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Singlet and triplet excitons in conjugated polymers
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Exciton states in conjugated polymers are theoretically studied in the Su-Schrieffer-Heeger model sup-
plemented by long-range Coulomb interactions. The relationship between exciton energies and basic in-
teraction parameters is clarified, demonstrating the special nature of one-dimensional excitons. The
binding energies of the lowest singlet and triplet excitons depend sensitively upon the on-site Coulomb
energy. Relevant experiments in polydiacetyl. ene can be explained by the present model using moderate
interaction strength.

I. INTRODUCTION

Much effort has been devoted to the understanding of
the electronic structure of conjugated polymers, ' which
are a type of one-dimensional semiconductor. In the last
decade, the role of Coulomb interactions between elec-
trons has been a subject of discussions concerning the na-
ture of the ground state as well as excited states. Al-
though most of the discussions have focused upon elec-
tron correlation originating from the Hubbard on-site
Coulomb energy, the long-range part of Coulomb interac-
tions can also play an important role in excited states
through the formation of excitons —a well-known effect
in semiconductors and insulators. The purpose of this
paper is to discuss theoretically the exciton effect in con-
jugated polymers.

Experimentally, the significance of excitons in conju-
gated polymers has been recognized for some time in a
class of materials known as polydiacetylene. The opti-
cal absorption spectrum of polydiacetylene is character-
ized by a strong peak at about 2 eV (the exact energy de-

pends on the detailed structure of the backbone chain as
well as on the kind of side chains). Initially, there were
discussions about whether the absorption peak is either
due to excitons or due to the van Hove singularity of the
one-dimensional band-to-band absorption spectrum.
The clear observation of phonon side bands and reso-
nance Rarnan scattering in single crystals led Bloor
et al. to suggest that the absorption is due to excitons.
Since then, many optical experiments have been carried
out which have supported the exciton interpretation.
The redshift of the absorption peak under electric
field —a Stark effect well known for excitons —has been
observed. ' More recently, the intensity dependence of
the refractive index has been measured and successfully
explained by the phase-space filling model originally
developed for excitons confined to quantum wells. "
Thus, the exciton picture in polydiacetylene has been

rather well established at least from the experimental
point of view.

A few calculations on excitons in conjugated polymers
exist in the literature. ' ' They commonly indicate that
the exciton has an intermediate character between Fren-
kel and Wannier exciton, which can be understood as a
characteristic feature of one-dimensional Wannier exci-
tons in Peierls semiconductors. ' Besides this qualitative
agreement, there are discrepancies in the exciton energies
between the calculations. Obviously the exciton energies
depend on the interaction potential used in the calcula-
tion. In the present paper we report a systematic study of
exciton states in conjugated polymers by examining the
dependences of the exciton energies on relevant interac-
tion parameters. This study also provides a foundation
for further calculations on the nonlinear optical proper-
ties of conjugated polymers. '

II. MODEL

We start with the tight-binding Hamiltonian of the
Su-Schrieffer-Heeger model, which is a standard model
for conjugated polymers:

Ho = —g t„+,„(C„+,,C„,+C„,C„+t, ),
n, s

where C„,are creation operators for electrons at site n

with spin s. The nearest-neighbor transfer energies
t„+,„()0) depend on the bond lengths. Since we do
not consider electron-phonon coupling in the present pa-
per, we assume that the system is already Peierls distort-
ed so that the transfer energy t„+& „

is modulated as

t„+,„t—( —I )"5t . ——

This modulation induces a Peierls gap 4~ot~ in the one-
electron spectrum. A part of the modulation 5t can also
be considered as the symmetry-breaking term for systems
with nondegenerate ground states. In polydiacetylene,

45 8264 1992 The American Physical Society



45 SINGLET AND TRIPLET EXCITONS IN CONJUGATED POLYMERS 8265

there is also an additional modulation with the period of
four atoms. ' Although it is straightforward to take this
into account, we consider here the simpler dimerized sys-
tem, so that the model has as few as possible parameters
yet contains the essential physics. This is permissible be-
cause we are primarily interested in the states near the
semiconducting gap whose nature is mostly determined
by the modulation of Eq. (2).

We perturb the Harniltonian Ho with electron-electron
Coulomb interactions:

V„„+;—= V;= . (with i%0),V
(5a)

V, n
= Vo=U . (5b)

Here U is the usual on-site Coulomb (Hubbard) energy,
while V is the nearest-neighbor Coulomb energy and
represents the strength of the Coulomb-type long-range
potential. The distance dependence of dielectric screen-
ing has not been taken into account in Eq. (Sa). We can
write V=e /ea, with e being the electron charge, e the
static dielectric constant, and a the average intersite spac-
ing. The dielectric constant e here is for electrons on a
single chain surrounded by other chains and may be
different from the bulk dielectric constant. In the present

H=Ho+H

~e eg-Vn, nPn&Pnt+ g g X X Vn, n'Pn, sPn', s' &

n n n' (An) s, s'

(4)

where p„,—=C„,C„,——,', where —
—,
' ensures charge neu-

trality. We assume that the interaction potential V„„.in

Eq. (4) is translationally invariant, i.e., V„„+;=—V, . Al-
though the formulation presented in the next section al-
lows any form of V;, we use a simple model in the actual
calculations:

paper we treat V and U as model parameters. In polydi-
acetylene, a is about 1.4 A, hence, for example, a=5 cor-
responds to V=2 eV.

III. ELECTRON-HOLE INTERACTION

We implement a standard exciton theory on the
tight-binding Hamiltonian given above. The calculation
procedure is as follows. We first obtain the one-electron
states of Ho and construct the ground state Ig ) and the
excited states of a single electron-hole pair. Then the ma-
trix of the Hamiltonian H =Ho+H, , within the single-
excitation subspace is calculated and diagonalized. Actu-
ally, this diagonalization has to be carried out numerical-
ly for a finite chain. Calculations are much simplified by
adopting the periodic boundary condition, which assures
that the total momentum of a single excitation is a good
quantum number. Then, the diagonalization can be per-
forrned for each total momentum independently. In the
following we give expressions for the matrix elements, the
derivations of which are presented in Appendix.

Consider a single electron-hole pair excitation in which
an electron in a state of wave number k„in the valence
band is promoted to a state of wave number k, in the
conduction band. Note that the wave numbers are quan-
tized as k, ~„~=jn/Ma (j =.integers, —M/2(j (M/2),
where M is the number of unit cells in the chain (the
number of sites is N =2M). We introduce new variables
k and E so that

k, =k+E,
k„=k—E,

and denote the excited state as Ik, EC ). Here k and 2E
are the wave numbers of the relative motion and the
center-of-mass motion, respectively, of the electron-hole
pair. The matrix elements of the excitation Hamiltonian
in this representation are written as

«k', &'I(& E, ) Ik, & &
=5—« K [5k,k[~,(k+&)—&.(k &)]+25s~~—(k' k;&) lac(k', k;&)]— (7)

for spin singlet (5& =1) and triplet (5s =0) states, with Eo =—(g IHIg ) being the ground-state energy. The quantities f,
and Z„in Eq. (7) are the energies of one-electron states in the conduction and the valence bands, respectively, including
the first-order energy corrections with respect to the interaction, their explicit forms being given in the Appendix. The
Coulomb part Wc and the exchange part $Vx in Eq. (7) can be written as

Wc(k', k;K) =(gk.+Kgk «gk+Kgk «+c.c. ) V2 k k, + [gk, +Kgk. Kgk+Kgk «exp[ t'(k —k—')]+c.c. ] V& k

~X k k +) (0k'+Kkk' —«0k+K(k —K+ ' )V2, 2K Mk'+Kkk' —«0k+K(k —K P( +)+ ] 1,2«

where c.c. denotes complex conjugate,

gk
= (zk /2 Izk I )

'

zk = t + 5t + ( t —5t)exp(2ika),

(10a)

(10b)

tential V, for i =odd and for i =even, respectively:

1
V& ~

= g V2~, exp[iq(2j —1)a],
J

and V& and V2 are the Fourier transforms of the po-
1

V2 z
= g V2jexp(iq2ja) .
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We note that 8 c and Wz satisfy the following relation-
ships for each K:

Wc( —k', —k;K)= Wc(k', k;K),

W~( —k', —k;K) = Wx(k', k;K),
Wx(k', —k;K)= Wx(k', k;K) .

(12a)

(12b)

(12c}

Ik;+,K & =(Ik,K &+ I k, K—&)/i/2,

~k; —,K &—:(~k, K &
—

I k, K —&)/i/2,
(13)

for 0&k &rr/2a. (We do not need to reorganize the

Considering the symmetry of the system with respect
to the spatial inversion at a bond center, we introduce a
new basis set by the transformation

states with respect to the center-of-mass motion K, which
is already a good quantum number. The states with K
and —K are degenerate. ) It can be easily shown (see the
Appendix) that the spatial inversion transforms the state
Lk, K & into —

~
k, —K &, hence, the states

~
k;+,K & into

+ ~k;+, K—&. Therefore, ~k;+,K & and ~k; —,K & are
antisymmetric (B„)and symmetric (As), respectively,
with respect to the spatial inversion, concerning the rela-
tive motion of electron and hole. For k =0 and
k =m/2a, the state k, K& (= k, K—&) is already a B„
symmetry state, i.e., ~k;+,K & —= ~k, K &.

One can easily see from Eqs. (12) and (13) that the ma-
trix elements between B„and 3 states vanish. That is,
the matrix is now decoupled into the B„andthe A~ sub-
spaces. The matrix elements in each of the subspaces are
written in a similar form as Eq. (7):

(k', +,Kl(H —E())lk;+,K & =5k king, (k+K) —e„(k K) j+2—5sW~(k', k;+,K) Wc(k'—, k;+,K), (14)

W~(k', k; +,K) =2 W~(k', k;K ), (15b)

Wc(k', k; ,K) = Wc(—k',k;K) —Wc(k', —k;K), (16a)

Wx(k', k; —,K)=0, (16b)

where we have used Eq. (12). Equation (16b) implies that
the exchange part vanishes in the A subspace, hence, all

the A states have degenerate singlet and triplet states.

8'& and 8'z in this representation being obtained from
those in Eqs. (8) and (9) by

Wc(k', k;+,K) = Wc(k', k;K)+ Wc(k', —k;K), (ISa)

'P(x„x&) of the five lowest singlet states whose energies
are below E, in the example of Fig. 1, x, and xh being the
coordinates of the electron and the hole. The actual wave
functions contain rapid staggered oscillations with a
period of 4a. To make the symmetry of the wave func-
tions more manifest, we have plotted 'P(x„xh)/
f(x, )f(xh) with

7T 1f (na) = i/2cos —n +—
2 2

This does not alter the symmetry of the wave function
since the product f (x, )f (xh ) is invariant under the spa-

IV. EXCITON STATES

An example of calculated excitation energies at K =0
for a chain of N =400 is shown in Fig. 1. The parame-
ters used here are 5t =0.2t, V = t, U =2t, which turn out
to give approximately correct exciton energies in polydi-
acetylene (see Sec. V). The left two columns are singlet
B„andA states, and the right two are triplet B„andA

states. Actually, the energy levels of the A states are
the same as those of the 'A~ states, as mentioned above.

E, denotes the gap of the electron-hole
(quasi)continuum, defined as

E/t

1.6—

1.4—

1.2—

Ec

C,
U 2a

(17)

which is the minimum of the renormalized one-electron
excitation energy c,(k+K}—e„(k—K) in Eq. (7). For-
mally, the states below and above E, can be viewed as ex-
citon states and unbound electron-hole states, respective-
ly, although the distinction cannot be strict especially
near E, because of the finiteness of the system (see
below).

In Fig. 2, we display the envelope of the wave functions

0.8—
1BU 1A 3BU 3Ag

FIG. 1. Example of calculated excitation levels (in a low-
energy region) for a ring of N =400 sites. The used parameters
are 6t =0.2t, V=t, and U=2t. F, is the gap of the electron-
hole continuum.
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(e)

0.1 - (b)
1Ag

tial inversion at a bond center. Each wave function is il-
lustrated by four curves corresponding to the four possi-
bilities of electron (e) and hole (h) being at odd (1) or
even (2) sites. The spatial inversion at a bond center in-
volves the inversion of the coordinate x, —x& as well as
the interchange of the even and the odd sites, i.e., of the
indices 1 and 2. With this rule it is easy to see that the
wave functions in Figs. 2(a), 2(c), and 2(e) change sign
upon inversion, corresponding to the B„symmetry, while
those in Figs. 2(b) and 2(d) do not, corresponding to the
A symmetry.

The formation of an exciton is evident for the three
lowest states (a) —(c) in Fig. 2, the exciton size

d—:Q((x, —xh) ) being obtained as (a) d —=6.0a, (b)

d -=21.8a, and (c) d -=55.8a. The fourth state (d) has an
intermediate character between an exciton and an un-

bound electron-hole pair, its size d being comparable to
the system size. The fifth state (e) can be looked upon as
an unbound electron-hole pair for the present system size,
even if its energy is slightly below E, .

The lowest triplet state, the wave function of which is
shown in Fig. 3, lies below the corresponding singlet state
(see Fig. 1) and accordingly has a smaller exciton size
d=-4. 5a. The wave functions of the higher states are
similar to their singlet counterpart in Fig. 2. (Actually,

0.2-

I

I

I

(
~

s ~

t ~

I

a ~

3B

-0.2-

I

I

I
I
i
I,
I'

I
I
III
I I

II
I
I

(e,h)

(1,1)
|2,1)
Q.2)
(1,2)

I I

-200 -1 60 -100 -60 0 60 100 1 60 200
(x -xh)/a

FIG. 3. Same as Fig. 2 for the lowest triplet excitation.

those of the A states are the same as those of the corre-
sponding 'Ag states because of the exact degeneracy
mentioned above. )

In Fig. 4 we show how these exciton states split off
from the electron-hole continuum with increasing the in-
teraction strength V. Here the on-site Coulomb energy U
is assumed to scale as U=2V. The gap E, of the
electron-hole continuum grows linearly with V from the
value 45t=0. 8t at V=O, due to the first-order energy
correction of the one-electron states with respect to the
interaction. The lowest (singlet or triplet) exciton with
B„symmetry has a fairly large binding energy even for
small V. The next exciton state with As symmetry (sing-
let and triplet degenerate) is well identifiable in the region
V + 0.5t for the system size used here (N =400).

Figure 5 shows the dependences of the states on the ra-
tio U/V for a fixed V. The energies of the lowest singlet
and triplet B„excitons strongly depend on U, while the
other states and the continuum gap E, are insensitive to
U. Physically, we expect that U/V~ 1. The triplet state

-0.1-
Elt

1.4 Ec

0.1- 1.2

-0.1
(e,h)

(&,&)

aammawa (Q ])
(&2)

------- (& &) 0.8
I I I I I I

-200 -1 50 -100 -50 0 50 100 150 200
(x -xh)/a 0.6

0

U=2V

0.5
FICr. 2. Envelope 4'(x„xh)/f(x, )f(xh) of the wave func-

tions of the five lowest singlet excitations in the example of Fig.
1, with f(na)—=&2cos[(m/2)(n+1/2)], from (a) to (e) in the
order of increasing energy. For each wave function four curves
are diplayed distinguishing whether the electron (e) and the
hole (h) are at odd (1) or even (2) sites.

FIG. 4. Excitation energies vs the interaction strength V for
U =2V, 5t =0.2t, and N=400. Solid, dashed, and dot-dashed
curves are 'B„,Ag (singlet and triplet degenerate), and 'B„
states, respectively. E, indicates the edge of the electron-hole
continuum at V =t.
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E/t

1.4 Ec

1.2

0.8

0.6
0

V=I

FIG. 5. Excitation energies vs the ratio U/V for V =t,
5t =0.2t, and N =400 with the same notations as in Fig. 4.

XV —XV1

i even i odd

(18)

This implies that 8'z is constant for all k and k'. There-
fore, if the constant 8'~ is positive, i.e.,
g;,„,„V;)g;,ddV„ then the singlet energy is higher
than the triplet energy for any eigenstate of the matrix of
Eq. (7) for K =0 in the B„subspace. (The singlet and the
triplet states are degenerate in the Ag subspace. ) The
condition corresponds to U/V )21n2=-1. 386 for the po-
tential of Eq. (5) (for N infinite), in accordance with Fig.
5. The singlet-triplet crossing, in fact, occurs at the same
U/V for all the B„states, although this can hardly be
seen in the energy scale of Fig. 5.

V. POLYDIACETYLENE

From the results shown in Figs. 4 and 5, we see that
the ratio of the binding energies of the lowest singlet and
triplet excitons is almost uniquely related to the ratio
U/V in the present model. Therefore, the latter may be
determined from experimental information about the
former.

In polydiacetylene crystals, photoinduced absorption
at about 1.4 eV has been observed. ' The magnetic-
field dependence of its lifetime and the observation of
transient ESR (Ref. 28) indicate that it is due to a triplet
state. This state shows up as a relaxed state after pho-
toexcitation, being interpreted as an exciton polaron (i.e.,
neutral bipolaron). The 1.4-eV absorption peak then cor-
responds to triplet-triplet transitions, most likely the pro-
motion of an electron (or hole) from the lowest triplet ex-

is higher than the singlet state for U = V, while the order
is reversed for much larger U. The crossing occurs at
U/V-=1. 39.

Actually, the singlet-triplet ordering is determined
solely by the ratio U/ V, independent of the other param-
eters t and 5t. This can be shown as follows. By putting
K =0 in Eq. (9) and using Eqs. (10) and (11), we immedi-
ately get

Rx(k k 'K 0)=—'(Vz, x=o V&,x=o)

citon to around the edge of the conduction (or valence)
band without changing the lattice configuration of the bi-
polaron. In the absence of Coulomb interactions, this
transition energy has previously been calculated as -0.5
eV. On the other hand, in the presence of the Coulomb
interactions and in the absence of electron-phonon cou-
pling, the energy simply corresponds to the bare exciton
binding energy. Since the polaron size obtained in Ref.
29, viz. , -Sa, is not smaller than the exciton size ob-
tained here, viz. , -4.5a (see above), we can safely assume
that the exciton wave function is not much altered by the
polaron effect and that the triple-triplet transition energy
is approximately a simple sum of the two contributions
from the polaron effect and the exciton effect. The ob-
served 1.4-eV transition energy and the calculated 0.5-eV
polaron transition energy then leads to the conclusion
that the pure electronic binding energy of the triplet exci-
ton should be -0.9 eV.

On the other hand, photoconductivity and electroab-
sorption ' measurements have suggested the possible ex-
istence of the edge of the electron-hole continuum at
-0.6 eV above the fundamental absorption peak (at -2
eV) due to the singlet B„exciton,implying that the bind-
ing energy of the exciton is -0.6 eV. The existence of
the continuum edge can be further confirmed' by calcu-
lating various nonlinear spectra in the present model and
comparing the results with experiments.

From the ratio of the two binding energies, namely,-0.6 eV of the 'B„excitonand -0.9 eV of the B„exci-
ton, we can conclude that U/V-2 (see Fig. 5). By com-
paring Fig. 4 with the observed excitation energy (-2
eV) and the binding energy ( -0.6 eV) of the 'B„exciton,
we then conclude that V-t -2 eV. This corresponds to
the situation shown in Fig. 1.

The values of U (-4 eV) and V (-2 eV) thus obtained
are much smaller than those commonly used in strong-
correlation models, namely, U-11 eV and V-8 eV of
the Ohno potential. From a theoretical point of view,
this may be a natural consequence of our model which as-
sumes large bond alternation or strong electron-phonon
coupling. However, we think that the moderate U and V
are realistic in the condensed bulk polymer systems under
discussion: V-2 eV in the case of polydiacetylene corre-
sponds to the dielectric constant e-5 (as mentioned be-
fore), which is fairly reasonable. Also the observation of
multiphonon side bands in absorption spectra is a clear
indication of strong electron-phonon coupling.

VI. COMPARISON WITH A CONTINUUM MODEL

We compare our results with calculations in a continu-
um model. ' In that model, it was necessary to introduce
a lower cutoff length of the Coulomb interaction between
an electron and a hole. From an intuitive argument, this
cutoff length was assumed to be identical to the electronic
correlation length g associated with the Peierls gap. The
assumption was crucial, since the lowest exciton state
turned out' to depend sensitively on the cutoff because
of the special nature of the one-dimensional long-range
potential.

We compare Fig. 4 of the present paper with Fig. 1 of
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Ref. 18. The B„andA states in the former correspond
to the "even" and "odd" states in the latter, where these
terms are used for the symmetry of an envelope function
(which is difFerent from the one used in the present pa-
per). Singlet and triplet states were not distinguished in

the continuum model. The two models agree that the
lowest exciton state with B„symmetry has an extraordi-

narily large binding energy in contrast to the other exci-
ton states. For a more quantitative comparison, we note
that the renormalization of the continuum gap E, was

not taken into account in the continuum model, hence,
we should compare the binding energies of the exciton
states rather than the exciton energies themselves, with

replacing the parameter E of the continuum model by
the gap 45t of our unperturbed system. The parameter

VD of the continuum model is the value of the Coulomb

potential at distance g, related to our parameter V as

V0 = Va /g. Therefore, the dimensionless parameter

u = Vu/Eg is related to our V as u =( Va/g }/45t, where

a+—t 5t /—25t In th. e case of 5t =0.2t used in the
present calculations, the relationship is u =—0.5V/t. As
an example, we compare the binding energies at V = t in

Fig. 1 with those at u =0.5 in Fig. 4 of Ref. 18. The
former are 0.31t and 0.49t for the lowest singlet and trip-
let B„statesand 0.04t for the lowest A~ state, whereas

the latter are 0.35E =0.28t for the "n =0" state and

0. 1 1E =0.09t for the "n = 1 (odd)" state. The lowest B„
exciton state is deeper in the present model than in the
continuum model, whereas the other exciton states are
more shallow. That is, the special character of the lowest
exciton state is even more reinforced in the present tight-
binding model. The difference is ascribed to the crude-
ness of the model potential used in the continuum model,
while the overall agreement confirms that the basic as-

sumption and the conclusions of the continuum model

are qualitatively correct.
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APPENDIX: INTERACTION MATRIX
ELEMENTS

1
lkp) = —+exp(2ikma}imp) (@=1,2), (A 1)

with k =j n/M (j =integers, . M/2 ~j (M/2—), the

Consider a chain (actually a ring, because of the cyclic
boundary condition) of N =2M sites. Since our unit cell
contains two sites, we write the site index n

(=1,2, . . . , X} as n =2(m —1)+p, m =1,2, . . . , M,
with p = 1 for odd sites or p= 2 for even sites. The state
of an electron at site n is alternatively written as l

n ) or

imp�).

By introducing the Fourier transform

Hamiltonian HD can be put into a 2 X2 matrix for each k,
which can be diagonalized by the transformation

lkc ) 0a 0a lk 1 &

lkv &
—g,* g„ lk2 &

(A2)

where Eq. (10) defines gz. Then lkc) and lkv) corre-
spond to the states of wave number k in the conduction
band and in the valence band, respectively. The energies
c.k, and ck, of these states are given by

E kc kU

=lzr, l=2+t cos (ka)+5t sin (ka), (A3)

where Eq. (10b) defines zz. The semiconducting gap is at
k =@ /2a, and the gap energy is 45t. Combining the two
transformations (Al) and (A2), we get

(mllkc) (rn2lkc)
&mllku& (m2lku&

Ck 0k1—exp(2ikrna) (A4)

1lk„k„)= —(C~ tCq t+Cq gCg t}lg), (A5)

where + is for the spin singlet and —for one of the trip-
lets, Ck &

and Ck &
implying Ck, &

and Ck „&.The other

triplet states are given by Cz & C„&lg ) and C„&Cz& lg ).
C V C V

To examine the symmetries of the states with respect
to the spatial inversion at a bond center, we first note that
this operation corresponds to the interchanges m ~—m
and @=1~2 for the localized states imp). By these in-
terchanges, the states lkl) and lk2) in Eq. (Al) are
transformed into

l

—k 2 ) and l

—k 1 ), respectively. Then
the states lkc) and lku) in Eq. (A2) are transformed into
l

—kc) and —
l

—kv), hence, the state lk„k„)in Eq.
(A5) into —

l

—k„—k„).Therefore, the spatial inversion
at a bond center transforms the state l k, E ) into—

l

—k, —K) with k and K define by Eq. (6).
The calculation of the matrix elements

(k,', k„'lH,, lk„k„)requires the evaluation of terms like
(Czt, C&,H, ,Crt Cr, ), where ( . . . ) =(gl. . .

lg ). This

can be carried out by using Wick's theorem and (p„)=0,
resulting in the form

«,', k„'IH —Z, lk„k„&=25,Z —S,
+ (diagonal terms), (A6)

where E0 = (H ), and 5S = 1 for the singlet and 5S=0 for
the triplet. The diagonal terms originate from the terms
involving the contractions (Cz, Cz ) or (C,Cz ), being

V

explicitly written as

—
0a 4

The ground sate is constructed as lg ) =ff AC&»Cz„&l0),
where the creation operators are defined as usual:
C~„l0)=lku). A single electron-hole pair excitation
from this ground state is written as
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~k k 8k k ["'"'
where

s, (k)=(Ck, (H —Eo)Ck, ) =Ek, +EEk, ,

e, (k)= —(Ck„(H—Eo)C„,) =sk„+hsk„,,
(A8)

E,= g v, &c„,c„'„)(c„„c„')(c„',c„)&c„'c„&,
n, l

(A10}

E = y v, &c„,c„')(c„,c„'&&c,',c„&&c„',c„&.
n, i

(A 1 1)

with

v, (c„,c„',)(c„„c„')(c„c„',),
n, PWO]

(A9)
V, (c„'„c„„&(ct„c„)«tc„&.

n,j (WO)

The general terms E» and Ec in Eq. (A6) are written as

These quantities can be calculated as follows. We first
note (C„Ck ) =(n~kc) and (Ck C„)=(n~ku ), for

which Eq. (A4) can be used. The summations in Eqs.
(A10) and (All) can be decomposed into four terms, cor-
responding to whether n and i are even or odd. For ex-
ample, the summation for n =even ( =2m) and i =even
( =2j) in Eq. (A10) yields

g exp[ i(k,' ——k, —k„'+k,)2m ]exp[ i (—k,
' —k, )2j] Vz~gk gk gk gk

C U

(A12)

The first exponential factor summed over m in Eq. (A12)
yields 5'. x in Eq. (7), while the rest gives the first term in
the right-hand side of Eq. (8). The other terms in Eqs. (8)
and (9) can be obtained siinilarly.

The energy corrections beak, and b, Ek, in Eq. (A9) can
be calculated in a similar manner by using

& C!„C„)= y (ku ~n+g ) (n~ku ) (A13)
k

and Eq. (A4). The result is

kc kv

= y Vi, [(gkgk+, )'exp( tqa)—+c c ],. .
q

where V, q
is defined by Eq. (11).

(A14)
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