
PHYSICAL REVIEW B VOLUME 45, NUMBER 15 15 APRIL 1992-I

optical properties of a CaF2 crystal
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The electronic structure, the charge-density distribution, and the optical-absorption spectrum of a
CaF2 crystal are studied by means of a first-principles local-density calculation. The calculated imagi-
nary part of the dielectric function is in good agreement with experimental measurement up to 27.0 eV.
We have also used a simplified self-interaction-correction {SIC)model to address the problem of band-

gap underestimation in the local-density calculation. Although some marginal improvement in the opti-
cal result has been achieved, there is no strong evidence of unequivocal rectification other than an incre-
ment in the band gap. This study shows additional {non-SIC) correction to the conduction-band states of
CaF2 may also be necessary.

I. INTRODUCTION

CaF2 is a representative alkaline earth fluoride that has
been the subject of experimental and theoretical studies
for years. ' lt is a highly ionic insulator with a large
band gap. In addition to the usual energy-band structure,
we were also interested in the calculation of its optical
properties including e2(to). This was motivated in part by
the optical measurements recently published by Barth,
Johnson, and Cardona (BJC), and also in part by a desire
to further test the accuracy of the first-principles orthog-
onalized linear combination of atomic orbitals (OLCAO)
method in the local-density approximation (LDA).
Furthermore, we also wanted to test the effectiveness of
using a simplified self-interaction-correction (SIC) model
to improve the results of the LDA calculation.

The paper is organized as follows: We first briefly dis-
cuss the calculation method in Sec. II. That is followed
by the presentation of calculated results for the band
structure, density of states (DOS), effective ionic charge
and optical properties of CaF2 in Sec. III. In Sec. IV, we
introduce our simplified SIC model and discuss the re-
sults obtained from such a model. Some concluding re-
marks are made in the last section.
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The atomic orbitals are expressed as linear combinations
of Gaussian-type orbitals (GTO). This basis set is gen-
erally referred to as a full basis because it consists of all
the valence-shell orbitals plus another shell of empty or-
bitals. We have adopted the orthogonalization to the
core procedure, which makes the computations more
a8'ordable. In the present work, the valence levels were
taken as the F 2s and 2p bands because of their positions
relative to the highest occupied Ca 2p band. In the self-
consistent calculation, the accuracy of the charge-density
fitting required in each iterative step is monitored by cal-
culating the unconstrained integrated charge from the
fitting functions and comparing it with total charge in the
crystal. In our scheme, there are 16 valence electrons in
a CaF2 unit cell and our integrated charge is 16.00017
electrons, which is indicative of the overall self-
consistent-field (SCF) accuracy. After the self-
consistency in the potential has been obtained, the eigen-
values and the eigenvectors of the band secular equations
are solved at 505 k points in an irreducible portion of the
Brillouin zone. The energies and wave functions at these
k points are used to evaluate the DOS and optical con-
ductivities using the linear analytic tetrahedron
method.

II. METHOD OF CALCULATION III. RESULTS OF CALCULATION

Our calculation has utilized the first-principles self-
consistent OLCAO method. This method has been ex-
tensively applied to study the electronic and optical prop-
erties of a number of insulators. " As this method has
been described in detail elsewhere, we will only outline
the major steps here. In the crystal calculation, the one-
electron Schrodinger equation is solved self-consistently
within the LDA approximation. The basis functions are
expanded in terms of Bloch sums constructed from the
atomic orbitals of F (ls, 2s, 2p„,2p», 2p„3s,3p„,3p», 3p, )

and Ca ( 1s, 2s, 2p„,2p», 2p„3s,3p„,3p», 3p„4s,4p„,4p»,

A. Band structure and density of states

The calculated band structure and DOS for CaFz are
shown in Figs. 1 and 2, respectively. The lowest
conduction-band (CB) state is at I, but the top of the
valence-band (VB) states is at X. This indirect band gap
of only 6.53 eV is much smaller than the experimental
band gap of 12.1 eV. Heaton and Lin (HL) obtained a
band-gap value of 9.8 eV (indirect) by using a full Slater
exchange in their self-consistent LCAO calculation. It is
well known that the use of full Slater exchange results in
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FIG. 1. Calculated band structure of CaF&.

larger band gaps than the Kohn-Sham exchange in the
usual LDA. HL had argued that the experimental value
of 12.1 eV assigned by Rubloff was too large. The recent
work of BJC (Ref. 6) suggests a direct band gap of 11.6
eV. Albert, Jouanin, and Cout had also reported some
band-structure results on CaF2. ' They used the LCAO
method for the VB and the orthogonalized-plane-wave
method for the CB. They used an overlapping-atomic-
potential model and chose an exchange parameter of
a=0.795 in order to match the experimental band-gap
value, while the full Slater exchange parameter a = 1 gave
too large a gap.

In our calculation, the upper VB has two peaks cen-
tered at —2.5 and —0.5 eV, respectively. The total
width of the upper VB is about 3.1 eV, which is in good
agreement with the experimental value. Other calcula-
tions gave somewhat narrower VB widths [2.0 eV by HL
(Ref. 1) and 2.7 eV by Albert, Jouanin, and Cout ]. The
lowest F 2s band is 1.1 eV wide and peaks at about—20.0 eV. The CB structure is more complicated, exhib-
iting Sve major peaks at 8.0, 9.0, 9.5, 10.0, and 10.5 eV.

These peaks are very close to each other and there are
more small structures at still higher energies.

B. Charge distribution

The valence charge-density distribution in an ionic
crystal is an important part of the electronic structure. It
relates directly to the effective ionic charge, a parameter
which plays a major role in ionic conductivity. The accu-
racy of the electron charge distribution is also intimately
connected to the accuracy of the calculated electronic
contributions to the optical properties. In the empirical
type of studies, the ions in CaF2 are normally assumed to
take on their canonical values of Ca + and F . In an
LCAO-type calculation, it is traditional to use the Mul-
liken population scheme to estimate the effective charge
on each ion. However, this method has its limitations be-
cause it works well only for systems in which atomic
basis functions are not too diffuse. In our calculation we
have used a full basis, which includes diffuse orbitals, in
order to capture some of the features of the excited states
of Ca and F, and to better represent the polarizability of
the ions. Thus the conventional Mulliken scheme could
give misleading results because of the large overlap of
these extended orbit', ls. A much more reliable way to es-
timate the effective charge on each ion is by real-space in-
tegration of the self-consistent charge densities. In our
method, the charge density of the crystal is decomposed
into a lattice sum of atom-centered spherical Gaussians
of varying decay exponents. An effective ionic charge
can be determined by radially integrating the charge den-
sity up to an ionic radius which is determined from the
inspection of a charge-density plot along an internuclear
axis or from inspection of a two-dimensional contour
plot. The charge density for CaF2 along a Ca-F bond and
in the [110]plane are shown in Figs. 3(a) and 3(b), respec-
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FIG. 2. Calculated DOS of CaF2.
FIG. 3. Calculated charge density distribution in CaF2.. (a)

along a Ca-F bond; (b) in the [110]plane.
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tively. From these diagrams, we determine the effective
ionic radius for Ca + and F ions to be 0.57 and 2.60 A,
respectively. In this way, we can divide the CaFz crystal
into three regions: (a} the Ca sphere which accounts for
2.82% of the unit cell volume and contains only 0.04
electrons; (b) the two F spheres which account for
26.81% of the volume and contain 7.64 electrons in each
sphere; (c) the interstitial region which accounts for the
remaining 43.56%% of the volume and contains 0.68 elec-
tron. If we divide the charges in the interstitial region
among Ca and F in proportion to their effective volumes,
we arrive at an ionic formula of Ca' + F2 . This
indicates that Ca and F each takes on formal charges
close to the canonical values, indicative of the highly ion-
ic nature of CaFz.

C. Optical properties

The calculation of the optical properties of CaF2 is the
major thrust of this paper. There is a long history of op-
tical measurements on CaF2 (Refs. 2, 5, and 13—16) and
there are different and sometimes con6icting viewpoints
in the interpretation of these experiments. Recently, BJC
(Ref. 6) have undertaken a study of the optical properties
of CaF2. They used a newly developed vacuum ultravio-
let (vuv) ellipsometer to determine the dielectric function
of CaF2. We believe that their result is more accurate
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FIG. 4. Imaginary part of the dielectric function, e2(~), for
CaF2. The solid line represents the theoretical calculation; the
dashed line represents the experimental curve from Ref. 6.

than most of the previous investigations and therefore
can be used to test the accuracy of the calculations.

In the Qrst-principles OLCAO approach, the pro-
cedure to calculate the optica1 properties may be outlined
as follows. The real part of the interband optical conduc-
tivity O.I is calculated in the random-phase approxima-
tion using the Kubo-Greenwood formula

crz(E)=(e /4' mEQ) Jdkg ((g„(k,r)~ iAV~Q&(—k, r)) ) f&(k)[1—f„(k)]5(E„(k)—EI(k) —E),

where E=hco is the photon energy, 0 is the unit-cell
volume, and f(k) is the Fermi distribution function. The
band index l indicates an occupied state and n an empty
state. The momentum matrix elements
(g„(k,r)~ ifiV~P&(k, r)—) in Eq. (1) are calculated from
the crystal wave functions at each k point. The imagi-
nary part of the linear dielectric function is obtained
from err(co) as

e2(co) =(4n Ice)err(co), (2)

while the real part can be obtained from ez(co} by a
Kramers-Kronig transformation.

One of the important optical constants is the static
dielectric constants eo, or e, (0). Since the measured

e, (co) in the low-frequency region may contain contribu-
tions from lattice vibrations, the calculated eo value,
which only accounts for the electronic contribution, is
generally smaller than the measured value. With large-
band-gap crystals, the lattice vibrational effects can be ig-
nored in the frequency region around 2.0 eV.

In Fig. 4 we compare our calculated e2(co} with the
measurement of BJC. We have applied a shift of 4.2 eV
in the energy scale for the calculated curve so as to align
the major peak with the experimental one. This greatly
simplifies the comparison of the structures in the absorp-
tion curves. We note that this shift is about 0.9 eV small-
er than the difference of 5.07 eV between the calculated

gap and the gap reported in Ref. 6. The calculated eo,
2.02, is larger than the extrapolated value of 1.50 for the
experiment of Refs. 6 and 14 but is in good agreement
with the value of 2.04 as given by Lines. ' The calculated
e2(co) shows five major peaks at 14.0, 14.6, 15.5, 16.2, and

25.2 eV. The same structures can be identified in the ex-
perimental curve. However, the calculated peak at 16.2
eV appears to be too strong. On the other hand, the
well-defined experimental peak at 13.2 eV appears as a
weak shoulder in the calculated curve. In general, it is
fair to say that the experimental structures are well

reproduced by the calculation, but the relative intensities
of the structures are somewhat difFerent. One reason for
this discrepancy is that in our calculation, we have as-
sumed the crystal to be at T =0 K and thus do not in-

clude vibronic contributions that are present in the
room-temperature measurements. At higher frequency,
vibronic contribution will be much less significant. This
is consistent with the fact that the agreement between the
calculated and measured curves is much more reasonable
in the high-frequency region. There is some difference in
the peak positions in the 28—35-eV region. Since the ac-
curacy of the data at such a high energy will generally be
somewhat degraded and may involve core excitations
(not included in the present calculation), we think a pre-
cise understanding of structure at such a high-energy re-
gion requires further experimental as well as theoretical
investigation.
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IV. SELF-INTERACTION CORRECTION

=E„k%'„k( r ), (3)

where T is the kinetic energy operator, V, is the
Coulomb potential, V,„, is the external potential due to
ions, X is the self-energy operator and it contains the
effects of correlation and exchange among the electrons.
In order to obtain the quasiparticle energies, it is neces-
sary to evaluate X first and solve this equation. Hybert-
sen and Louie used an expansion of the self-energy
operator in terms of the dynamically screened Coulomb
interaction (W) and the dressed Green's function (G)

It is well known that in covalently bonded semiconduc-
tors, the band gap predicted by the LDA theory is un-
derestimated by as much as 30—40%. There have been
many approaches to overcome this shortcoming, ranging
from the very simple "scissors operator" to the more so-
phisticated approaches such as the self-interaction correc-
tion' (SIC) and GWmethods. The scissors operator
accounts for a rigid shift of all CB states by a fixed
amount so as to match the accepted experimental value
of the band gap. Surprisingly, the scissors operator
works pretty well in many instances in spite of its simpli-
city. Perdew and Zunger (PZ) have proposed a
correction to the LDA, which in the context of energy-
band theory leads to a modification of the band gap by re-
moving the self-interaction error in an orbital-by-orbital
fashion. Earlier work by Perdew and Lindgren,
among others (see references in Ref. 23) demonstrated
that when the self-Coulomb and an approximate self-
exchange energy are subtracted from the total-energy
functional, a remarkable improvement in the self-
consistent-field solution for atoms and negative ions
could be obtained. The SIC treatment subsequently has
been applied to a variety of free atoms and to
solids. ' ' Later studies focused on developing practi-
cal schemes for the construction of the correction term
for molecules and solids. ' HL formulated SIC for the
energy-band theory of crystals and applied it to LiC1 and
Ar band structures. They obtained very satisfactory re-
sults by generating Wannier-like orbital densities.
It should be noted that this correction for insulators is
only applicable to the VB. Modification of the unoccu-
pied (virtual) bands goes beyond SIC and has only been
addressed parenthetically in the previously noted works.
Application to metals has been addressed in the context
of an electron-gas model.

In a different approach, Louie and co-workers
have used the GR' approximation to evaluate the self-
energy operator in their first-principles theory of quasi-
particle energies in semiconductors and insulators. The
self-energy operator arises in the application of Green's-
function techniques to the electron correlation prob-
lem. ' The Green's-function approach permits a
rigorous formulation of quasiparticle properties and thus
address features associated with the CB states. They be-
gin with the formulation of the one-particle excitation en-
ergies of an interacting system in a crystal potential:

(T+ V,„,+ V, )%„„(r)+f dr'X(r, r;E„k )+„k(r')

(hence the name of the GW method). Very good results
were obtained using this approach. They concluded that
the correction primarily applies to CB electrons in homo-
polar materials, such as diamond, Si, and Ge, but the
correction is evenly divided between VB and CB for ionic
crystals such as LiC1. Although the G8'results would
seem to suggest that SIC could only capture half the
correction needed for CaF2, the correspondence between
GW and orbital SIC may not be that simple. In this pa-
per we follow the orbital SIC prescription and defer any
discussion of its relationship to the GW correction.

A. The self-interaction error

In the Hartree-Fock theory, self-Coulomb and self-
exchange terms are introduced to the one-particle equa-
tions to make the solutions more tractable without
sacrificing constraints of physical reality because they ex-
actly cancel one another. In the local-density theory, an
approximate exchange-correlation term is introduced to
solve the single-particle Schrodinger equation. Because
of this approximation, the self-Coulomb interaction is
only partially removed and the residual (nonphysical)
self-interaction tends to shift the energy state up-
wards. ' Because the VB states have a more localized
charge distribution than the CB states, this upward shift
in VB states is larger than that in the CB states, resulting
in a reduction in the band gap. The CB states correspond
more closely to electron affinity levels, because of their
status as virtual-level solutions to an n-electron problem.
Thus the error we should attribute to them is not what
we would normally identify as a self-interaction error but
rather a more traditional electron correlation error. In
order to rectify the situation in regard to the occupied
levels, a correction in potential, termed self-interaction
correction, must be instituted in the electronic structure
calculation.

In density-functional theory the total-energy functional
can be expressed as

Et TO + Vext + Uc +Exc (4)

where To is the noninteracting kinetic energy, V,„, is the
external interaction, U, is the Coulomb energy, and E„,
is the exchange-correlation energy. Since a point electron
does not self-interact, we require an orbital-based
density-functional description of electrons to satisfy

U, [p; ]+E„,[p;,0]+U„,[p; ]=0,

U, [p, ]+E„,[p;,0]=0,
where p,. is the orbital density for a single electron with
spin index o ( = l, J, ). But in the LDA, the local approxi-
mation leads to an exchange-correlation correction term

E„,=fp, (r)E„,[p; . (r),0)]dr . (6)

As a result,

U, [p; ]+E„,[p, ,0]%0 .

It is therefore necessary to introduce an extra term U„.,
which satisfies
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where U„., is the term that will make the orbital-by-
orbital correction. A universal prescription proposed by
PZ (Ref. 23) for formulating this correction is

U,;,= —gg(E„, [p;,0]+U, [p, ]), (9a)

ESIC-LDA ELDA+ USIC (9b)

Because of the lack of transformation invariance, the for-
mula derived by PZ poses some computational problems,
especially in application to crystals. While Pederson,
Heaton, and Lin ' have removed the central difficulty by
introducing a "canonical" set of SIC orbitals, it is still
necessary to develop an efficient scheme for solving the
self-consistent equations which follow from Eq. (9). As
noted earlier, HL have presented a formulation for incor-
poration of SIC in the crystals. ' In their work, the SIC
to the total energy of the n-electron system is expressed
in terms of Wannier functions. Excellent agreement was
achieved for the band gap of LiC1 between the SIC-LDA
calculation and experiment.

where the matrices D, 3, E, E, and F are constructed as
follows:

D=C S,
W =C'F,
~0 C t~LDAC

E, =( -A;;+IC;; )5,,

(16)

(17)

where S and C represent the LDA overlap matrix and
eigenvectors, respectively, and a dagger designates Her-
mitian conjugation. The matrix F carries the SIC-related
information in the form of matrix elements between
Bloch sums and crystal wave functions:

(19)

where 6 V„k is the k-dependent SIC potential for the nth
band as originally derived from the Wannier-function for-
mulation by HL:

b V„k =g g V„„'c(r—R,—t&)exp(ik R„)

B. Mnlliken-weighted self-interaction correction
X IV„"(r—R —t„)/V„k, (20)

The procedures outlined by HL made application of
SIC to crystalline solids possible. However, the scheme
involves the construction of Wannier functions, which is
quite complicated, especially when the crystal under
study has a complex unit cell. It is desirable to have a
simpler, yet effective SIC procedure to make the compu-
tation more practical. The model we adopt here is re-
ferred to as the Mulliken-weighted SIC method.

In the ordinary (non-SIC) LDA energy-band calcula-
tions, we have

H'DA e (10)

where p covers different atoms within a unit cell and the
Bloch sum is given by

where 0" is the usual LDA Hamiltonian and 0'„k is
the crystal wave function of the nth band with wave vec-
tor k which can be expressed as

~q „„)=y y CI„'(k)~bg ),

u„"k(r—R„—t„)=g Ct„'(k)@I(r—R,—t„),
t

(21)

where I labels the atom-centered orbitals and simultane-
ously, replacing SIC potential by a Mulliken-weighted
combination of orbital SIC potentials:

V' =g "(k)V'
I

(22)

where p~I„(k) is the Mulliken population of atomic orbital
l of atom species p for the state nk. Vl' is constructed

Theor.

where V„„' (r —R„—t„) is the SIC potential pertaining to
atom p. As discussed above, the problem of constructing
localized Wannier functions W„"(r—R,—t„) can be quite
difficult and subject to ambiguity related to phase choice.
In our simplified model, we replace the Wannier function
by the localized orbital:

~b/k ) =N ' g exp(ik R„)4,.(r —R,—t„), (12)

where i is the orbital index, R is the lattice translational
vector, and N, is an atom-centered linear combination of
GTO (or single GTO to supplement the basis set). The
solution of the SIC-LDA equations, (b)

~SIC LDA~qg ) (k)~y ) (13) 1.0-

can be formulated in terms of LDA counterparts by
adopting a Bloch-sum basis of M orbitals to reduce the
problem to a linear eigensystem problem. It can be
shown that the matrix form of the SIC-LDA Hamiltoni-

H takes the following form

HSIC LDA ~LDA Dt(ICO+g + g t E)D +yg)+DtFt

0)
0.6.

0.0

—0.6 '

0
R (a.u. )

FIG. 5. (a) The F 2p orbital —SIC potential. (b) The Ca 3s
orbital —SIC potential.
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for each orbital of the atom (including the core orbital)

by removing one electron in the orbital charge density for
the usual V,„, in the LDA. VI is then fitted nonlinearly

to a sum of Gaussian functions to facilitate the evaluation
of the matrix elements of VI in Eq. (19). The numeri-

cally calculated and fitted VI for F 2p and Ca 3s orbit-
als are shown in Figs. 5(a) and 5(b) as illustration. As we

I

discussed above, Mulliken analysis is better suited to a
minimal basis. So we use a minimal basis to perform the
Mulliken analysis needed in the construction of Eq. (22),
while retaining a full basis calculation in the final band
structure and optical conductivity. After obtaining V„„',
we have then to calculate the Inatrix elements of the type

(b"k~hV 1 ~4„1, ) =N ' g g Cf„pe "(b"&~4&(r—R,—tI) V„& (r —R —t&))
I v

(23)

in order to form the elements of the Fmatrix. By making
use of the translational properties of the Bloch sum, Eq.
(23) can be reduced to a summation over a series of two-
center integrals. With these matrices evaluated, we are
then able to construct the Hamiltonian matrix as given in
Eq. (14). Thus the solution of Eq. (13) can be reduced to
the usual eigensystem problem encountered in LDA com-
putations involving a finite basis set. The algebraic steps
missing in the above discussion are taken up in Refs. 29,
32, and 34.

With the solution of Eq. (13), we obtain eigenvectors to
construct a new Hamiltonian H and the new Mullik-
en populations needed to start an iterative procedure for
SIC. This iteration is carried through several times until
eigenvalues converge to a predetermine criterion. As one
might expect, this SIC iterative procedure is carried out
more efficiently if the SCF-LDA solution is used as a
starting point, rather than incorporating SIC starting
with the zeroth iteration of the self-consistent band calcu-
lation. The final eigenvalues and eigenvectors are used to
evaluate the optical properties as discussed in Sec. III C.

C. Results with self-interaction correction

to the experimental curve. Second, eo is reduced to 1.80,
in better agreement with the measured value. Third, the
peak at 13.2 eV becomes more prominent. However,
these improvements are offset by other increased
discrepancies. For example, the peak at 14.6 eV, next to
the most prominent peak, is not as visible in the experi-
mental curve; and the intensity of the calculated curve
above 18 eV is not as close to the experimental curve as
the LDA result. Thus, on the whole, the improvement
on the optical properties by SIC in CaF2 is marginal at
best, except for the marked improvement in enlarging the
band gap.

In Fig. 8, we display the same calculation of e2(co) by
applying the scissors operator which the CB was rigidly
shifted by about 5.1 eV. In order to align the major peak
in ez(co), a shift of 0.7 eV backward is necessary. The
overall agreement with experiment is not improved over
either the LDA or the LDA-SIC results. The main
difference is that the intensity of spectra in this calculated
curve is greatly reduced, and the peak at 13.2 eV appears
to be even weaker by comparison to the LDA result. The
eo is reduced to 1.49, which is expected since the band

The SIC-LDA band structure is shown in Fig. 6. One
obvious feature is the downward shift of the VB; the CB
is only slightly changed. This is to be expected since
there is no formal SIC correction for the CB and any
shift comes about because of the slight change in the final
LDA Hamiltonian as a result of the change in the SCF
density because of the SIC. The shape of the energy-band
structure remains the same except for a small decrease in
the VB width (from 3.1 to 3.0 eV). Thus the band gap is
enlarged from the original 6.35 eV to 8.20 eV. While this
represents a substantial improvement, the value is still
smaller than the experimental value of 11.6 eV by 3.4 eV
(or 29%). It should be pointed out that in a finer energy
scale, the shift in the VB in Fig. 6 as the result of SIC is
nonuniform because the Mulliken weight has different
components of SIC from different orbitals and different
atoms at different k points.

The calculated imaginary part of the dielectric func-
tion after applying the simplified SIC is shown in Fig. 7.
A 2.9-eV shift, which is 0.5 eV smaller than the gap un-
derestimate, has been applied to align the major peak in
the calculated curve and the measured curves. Compar-
ing this with the LDA result of Fig. 4, there appear to be
three areas of improvement. First, the intensity of the
calculated curve is reduced and corresponds more closely

16.

10

6.

0

—~oem~~ ~eg~~

I

-10 '

I
TAVE VECTOR

FIG. 6. Band structure of CaF2. Solid line, without SIC;
dashed line, with SIC. The zero of energy is set at the top of VB
without SIC.
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FIG. 7. Imaginary part of the dielectric function after in-

clusion of SIC. The solid line represents the theoretical calcula-
tion; the dashed line represents the experimental curve from
Ref. 6.

FIG. 8. Imaginary part of the dielectric function after apply-
ing the scissors operator. The solid line represents the theoreti-
cal calculation; the dashed line represents the experimental
curve from Ref. 6.

gap has been greatly enlarged to match the experimental
value. It is not clear that 6'0 and the intensity of the spec-
trum in the SIC calculation can be improved if further
correction to the CB can be implemented.

V. CONCLUSION

We have presented results of our first-principles studies
of the electronic structure and optical properties of CaFz.
A number of important physical parameters such as the
bandwidth and band gap are obtained. A detailed
analysis of charge distribution in CaFz based on direct-
space integration shows the ionic formula to be Ca'
Fz . The calculated dielectric function for CaFz is in
good agreement with a recent experimental measurement.
A computationally efficient Mulliken-weighted SIC mod-
el was introduced in our band structure and optical cal-
culation. The calculated band gap has been increased
from 6.53 to 8.20 eV. However, the gap value after SIC
is still underestimated by about 29% and the difference in
the absorption intensity in the measured and calculated
curves, while reduced, still remains. In a previous appli-
cation of this method to an energy-band calculation of
trans polyacetylene -(CH„), the calculated band gap was

larger than experiment (3.6 eV compared to 1.8 eV). Also
the SIC-LDA VB width was increased relative to the
LDA value (17.6 eV compared to 16.8 eV). This is in

contrast to the present result on CaFz. One difference in
the implementation of the Mulliken-weighted SIC in Ref.
32 and the present case is the use of an angular depen-
dence in the atomic SIC potential [Eq. (22)] in Ref. 32.
In the context of the CH system, which is characterized
by distinct m and cr subbands in the VB, the preservation

of the angular dependence in the p-orbital SIC potentials
was imperative. In CaFz, we do not believe it would be
necessary to include such a modification due to the
closed-shell nature of the ions involved. However, the
unit-cell structure of CaFz suggests the possibility of de-
veloping a ~- and cr-SIC correction which could further
modify the VB width and position relative to the CB. It
is also possible that a more rigorous Wannier function
approach to SIC, or a different approach to the relative
ordering of the iterative procedures in applying SIC and
in the self-consistent LDA calculation may change the re-
sults somewhat. While these considerations might im-

prove the calculated results to a certain extent, we cannot
completely disregard the observation of Hybertsen and
Louie that the self-energy correction is evenly divided
between VB and CB in the ionic crystal LiC1. This may
suggest that further improvement will require more than
a SIC correction. We may conclude that the self-
interaction correction provides a substantial but not fully
adequate improvement in the energy-band gap in CaFz.
Further correction to the CB may be necessary along the
lines of Ref. 21 or in a formulation of a correction to the
CB states in the spirit of the virtual-state Hamiltonian as
discussed in Ref. 28. The optical properties calculated on
the LDA theory give quite good result in agreement with
experiment and probably will not be drastically changed
by additional corrections.
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