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Band gaps of diamond under anisotropic stress
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Quasiparticle excitation energies are calculated using the GW method for diamond under hydrostatic

pressures up to 500 GPa and for one tetragonal configuration under an assumed additional stress in the

[001] direction. The self-energy operator is approximated with a model for the static screened Coulomb

interaction and a plasmon pole approximation for the dynamically screened interaction. The band gaps
increase with hydrostatic pressure. In contrast, the minimum gap decreases upon the application of ad-

ditional [001] stress, with an extrapolated ultimate metallization pressure of 400 GPa, whereas current

experimental extrapolations are for a transition at 700-900 GPa. The lower theoretical value is likely

due to excessive anisotropy in the model for the applied stress.

INTRODUCTION

The optical properties of diamond under combinations
of hydrostatic pressure and uniaxial stress are of practical
interest because of the widespread use of diamond-anvil
cells (DAC's) for high-pressure experiments. The DAC is
often employed in studies of pressure-induced metal-
insulator transitions which are observed either by direct
transport measurements or by optically probing through
the transparent diamond. The introduction of wires into
a DAC is a difficult task (currently impractical for pres-
sures above 100 GPa). Thus much of the literature on
metallization at such pressures reports measurements of
optical reflectivity and absorption. ' These reflectivity
results are difficult to interpret, since the index of refrac-
tion of diamond is unknown at high stresses.

Changes in the index of refraction are expected at the
face of the diamond anvil, since significant variations of
the optical properties of diamond under high stress are
well known. Bulk diamond itself begins to absorb vis'ble
light and to luminesce in the red range at the highest
pressures. The observed optical absorption indicates
that strong band-gap reductions result from the applied
stress in the DAC. Recently, measurements have been
made of the minimum band gap of the diamond anvil as a
function of pressure in the sample chamber. So far,
these observations are limited to the minimum band gaps
that govern absorption and luminescence edges. In con-
trast, ab initio calculations can provide information on
the entire excitation spectrum and provide estimates of
indices of refraction at different points in the DAC.

Early theoretical studies of the band structure of
stressed diamond do not provide quantitative information
on the band-gap reduction in the DAC. It is known qual-
itatively that the pressure coefficient for the minimum
band gap in diamond is very sensitive to the degree of an-
isotropy of the stress. The calculated band gaps are all
seen to rise as a function of hydrostatic pressure in the
local-density approximation (LDA); these theoretical
pressure coefficients are in satisfactory agreement with
available experiments. ' It is clear from the positive

coefficient that hydrostatic pressure is not the cause of
the observed band-gap reduction. In contrast, similar
LDA calculations indicate that diamond will metallize at
a specific uniaxial stress of 400 GPa (Ref. 11) (applied
while keeping the transverse lattice constant fixed at the
equilibrium value). However, the stress tensor assumed
in Ref. 11 is unlikely to describe the situation obtained in
practice.

Previous studies are also unable to give quantitative in-
forrnation on the band gaps because of their use of the
local-density approximation. Calculations based on the
LDA underestimate both the band gaps and metallization
pressures of semiconductors. ' ' The LDA spectrum is
also inappropriate for calculating energy-dependent opti-
cal properties, since the Kohn-Sham eigenvalues cannot
in general be identified as excitation energies. This
difficulty can be avoided by using the GW approach to
calculating the quasiparticle band structure of bulk dia-
mond. ' A formalism exists for employing the GW band
structure in a calculation of the optical constants and
energy-dependent dielectric properties of diamond in the
DAC, ' but this extension will not be examined here.

In this paper, the one-particle spectrum of cubic dia-
mond (Fd3m symmetry) is first calculated at six pres-
sures both in the LDA and in the G W approximation us-
ing a model dielectric matrix. ' The DAC is subjected to
anisotropic stress with a greater component normal to
the face of the diamond than parallel to it. Accordingly,
the band-structure calculation is repeated for tetragonal
symmetry I'4l/adm under a combination of hydrostatic
pressure and uniaxial stress along the [001) axis. The
model stress corresponds to a prediction of the maximum
anisotropy in stress within the DAC. '

The GW calculations require the macroscopic dielec-
tric constants for the density response. These quantities
have been obtained using the LDA spectra and wave
functions in an Adler-Wiser perturbation approach. '

The experimental absorption data are compared to the
theoretical 68'results for the band gaps, with special at-
tention to the range of pressures at which diamond is pre-
dicted to metallize. Using the model stress tensor of Ref.
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17, a part of the diamond anvil is calculated to metallize
for a pressure of 400 GPa in the sample chamber; this
differs substantially from the experimentally predicted
value of 700—900 GPa. The discrepancy suggests that
the assumed strain tensor does not describe the DAC.
Accordingly, the tetragonal LDA calculation is repeated
for a range of stress anisotropies.

STRESSES IN THE DIAMOND ANVIL

The pressure coefficient of the minimum gap is sensi-
tively dependent on the anisotropy of the lattice strain.
It is thus crucial to first identify the lattice structure of
the strained diamond anvil. X-ray diffraction is unlikely
to give the lattice parameters; the relative transparency
of diamond to x rays is already widely used to allow
diffraction studies of samples inside the DAC. Addition-
ally, the inhomogeneous strain that is present in the anvil
tends to blur diffraction lines. Fortunately, knowledge of
the stress distribution is sufficient to determine the lattice
structure because total-energy LDA calculations provide
reasonable estimates of the stress-strain relations of dia-
mond. ' '" This approach assumes a stress tensor as in-

put to the band-structure calculation, so it must be deter-
mined a priori.

There are at least three possible methods to obtain the
position-dependent stress: calculating the stress and
strain tensors with appropriate boundary conditions
measuring the Raman mode at the Brillouin-zone
center; ' or measuring two or more band gaps from the
optical absorption spectrum. The first approach will be
used here to define a stress tensor for the bulk band-
structure calculation.

A stress tensor appropriate for the interior of a dia-
mond anvil is proposed in Ref. 17; it is estimated in-

directly from experimental measurements. The analysis
is simplified by assuming a semi-infinite anvil with a flat
face and a circularly symmetric distribution of pressure
applied to the face. This makes a measurement of the ra-
dial variation of the pressure at the surface sufficient to
determine the stress at all points. The pressure distribu-
tion at the interface is measured by x-ray diffraction of
metal gaskets placed between the diamond anvils.
Diffraction yields the position-dependent lattice constant
of the gasket. The equation of state for the gasket is tak-
en from shock compression data, and the corresponding
pressure distribution follows.

Once the pressure at the boundaries is fixed, the inter-
nal stress along the central axis of the bulk of the dia-

mond is obtained analytically with the assumption of
linearity and the superposition principle. ' The linear-
ized difFerential equations governing the inhomogeneous
stress and strain suggest that the diamond anvil is sub-

jected to a maximally anisotropic stress of the form'

029 0 0
0 029 0 P,
0 0 089

where P is the applied pressure inside the DAC sample
chamber. Equation (1) applies to a small region of the di-

amond located along the central axis beneath the surface

of the anvil. The corresponding lattice strain is particu-
larly simple; the atomic z coordinates scale linearly with
the lattice compression in that direction. Thus, the space
group for [001] stressed diamond is (F4, /adm). (Face-
centered tetragonal structures are typically reduced to a
smaller body-centered tetragonal cell with the I4, /amd
space group, but face-centered axes are retained to reflect
the cubic origins. )

An analytic solution for the stress is subject to certain
caveats. The approximate shape and the assumption of
linearity both limit the accuracy of the solution. The sur-
face pressure distribution that yields Eq. (1) was mea-
sured for a pressure of 335 GPa at the center of the DAC
chamber. Equation (1), resulting from a linear calcula-
tion, implies that the [001] lattice constant is only 86%%uo

that of the [100] and [010] directions, and that the
volume of a unit cell decreases by 20% in part of the dia-
mond. The linear approximation, however, assumes
small displacements of the material from equilibrium.

Nonlinear effects are expected to reduce the anisotropy
of the stress; the large hydrostatic component of the
stress in Eq. (1) locally increases the shear modulus. '

The loss of the superposition principle also implies that
the measured distribution of surface pressure will not
scale with increased force. Similarly, the degree of an-
isotropy in the stress and the location of the region of
maximum anisotropy will change as a function of applied
pressure. These effects are expected to be significant at
335 GPa, given the large lattice contraction estimated
above.

Finite-element numerical analyses have been per-
formed for the strain on a cylindrically symmetric model
of the DAC in the linear approximation, ' as well as in-

cluding nonlinear effects, although the stress tensors
were not published along the central axis in the latter
case.

Equation (1) serves as an adequate starting point for a
calculation. It will be most accurate at the lowest pres-
sures, although the simplified geometry will still intro-
duce some error. Note that it does not include any shear
component to the stress; the shear is zero along the cylin-
drica1 axis by symmetry. Experimental measurements
will inevitably sample regions with some shear stress, so
that calculations of the shear dependence of the gap are
needed for detailed comparison to experiment.

NUMERICAL PROCEDURE

The G8'calculation' begins with the LDA eigenfunc-
tions and eigenvalues, which are obtained in this case
from a norm-conserving pseudopotentia1 calculation in a
plane-wave basis. The carbon pseudopotentials are ob-
tained from a scheme devised by Troullier and Martins
that yields excellent potentials for plane-wave-basis calcu-
lations. The calculations are done with a cutoff of 50 Ry
for the plane-wave basis, so that the gap is converged to
the 0.01-eV level.

LDA calculations are performed for bulk diamond at a
given lattice constant and a given amount of [001]
compression. Stress is then calculated by standard
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methods for obtaining forces. The calculated cubic
equilibrium lattice constant is ao =3.53 A with a bulk
modulus B0=459 GPa, and B0=4.25 from a fit to the
Murnaghan equation of state for hydrostatic pressure.
This is comparable to other theoretical estimates and is in
good agreement with the experiment values of 3.567 A,
443 GPa, and 4, respectively. " The Young's modulus
is estimated to be 1090 GPa, as compared to the other
calculated and experimental values of 1050 and 1081
GPa, respectively. ' '" Poisson's ratio is calculated to be
0.12, as compared to an experimental value of 0.11.' "

Accurate stress values require well-converged total ener-
gies for the given lattice configuration, so the plane-
wave-basis cutoff is increased to 70 Ry.

Polarizability calculations are performed for each lat-
tice configuration to determine the static electronic densi-
ty response needed for calculating the screened electron-
electron interaction. The perturbation formalism is
straightforward in terms of the LDA one-particle
states. The static-independent particle polarizability y
is obtained in a periodic crystalline potential by an
Adler-%iser scheme, '

0 4 (&vkle '"+ "Ick+q&&ck+ql '"+ ""I k&)
&oo(q ~=o)=—X

U, C'k uk &Ca+ q

where vk, ck are valence and conduction eigenstates with
LDA eigenvalues c„&,c,,&. Some care must be taken in
defining matrix elements for q~0, lest some terms in-
correctly equal zero (e.g., go 0 «0).

The dielectric matrix is given in the random-phase ap-
proximation (RPA) by

Xo«(q ~=o)
coo (q, co=0)=1+Vc(q}

1 —Vc(q)p~oo (q, co =0)

(3)

All quantities are expressed in a matrix form with indices
G and G' representing the underlying periodicity of the
system. The macroscopic dielectric constant is obtained
by inverting the G=G'=0 element of the inverse dielec-
tric matrix at q~0.

The RPA only considers the effects of the self-
consistent field due to the direct Coulomb interaction Vz,
the effects of exchange and correlation are not included.
This RPA expression is appropriate for use in the GR'
approximation, which neglects the vertex correction.

Once obtained, the macroscopic dielectric constant E'0

is used to define a model static dielectric matrix
coo.(q). ' This is extended to finite energies by a dielec-
tric band-structure plasmon-pole approximation, and is
used to define the dynamically screened Coulomb interac-
tion W(E). The self-energy operator X is formed in the
GW approximation from 8' and the one-particle Green
function G (Ref. 14)

X(r, r', E)= ' f dE'e ' 'G(r, r';E E') W(r, r', E')—.

(4)

Quasiparticle excitation energies are given in rydberg
units by

E„„g„„(r}=(—V + V,,„+VH }Q„„(r)

+ f d r'X(r, r';E„„)g„„(r').

This many-body treatment yields excellent agreement
with photoemission and optical experiments. '

It is important to note that the density response to a
static external probe is distinct from the response used in
the GS'calculation. The former is obtained in the LDA
(Ref. 31) by including the self-consistent field effects of
the electron-electron exchange and correlation in addi-
tion to the direct Coulomb term in the denominator of
Eq. (3). The additional term is included with the deriva-
tive of the exchange-correlation potential

5 V„,[p(r ) j
fi()

so that

e '(q, co)=1+Vc(q)
x'(q ~)

1 —Vc(q)y (q, co) —E„,g (q, co)

with matrix indices suppressed. E„, is a local quantity,
since it is taken in the LDA. The full-density functional
version of Eq. (7) should give the correct static response,
since this is a ground-state property. In practice, the
dielectric constant, eo, is overestimated by the approxi-
mations intrinsic to the LDA.

RESULTS FOR HYDROSTATIC PRESSURE

The RPA dielectric constants are shown in Fig. 1 at
seven pressures, decreasing slightly with pressure as a re-
sult of the widening band gap. Coincidentally, the calcu-
lated RPA dielectric constant at equilibrium volume is in
close agreement with the experimental value of 5.5
however, the inclusion of the exchange-correlation con-
tributions would increase the plotted dielectric constants
from 3% to 5% at difFerent pressures.

Some of the LDA and GS'band gaps are presented for
zero pressure in Table I along with the pressure
coeScients. The LDA results are in good agreement
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FIG. 1. Dielectric constants eo for density response of cubic
diamond under hydrostatic pressure and under stress as in Eq.
(1) with P=250 GPa. RPA results for cubic diamond are
represented by solid circles and those for tetragonal diamond by
open circles. The tetragonal data point at (250, 5.8) corresponds
to taking q —+0 along the [100] and [010] directions, while the
point at (250, 4.6) corresponds to taking the limit along the
[001]direction.

with earlier work. ' Note that the model GW approach
slightly overestimates most gaps as compared to experi-
ment; the LDA seriously underestimates them. All band
gaps are found to increase fairly linearly with pressure
and to have a small downward curvature up to pressures
as high as 500 GPa. The GW method yields larger pres-
sure coefficients than the LDA and is in disagreement
with experiment for the coefficient of the fundamental
gap. However, any anisotropy in the applied stress will
reduce the measured coefficient significantly.

The greater pressure coefficients found in the GW ap-
proximation are consistent with the behavior in other
wide-gap insulators and can be understood to arise from
the large changes in the dielectric constant with pressure.
The bare exchange contribution to the self-energy is sub-
stantially greater for the valence states, which are con-
centrated in the bonding regions, than for the conduction
states. The exchange interaction partly cancels the
Coulomb repulsion and therefore lowers the valence band
more than the conduction. This band-gap-enhancing
effect is reduced, in part, by the effects of screening, so
that a decrease in the screening (which occurs in diamond
with rising pressure) implies a wider band gap. (For com-

parison, the Hartree-Fock method neglects screening en-
tirely, and routinely overestimates insulator band gaps. )

LDA is based on a jellium electronic system, so it is
not surprising that the LDA band gaps do not accurately
reflect the influence of changing dielectric properties.
The GW band gap includes more accurately the effects of
the changing screening and thus displays a larger pres-
sure coefficient.

RESULTS FOR HYDROSTATIC
PLUS UNIAXIAL STRESS

Some of the band gaps of diamond decrease under the
application of uniaxial stress, in contrast to the purely
hydrostatic case. The LDA band structures are shown in
Fig. 2 for cubic diamond at a volume of 9.02 A per
primitive cell (at a hydrostatic pressure of 126 GPa) and
in a tetragonal geometry of the same volume with the
[001] axis compressed to 86% of the [100] and [010]axes.
The tetragonal case corresponds to a stress of the form of
Eq. (1) with P =250 GPa. The minimum gap at this pres-
sure is only 0.56 eV in the LDA (see Table II). Thus, the
local-density approximation predicts metallization at a
pressure of only 290 GPa inside the sample chamber,
given the assumed distribution of stress inside the dia-
mond anvil.

The GW calculation requires an input value for ep, in
the tetragonal case, it is dependent on the direction along
which q~0. At 250 GPa, the RPA values for the densi-
ty response are 4.6 for q in the [001] direction and 5.8 in
the [100]and [010] (see Fig. 1). These two limiting values
for E'0 are averaged with a 1:2 weighting to be used as in-

put to the GW calculation [e '(q~0) is thus isotropic].
The forced isotropy of the long-range screening only
affects a few components in the dielectric matrix, and this
approximation does not reduce the accuracy of supercell
surface GW calculations where the RPA screening an-
isotropy is large. The precise value of the input E'p is
not expected to be critical to the model; varying the input
E'0 for silicon by almost 30% changes the 0.6-eV band-gap
correction by less than 0.1 eV. '

The LDA and GW band gaps for tetragonal diamond
can be seen in Table II. Band gaps decrease substantially
with pressure in both the LDA and GW. It is important
to note that the precise value of the pressure coefficient
depends sensitively on the degree of stress anisotropy in
Eq. (1). The pressure coefficient of the minimum band

TABLE I. Band gaps of diamond at zero applied pressure and the corresponding pressure
coefficients. All energies are measured in eV from the valence-band maximum; the pressure coefficients
are in units of meV/GPa. The experimental values are taken from Ref. 10, data labeled LO-LDA and
PW-LDA are local orbital LDA results from Ref. 9 and the plane-wave basis LDA results presented
here, respectively. The G8 results from Ref. 14 for unstressed diamond are 5.6 eV for the fundamental

gap and 7.5 for the direct gap; similar results (5.3 and 7.3, respectively) are obtained in Ref. 36.

Band gaps
PW-LDA GS' Expt. LO-LDA

Pressure coefficients
PW-LDA GW Expt.

E inin

Edir
g

Xi
L c

1

4.15
5.57
4.76
8.45

5.68
7.73
6.25

10.80

5.5
7.5

5.3
7.0
5.1

9.6

5.7
6.3
5.4
9.2

6.7
7.6
6.3

10.6

5+1
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35

Cubic Tetragonal well with experiment, except for minor discrepancies
such as the slight underestimate of the hydrostatic pres-
sure coefficients here. The GW metallization pressure is
therefore probably an accurate reQection of what would
be induced by the stress tensor given in Eq. (1).

Xg

bQ

&5 X4

Xg

FIG. 2. Band structures of diamond from the I to X points
3

(in the [001] direction) for a cubic crystal of volume 9.02 A per

primitive cell corresponding to a hydrostatic pressure of 126

GPa, and for the tetragonal geometry studied [of the same

volume, at a pressure given by Eq. (1) with P =250 GPa]. Note

that the symmetries of the states are unchanged from the cubic

case.

gap is estimated to be —14 meV/Gpa versus the pressure
in the sample chamber, P [see Eq. (1)]. Thus, metalliza-
tion inside the diamond anvil is expected at pressures of
the order of 400 Gpa. This disagrees with recent experi-
mental extrapolation for DAC of metallization at
700—900 GPa.

The tetragonal GW band gaps could conceivably be in
error due to the use of a model dielectric function; how-
ever, similar calculations have worked well in surface cal-
culations in a supercell geometry, where the dielectric
response is strongly position and direction dependent. "
The observed equivalence of the LDA and GW pressure
coefficients is a persistent feature of these calculations.
LDA pressure coefficients also tend to agree remarkably

ANALYSIS

The behavior of the band gaps in diamond under hy-
drostatic pressure has been understood in terms of
carbon's position as a first-row element. The low-lying
valence and conduction bands are describable by a tight-
binding 2s and 2p Hamiltonian. The atomic orbits of the
n =3 shell do not enter to lowest order; they act mainly
to concentrate bond orbitals along the axes between
nearest neighbors. It is sufficient to examine the con-
duction states at the X point, since the conduction-band
minimum lies close by in the Brillouin zone. The lowest-

lying valence and conduction states at X are sp hybrids of
X, symmetry.

Application of hydrostatic stress drives apart the
lowest X, conduction and valence states and opens the

gap. The effect is similar for the nearby conduction-band
minimum along A. A similar effect is present in group-IV
semiconductors, but in Si or Ge the conduction-band
minimum is hybridized with a higher-energy-bonding d-
orbital state from the same shell as the s and p states.
This d-bonding band falls with pressure, so that the hy-
bridized conduction-band minimum also falls in energy.
The corresponding d band in diamond derives from the
3d atomic orbital and lies too high in energy to partici-
pate much. As a result, the behavior of the conduction-
band minimum is determined mainly by the tight-binding
Hamiltonian for the 2s and 2p orbitals.

The LDA band structure of tetragonal diamond has
been obtained for a crystal at the same volume as for a
cubic calculation, for comparison purposes (Fig. 2). The
band-gap reduction in the tetragonal case derives from
two separate changes in the band structure. First, the
tetragonal distortion splits the threefold degenerate, cu-
bic I 25 valence-band maximum, yielding a singly degen-
erate valence-band maximum with a doubly degenerate
state lying 2.2 eV lower. The zero of the energy scale for
the tetragonal case is taken to be the weighted average of
the three highest valence bands at I, since the
symmetry-induced splitting occurs in a 2:1 ratio. The

TABLE II. Band gaps of diamond under hydrostatic pressure =126 GPa (cubic); and under aniso-
tropic stress, P =250 GPa in Eq. (1) (tetragonal). All energies are measured in eV from the valence-
band maximum. Z refers to the Xpoint in the [001]direction; X refers to the [100]and [010]directions.
The pressure coefficients are for the tetragonal case in meV/GPa in terms of P in Eq. (1). Note the sen-
sitive dependence on the stress anisotropy of the pressure coefficients as compared to Table I.

Cubic
band energies

LDA G8

Tetragonal
band energies

LDA GR'

Tetragonal
pressure coeff.

LDA GR'

Emin

nadir

L c
1

Xl
Zc

1

4.77
6.22
9.41
5.31
5.31

6.39
8.52

11.88
6.89
6.89

0.56
3.63
6.46
5.46
1.17

2.07
5.71
8.45
6.96
2.49

—14.4
—7.8
—8.0

2.8
—14.4

—14.5
—8.1
—9.4

2.9
—15.1
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splitting reduces the tetragonal gap by 1.5 eV. Second,
the conduction-band minimum along [001] (the direction
of stress) decreases in energy (see Fig. 2). (The conduc-
tion band at the I point also decreases, as a result of the
same symmetry-induced splitting that occurs for the
valence-band maximum. )

The decrease of the conduction-band minimum is not a
result of the reduced symmetry of the tetragonal crystal.
The [001]compression does not change the symmetries of
the b line and X point in the [001] direction, so there is
no splitting of degeneracies. Therefore, the movement of
the lowest conduction state cannot be explained by new,
reduced-symmetry-allowed admixtures with nearby
bands. Instead, the behaviors of the X, -symmetry bands
must be understood in terms of changes in specific values
of matrix elements of the s and p tight-binding Hamil-
tonian.

The lowest states of Xi symmetry (with kx = [001]) in
both the cubic and tetragonal crystals are composed pri-

marily of linear combinations of s and p orbitals of the
form

1
(S+l'P[ooi ] )v'2

on each atomic site. This is true in the cubic case as well,
and similar decompositions with s and p,p orbitals ap-
ply in the tetragonal [100] and [010] directions. These
linear combinations of orbitals can be envisioned as ellip-
soidal orbitals having a phase that smoothly varies by
tr/2 from one end to the other. It is sufficient to examine
these tight-binding orbitals on the diamond-lattice basis
sites [0,0,0] and [ —,', —,', —,']au with phases consistent with

kz = [001] to understand the behavior of the
conduction-band minimum. (Note that k+=[001] and

[001]are degenerate, so that only one conduction and one
valence band need be considered. )

Phases for the tight-binding wave functions are shown
in Figs. 3 and 4 for valence and conduction bands, along
with contour plots of the densities for the actual LDA
wave functions. The density plots along the inequivalent

FIG. 3. (a) Ball-and-stick plot of the [110]chain in tetragonal
diamond labeling the phases of the tight-binding orbitals of Eq.
(8) for an I, valence (kx=[001]) state. Note the equivalent
phases all along the center of the [110] chain and opposite
phases at the sides of neighboring chains. (b) Charge density (in
electrons per primitive cell) of the self-consistent Z& valence
state in tetragonal diamond. The minima are located between
neighboring chains, consistent with the interpretation in the
text.

[IIO]
FICs. 4. (a) Ball-and-stick plot of the [110]chain in tetragonal

diamond for an X, conduction state. The conduction state has

alternating signs running along the center of the [110]chain but

the same phases on the edges of neighboring chains. (b) Charge
density (electrons per primitive cell) of the self-consistent Z&

conduction state in tetragonal diamond. Minima lie along the
center of the [110]chain, consistent with (a) and the text.
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[101] ([Oll], etc.) chains are not shown, as they do not
display strain dependences as clearly. It is clear from a
bonding-antibonding picture that the valence state can
lower its kinetic energy upon compression along the [110]
direction, while compression along [001] will raise it [see
Figs. 3(a) and 3(b)]. In the latter case the neighboring
[110]chains are squeezed together, bringing the nodes of
the wave function closer and raising the kinetic energy; in
the former case the longitudinal compression of the [110]
chains forces them farther apart.

The opposite situation is true for the conduction band
[Figs. 4(a) and 4(b)]; hence, the conduction band falls
with [001] compression. The Xi states at [100] and [010]
behave in precisely the opposite way (see Table II for nu-
inerical data). The behavior under hydrostatic pressure is
a combination of these two effects.

The average energy of these X& valence and conduction
states should be constant, since the splitting is a result of
the tight-binding Hamiltonian acting on the degenerate
sp orbitals. This is, in fact, observed for the two LDA
calculations (performed at a fixed unit-cell volume) in
Fig. 2 and Table II by comparing the average of the X&
valence and conduction states to the center of the three-
fold complex at the valence-band maximum. The
differences are constant to within 0.4 eV, despite substan-
tial changes in the detailed band dispersions.

The qualitative behavior of the calculated diamond
band gap is thus easily understood, but the quantitative
discrepancy with experiment must still be explained. The
quoted experimental values are obtained by examining
the optical absorption versus energy for light reflected
from a solid metal gasket inside the DAC. The optical
absorption onset falls with pressure, and the trend is ex-
trapolated to zero gap. Pressures are obtained from the
x-ray diffraction lines of the metal gasket. These optical
measurements probe the region of smallest band gap.
This is probably also the region of maximum anisotropy
in the stress. The experiment might be expected to un-
derestimate the metallization pressure, since defect ab-
sorption should also contribute. On the other hand, the
region of maximum anisotropy is small and therefore
contributes relatively little to the total absorption. Refer-
ence 17 indicates that the region of maximum anisotropic
stress has dimensions on the order of the size of the DAC
flat, i.e., 10 pm. This could result in an overestimation of
the experimental band gap, particularly since the onset of
bulk absorption might be mistaken for defect contribu-
tions. Despite the experimental complications, the stress
tensor that is assumed for the GS' calculation is the
likeliest source of the discrepancy between experiment
and theory.

If the minimum band gap were dependent on only one
variable, then the state of stress could be estimated by
comparing GW calculations to the measured band gaps.
However, a decrease in the minimum band gap can arise
from one of two changes in the applied stress; either the
degree of anisotropy can change while, e.g., leaving the
volume fixed, or the ratio between [001], [100], and [010]
stresses can be maintained while increasing all three.
Thus, the GR' results for the minimum gap alone cannot
be used to deduce the state of stress.

4
'~

I. . . . I. . . . I

100 200 300 400 500

P (GPa)

FIG. 5. LDA value for the minimum band gap in eV vs the
pressure P for stresses of the form [Eq. (1)]

029 0 0
0 0.29 0 P
0 0 089

for the dotted line, and (hydrostatic)

1 0 0
0 1 0 P
0 0 1

for the solid line.

~\
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FIG. 6. LDA direct band gap (dashed line) and minimum
band gap (solid line) vs the amount of stress anisotropy
~=o.

~oo&~
—0.

~&00~ obtained while keeping the cell volume fixed.
The maximum anisotropy corresponds to the form of Eq. (1),
while zero anisotropy corresponds to the hydrostatic pressure
required to give the same cell volume.

It may be possible to deduce further information by ex-
amining other stress-dependent quantities. This has been
done in the past with Raman spectra, where the
Gruneisen parameter plus the splitting of the threefold
degenerate zone center mode can provide enough infor-
mation to fix the hydrostatic and uniaxial components of
the stress state in a small volume. '

Similarly, the direct and minimum band gaps depend
on the hydrostatic and uniaxial strains in different ways
(Figs. 2, 5, and 6). The widening of the band gaps under
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hydrostatic stress is explained in terms of the splitting of
bonding and antibonding sp states. ' A straightforward,
symmetry-induced splitting then lowers the conduction
band at I upon application of uniaxial stress (Fig. 2).
The conduction-band minimum decreases in energy for a
different reason, so it has a different dependence on uni-
axial stress. This suggests that accurate measurements of
the minimum and direct band gaps together can uniquely
fix the state of stress by comparison to theoretical calcu-
lations.

CONCLUSIONS

The pressure dependence of the diamond direct and
minimum gaps has been studied under hydrostatic pres-
sure and hydrostatic pressure plus uniaxial stress.
Stresses inside a diamond-anvil cell along the central axis
can be described by this two-dimensional parameter
space. The effects of shear which is present away from
the central axis have not been considered.

All band gaps increase with hydrostatic pressure in
both the local-density and GW approximations. The
LDA is reasonably successful in predicting pressure
coefficients as compared to low-pressure experiments and
as compared to the GW pressure coefficients. In the case
of anisotropic stress, the theoretical results for the
change in the band gap are not in agreement with the ex-
periment, probably because the assumed stress tensor
does not reflect the experimental situation.

The origin of the band-gap changes under hydrostatic

pressure is easily understood from a simple sp Hamiltoni-
an framework, as well as the dependence on the stress an-
isotropy. The quantitative discrepancy with experiment
is not surprising, given the sensitivity to anisotropy. It is
desirable to reconcile these results with experiment by
means of a more precise stress-strain calculation. A
purely computational approach to this problem offers a
particularly easy way to test the optical parameters of a
DAC under different conditions. The combination of
good estimates of mechanical strain with accurate band-
structure calculations would also make the prediction
and engineering of diamond-anvil-cell properties possible.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR88-
18404 and the Director, Office of Energy Research, Office
of Basic Energy Sciences, Materials Science Division of
the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098. We particularly wish to thank A. L.
Ruoff for providing copies of unpublished work with in-
formation on the stress tensor in a DAC and for helpful
comments. We would also like to thank G. Martinez and
D. Erskine for discussions. One of us (M.P.S.) also
wishes to acknowledge Anthony Chen, J. L. Martins, Al-
berto Garcia, and Xuejun Zhu. CRAY computer time
was provided by the NSF at the Pittsburgh Supercomput-
er Center and the DOE at the National Energy Research
Supercomputer Center.

'R. Reichlin, M. Ross, S. Martin, and K. Goettel, Phys. Rev.
Lett. 56, 2858 (1986).

~R. Reichlin, K. E. Brister, A. K. McMahan, M. Ross, S. Mar-
tin, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. Lett. 62, 669
(1989).

R. J. Hemley and H. K. Mao, Phys. Rev. Lett. 63, 1393 (1989).
4H. K. Mao, R. J. Hemley, and M. Hanfland, Phys. Rev. Lett.

65, 484 (1990).
~J. H. Eggert, F. Moshary, W. J. Evans, H. E. Lorenzana, K. A.

Goettel, and I. F. Silvera, Phys. Rev. Lett. 66, 193 (1991).
P. M. Bell, H. K. Mao, and K. Goettel, Science 226, 542 (1984);
J. A. Xu, H. K. Mao, and P. M. Bell, ibid. 232, 1404 (1986).

7A. L. Ruo6; H. Luo, and Y. K. Vohra, J. Appl. Phys. 69, 6413
(1991).

8P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Phys.
Rev. B 34, 1314 (1986), and experimental references therein.

S. Fahy and S. G. Louie, Phys. Rev. B 36, 3373 (1987), and ex-
perimental references therein; see also S. Fahy, K. J. Chang,
S. G. Louie, and M. L. Cohen, ibid. 35, 5856 (1987).
Numerical Data and Functional Relationships in Science and
Technology, edited by O. Madelung, Landolt-Bornstein, New
Series, Vol. 17a (Springer-Verlag, New York, 1982).

O. H. Nielsen, Phys. Rev. B 34, 5808 (1986).
J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
L. J. Sham and M. Schliiter, Phys. Rev. Lett. 51, 1888 (1983).

~~M. S. Hybertsen and S. G. Louie, in Proceedings of the I7th
International Conference on the Physics of Semiconductors,
edited by D. J. Chadi and W. A. Harrison (Springer-Verlag,
New York, 1985), p. 1001; Phys. Rev. Lett. 55, 1418 {1985);
Phys. Rev. B 34, 5390 (1986).

Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719
(1989).
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 37, 2733
(1988).

' A. L. Ruoff and H. Luo (unpublished).
' S. L. Adler, Phys. Rev. 126, 413 (1962); N. Wiser, ibid. 129, 62

(1963).
' D. M. Adams and A. C. Shaw, J. Phys. D 15, 1609 (1982).

W. C. Moss, J. O. Hallquist, R. Reichlin, K. A. Goettel, and
S. Martin, Appl. Phys. Lett. 48, 1258 (1986); W. C. Moss and
K. A. Goettel, ibid. 50, 25 (1987).
M. Hanfland and K. Syassen, J. Appl. Phys. 57, 2752 (1985).
M. Hanfland, K. Syassen, S. Fahy, S. G. Louie, and M. L.
Cohen, Phys. Rev. B 31, 6896 (1985).
J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409
(1979);13, 3095(E) (1980).
N. Troullier and J. L. Martins, Solid State Commun. 74, 613
(1990);Phys. Rev. B 43, 1993 (1991).
O. H. Nielsen and R. M. Martin, Phys. Rev Lett. 50, 697
(1983);Phys. Rev. B 32, 7780 (1985).
F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 3, 244 (1944).
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585
(1987);35, 5602 (1987).
R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. B 1,
910 (1970).
L. Hedin, Phys. Rev. 139, A796 (1965).
W. von der Linden and P. Horsch, Phys. Rev. B 37, 8351
(1988).
S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).
H. Chacham, X. Zhu, and S. G. Louie, Europhys. Lett. 14, 65



45 BAND GAPS OF DIAMOND UNDER ANISOTROPIC STRESS 8247

(1991).
R. Dovesi, C. Pisani, F. Ricca, and C. Roetti, Phys. Rev. B 22,
5936 (1980);W. von der Linden, P. Fulde, and K.-P. Bohnen,
ibid. 34, 1063 (1986).
X. Zhu, S. B. Zhang, S. G. Louie, and M. L. Cohen, Phys.
Rev. Lett. 63, 2112 (1989); X. Zhu and S. G. Louie, Phys.

Rev. B 43, 12 146 (1991).
~~L. Panling, The Nature of The Chemical Bond, 3d ed. (Cornell

University Press, Ithaca, NY, 1980), p. 126.
R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. B 37,
10 159 (1988).


