CPA result, based on the k space, is more reliable for
substitutionally disordered systems.

From the viewpoint of computational efforts, the CPA
method is more efficient. In the LMTO-CPA method the
computation time depends linearly on the number of en-
ergy points and on the number of k points used in the ir-
reducible wedge of the Brillouin zone (IBZ). For lower
symmetry the volume of the IBZ is larger and the effort
increases. The computation time also depends on the dis-
order present, because the number of CPA situations is
greater for a more disordered system. The computation
time roughly varies as N°, where N=nL, n being the
number of atoms per unit cell, and L the number of orbit-
als on each atom. For a binary disordered alloy such as
CuPd, with nine orbitals per atom, 240 k points in the
IBZ, and 100 energy points, the time for one concentra-
tion, on a Cray-XMP/24 computer, is 150-170 sec. In
the recursion method the time depends linearly on the
cluster size (number of atoms), the number of orbitals per
atom, the number of neighbors for each atom, the num-
ber of orbitals for which the local DOS is calculated, and
the number of energy points. It also depends on the na-
ture of the “terminator” used, the “linear predictor ter-
minator” of Allan?’ being the most time consuming and

8279

the quadratic terminator®® the least. For an 864-atom
cluster, with two cells of neighbors (14), and nine orbitals
on each atom, it takes about 165 sec, on a Cray-XMP/24,
to construct the Hamiltonian H*—h % *h %, about 150 sec
to compute the recursion coefficients (20 each) for the lo-
cal Green’s function for 81 states (nine orbitals each on 9
atoms), and 25 sec to compute the DOS from these 81 or-
bitals, on 250 energy points using 200 extrapolated
coefficients for each local Green’s function using the
“linear predictor terminator” of Allan.?’ Less-time-
consuming choices for the terminator, though less accu-
rate, are those due to Beer and Pettifor,?’ to Haydock
and Nex, ® and to Luchini and Nex.3!

C. Approximate treatment
of charge self-consistency

Charge-self-consistent calculations can be performed
for a disordered alloy in a manner in which the self-
consistency is achieved for the “average’-component
atoms. The ‘“‘average” may mean a CPA average or an
average over a finite number of representative atoms as in
the recursion method. From the average-component
atom-projected DOS, one calculates the charge density in
the average-component spheres, which gives a new set of
potential parameters, and the calculation is repeated until

(a)
0
= -
S
_d _~/- \\_
| -
O
| (b)
= .
C
(¢3) .,
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1 | ] ] ! !
8 6 4 2 Eg
Binding Energy (eV)
FIG. 10. (a) Cu and (b) Pd LDOS’s obtained from the

valence-band photoelectron spectra in Cu,sPd,s of Wright et al.
(Ref. 14) (reproduced from Ref. 14).
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the input and output charge densities (or potentials) are
identical within a preassigned limit. The problem one
faces is in the calculation of the Madelung potential due
to the transfer of charge between various spheres. Unlike
the ordered alloys, there is no well-defined procedure to
calculate this for disordered systems. To avoid this prob-
lem, one could try to vary the sphere radii to render them
neutral, so the Madelung potentials for these ‘“average”
spheres disappear. Towards this end we start with the
potential parameters for the component atoms, 4 and B,
in the alloy as obtained from the pure-state potential pa-
rameters, discussed in Sec. II. Since the compressibility
prescription of Eq. (3) leads to only a small charge
transfer between the atoms, the Madelung potential is
small to start with. From the alloy Fermi level and the
local DOS, we compute the deviations 8¢< (Q= 4,B)
from charge neutrality for the A4 and B spheres
[x8g4+(1—x)8¢2=0]. To make, for example, the 4
spheres charge neutral, we set 8g 1= —4s(s4)*n 1854,
where n 4 is the electron density at the sphere radius s 4,
which is tabulated for 33 elemental metals in Ref. 21.
The corresponding value of 8s® is obtained from alloy
volume preservation. The potential parameters for the
new radii can be calculated using the prescription of Sec.
I1, and the electronic-structure calculation can be repeat-
ed until the spheres become neutral. With the sphere ra-
dii determined by Eq. (3), the spheres are approximately
neutral to start with. Hence, one or two iterations are
sufficient to achieve the exact charge neutrality for the
“average”’-component atoms. The result obtained via
such approximate treatment of charge self-consistency
within the LMTO-CPA method is shown in Fig. 11.
Panel! (b) shows results for non-neutral spheres, with Cu
and Pd radii the same as in pure solids [as in panel (a) of
Fig. 9]. The charges in the Cu sphere (s“*=2.669 a.u.)
and the Pd sphere (sP9=2.873 a.u.) are, respectively,
10.880 electrons and 10.360 electrons. Panel (a) shows
the results for neutral spheres (s®“=2.690 a.u.,
sP4=2.817 a.u.). Both calculations are for relaxed lat-
tices. The features of the neutral-sphere DOS are sum-
marized in Table IV. The disappearance of the
Madelung potential for neutral spheres results essentially
in the repositioning of the centers of the Pd and Cu
bands. This is reflected mainly in the potential parame-
ters CJ9 and C$". There is a slight upward shift of C}¢
with respect to C$". This makes the weight of the lower
part (well below E) smaller, and that of the peak close to
Ep, greater in the Pd LDOS curve. Because s?4<s89, the
full width at half maximum (FWHM) of the Pd LDOS is
slightly greater in the neutral-sphere case.

Such neutral-sphere calculations, in the way of obtain-
ing approximate charge self consistency, can also be car-
ried out using the recursion method. We have not per-
formed the recursion-method calculations using neutral
spheres. However, such calculations would most
definitely show the same type of changes with respect to
the pure-component-radii results as revealed by the CPA
calculations. This is because the charge transfers ob-
tained in the CPA and the recursion calculations are
similar for the pure-component radii. In both calcula-
tions the Cu spheres lose charge to the Pd spheres.
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FIG. 11. DOS for the disordered Cu,sPd,s alloy (relaxed lat-
tice) obtained using the LMTO-CPA method. Panel (b) shows
results for non-neutral spheres, with Cu and Pd radii the same
as in pure solids [as in panel (a) of Fig. 9], and panel (a) shows
results for neutral spheres. Solid line, total DOS; dotted line,
Pd LDOS; dashed line, Cu LDOS. Vertical lines show the posi-
tions of the Fermi levels.

Therefore, the corrections in the sphere radii to achieve
charge neutrality should be in the same direction for the
two calculations. The magnitude of change in the DOS
in going from the pure-component radii to the neutral-
sphere radii should be a bit smaller for the recursion
method than for the CPA, simply because the charge
transfer is a little smaller for the recursion-method calcu-
lation (see Table III).

IV. SUMMARY

We have shown how, for the purpose of electronic-
structure calculations, the potential parameters of the

TABLE 1IV. Comparison of LMTO-CPA results for the
disordered Cu,sPd,s alloy (relaxed fcc structure) obtained using
non-neutral spheres (s=2.669 a.u., s*¥=2.873 a.u.) and neu-
tral spheres (s*=2.690 a.u., s*¥=2.817 a.u.). N(E), NPYEp),
and NCY(Ep) denote the total DOS, and the Pd- and Cu-
projected DOS’s at the Fermi energy, Er.

Non-neutral

spheres  Neutral spheres
Er (Ry) —0.165 —0.158
N(Ef) (states/Ry atom) 4.05 4.21
NCYEp) (states/Ry atom) 3.68 3.39
NPYE[) (states/Ryatom) 5.17 6.69
Charge in Cu sphere (electrons) 10.880 10.976
Charge in Pd sphere (electrons) 10.360 10.072
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component atoms A and B can be transferred to the or-
dered and disordered binary ( 4, B,_,,) alloys using the
tabulated values?! of their volume derivatives and the
electron density at the sphere radii.?! We have illustrat-
ed the transferability scheme with the example of
Cu,yPds, and Cu,5Pd,5 alloys. Because these alloys ex-
hibit negligible deviation from Vegard’s law, the transfer-
ability scheme for the potential parameters works ex-
tremely well. The larger the deviation from Vegard’s
law, the larger the difference in the electronic structure
obtained with transferred parameters and the charge-
self-consistent procedure.32 However, even for alloys
such as CsAu, which show a large deviation from
Vegard’s law, important features of the electronic struc-
ture are reproduced reasonably well via transferred pa-
rameters.”’ So the transferability criterion discussed in
Sec. II is better than any a priori expectation. For the
disordered alloy, we have shown how an approximate self
consistency can be achieved without any appreciable in-
crease in computational efforts. The neutral-sphere cal-
culation, presented for the disordered alloy, can be per-
formed with the help of tabulated quantities. Such a cal-
culation can also be performed for ordered alloys. How-
ever, since self-consistent calculations for ordered struc-
tures are being performed routinely, we have not per-
formed neutral-sphere calculations for the ordered alloys.
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The strength of the neutral-sphere approach lies in the
electronic-structure calculation for disordered systems,
where the Madelung potential is difficult to compute.

For the disordered alloy we have shown and discussed
the effect, on the electronic DOS, of the deviation from
the ideal lattice structure (lattice relaxation) due to the
size difference of the component atoms. The relaxed-
lattice calculation produces results in closer agreement
with experiments. '“® We have also presented a compar-
ison of the electronic structure of the disordered
CusoPdsy and Cu,sPd,s alloys calculated via LMTO re-
cursion and LMTO-CPA methods.

Note added in proof. After the submission of the final
version of this manuscript the authors have become
aware of a recent study by Lu, Wei, and Zunger [Phys.
Rev. B 44, 3387 (1991)] on the lattice-relaxation effects in
Cu,_,Pd, alloys using the “special quasirandom struc-
ture” method.
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