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Bound-state formation on a spherical shell: A model for superconductivity of
alkali-metal-doped C6p
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We show that an attractive interaction between two electrons confined to the surface of a sphere
gives rise to a bound state, no matter how weak the interaction is. We explore the similarity between

a sphere and a (two-dimensional) plane as far as pairing properties are concerned. We also discuss the
relevance of the model to a recently discovered superconductor, alkali-metal-doped C60.

The cage-structure carbon clusters, C„„have been can-
didates for unusual materials providing novel properties. '

It is now contemplated that C„„a superatomlike basis,
can form crystals with adjustable properties since the size
and the symmetry are controlled by m. Recently, C&o has
been shown to be stable in the truncated-icosahedron
structure. Moreover, C6n was found to be a direct-band-
gap semiconductor in the solid phase. Self-consistent
field (SCF) calculations based on the local-density ap-
proxirnation predict that this solid phase is stable in the
fcc structure with a 1.6 eV (per basis) cohesive energy
and has a direct band gap of 1.5 eV. The calculated elec-
tronic structure of the solid C6o indicates that intermolec-
ular interactions are weak due to the small overlap of
molecular orbitals. ' Nearest-neighbor interaction in the
solid phase can be compared with the interlayer interac-
tion in graphite. The latter is known to be weak. In fact,
photoemission measurements along with the results of
those SCF calculations imply that the electronic states of
the solid phase can be described to some extent by the
states of isolated Csn. On the other hand, the C6c struc-
ture can be visualized as a single, two-dimensional (2D)
graphite layer consisting of pentagons and hexagons
which is wrapped on a sphere. The effective dimensionali-
ty of this sphere and properties in conjunction with it are
already of interest for studies on low-dimensional electron
systems.

More recently, C6n has been found to be a superconduc-
tor after treatment with alkali-metal atoms. The apparent
T; of K C6p, Rb„C60, and Cs C6p (x —3) samples were
measured at 18, 28, and 30 K, respectively. In the iso-
lated C60, the lowest unoccupied molecular orbital
(LUMO) state is =5 eV below vacuum level and also is
1.9 eV above the highest occupied molecular orbital
(HOMO) state. ' The valence electron of an alkali-
metal atom has low aSnity, and thus can easily be donat-
ed to LUMO. A similar situation was already pointed out
for K and Na adsorbed on Si surfaces. ' According to the
results of the SCF pseudopotential calculations based on
the local-density approximation, the alkali-metal atoms
are adsorbed at the centers of the hexagonal rings above
the atomic plane. These are the low-charge-density loca-
tions on the surface. At low coverage, the adsorbed alkali
atoms donate their valence electrons to the empty surface

states which attributes a 2D metallic character to the
semiconductor surface. It is now interesting to under-
stand how the alkali-metal valence electrons occupying
the LUMO state are paired in a fullerene, and how a pair
can move in its ordered phase (fullerite).

In this paper we investigate the two-electron problem
on a sphere representing a single C60 molecule with elec-
trons donated from adsorbed alkali atoms. We found that
two electrons on a sphere form a bound state no matter
how weak the attractive interaction is. This suggests that
the superconductive phase of alkali-metal-doped Csn solid
is achieved upon the formation of electron pairs on ful-
lerenes. These pairs can move between adjacent ful-
lerenes via Josephson-like tunneling. The validity of the
model depends upon to what extent a C6n molecule has
spherical symmetry and whether the intermolecular over-
lap integrals are small enough to preserve the localized
nature of LUMO electrons in the solid phase.

We first consider two particles moving on the surface of
a sphere which are interacting with each other via a po-
tential depending upon relative coordinates of the parti-
cles only. Since this problem can be reduced to an
effective one-body problem, or central force problem on
the surface of a sphere, it is enough to study the motion of
a particle in the field of an attractive potential. As is well
known, in one- and two-dimensional cases, a bound state
is formed no matter how weak the attractive interaction
is. ' ' In 3D, on the other hand, one requires a critical cou-
pling strength to form a discrete level below the continu-
ous spectrum. Note that this is not in contradiction with
the Cooper problem where two electrons are always bound
since they are above a Fermi surface of a many-electron
system. In our system, there are only a few free electrons
on a C60 sphere, so a Fermi surface cannot be defined.

In spite of the fact that the solid C60 is a 3D system, the
surface of a C60 molecule has 2D character. Consequent-
ly, one expects behavior reminiscent of the perfect 2D
case, i.e., a bound state even for a very weak attractive in-
teraction. To verify this conjecture, we first evaluate the
Green's function Go for the free particle, and then treat
the attractive interaction perturbatively. We sum the
infinite perturbation series to find the Green's function G
and show that it has a pole at negative energies.

The Green's function for a free particle of mass m con-
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where n and n' are the position vectors on the unit sphere,
P& is a Legendre polynomial, and e is the energy of the
particle in units of ER=h /2mR . Equation (1) can be
verified easily by using the fact that eigenstates are given
by spherical harmonics Y("'(8,&).

We now assume that a weak attractive interaction Vp is
effective in a solid angle Qp. Under these circumstances
we examine the Green's function G(n, n';e) to find if it has
a pole in the interval l —Vp, 0]. Since Vp 0+ for a weak
interaction, we have to find G(n, n';s) as s 0 . In this
limit Gp(n, n';s) can be evaluated in a closed form. For
this purpose, we approximate the summation in Eq. (1) by
neglecting s dependence of all the terms except 1=0.
Noting that (2l+1)/l(l+ I ) =1/I+1/(l+1), we obtain'

1 1
—nn'

Gp(n, n';e) = —+ln +1
4xER e 2

(2)

Here, the logarithm term indicates that the above model is
similar to the 2D free particle problem. It is seen that Go
exhibits a logarithmic singularity as the two points ap-
proach each other. This is consistent with the observation
that a very small portion of the surface of a sphere can be
approximated by a 2D plane. The singularity of Go and s
goes to zero in Eq. (2) is stronger than Gp of the 2D plane
which changes with the logarithm of a ' ' Such a
difference is expected since the energy spectra are quite
different in the two cases. In fact, I/s behavior in Eq. (2)
instead of in@ as in the perfect 2D case originates from
discretization of the energy levels. If the difference be-
tween these discrete energy levels becomes very small,
then the approximation made to obtain Eq. (2) is no
longer valid. In this case, we cannot separate out I/e and
neglect the s dependence of the other terms, but consider
all the terms of the form I/(s —x) where x is now a con-
tinuous variable instead of discrete l(l+1). Adding those
terms by integration'over x, we end up with a logarithmic
singularity. This is an expected result since the spacing of
discrete energy levels is controlled by R, and the sphere
approaches a plane as R increases indefinitely. It is seen
that the Green's functions for a particle on the surface of
a sphere and on the (2D) plane are similar in the ap-
propriate limits as far as the position (n, n') and energy
(s) dependences are concerned.

Knowing Go and Vo, we can find by means of the per-
turbation expansion

G(n, n';s) =Gp(n, n';R) —
Vp& „dn~ Gp(n, n~, R)

0

x Gp(n~, n';R) + . . . (3)

Here, for the sake of simplicity we assume that Vo is a
constant interaction, i.e., independent of the relative posi-
tions of the electrons, and is effective only in the solid an-
gle 00. For n. n'&1 and a&0, Go is finite. Thus, G can be
calculated by summing the series. We approximate the

stra]ned to move On the surface of a sphere of radius R is
given by

1 21+1
Gp(n, n';s) =- P((n. n'),

4(rER (=p e —l(l+1)

product of the Green's functions by factoring out Go and
by using the average values (Gp) &, for the rest. Therefore,
we calculate (Gp) „„which is found to be
[I/s+4h ( —,

' In6 —
—,
' )+ I]/4(rER where 0 (8 & 1. Since

s 0, (Gp) „, can be very well approximated by
+

I/4(rERs. At the end we obtain

Gp(n, n';e)
G(n, n';ej =—

I + Vpflp/4(rERe
' (4)

It is seen that a negative energy level F. =E'ER
VpQp/4(r corresponding to a bound state is always

formed, even for a very weak interaction. The origin of
this interaction is beyond the scope of this study. Never-
theless, we assume that the net interaction between the
electrons on the sphere is attractive. In principle, Vo con-
tains Coulomb repulsion and an attractive mechanism,
most probably due to the vibrational modes of fullerene.
Note that the wave function of the two-electron system
has to by antisymmetrized. However, the energy eigen-
values remain unchanged after the antisymmetrization.

So far we have shown that a two-electron system on a
sphere is unstable against pair formation. We next con-
sider a solid phase formed by the spheres in the foregoing
discussion. When these spheres are placed at lattice sites
they begin to interact with each other weakly. The super-
conductivity has been observed for approximately three
alkali-metal atoms per C60 molecule. Two of these three
electrons will fill the first conduction band while the third
one creates a half-filled metallic band. Therefore,
effectively we are left with one electron per C60 molecule
and these electrons are free to move from site to site.
Thus, we can assume that two electrons can come together
on a sphere to form a bound state as we discussed above.
The increase in the Coulomb energy due to the occupation
of a sphere by a fourth electron is expected to be negligi-
ble because these materials exhibit metallic behavior in

the normal phase.
Note that superconductivity is not achieved by Bose-

Einstein condensation even though the electrons move in

the form of tightly bound pairs. Otherwise, the measured
critical temperature would require an on-site interaction
of 30-40 eV since the value of transfer (hopping) integral
inferred from band-structure calculations is only -0.1

eV. In view of this argument, we propose that supercon-
ductivity occurs as a result of formation of pairs in units
(i.e., on C6p spheres), which are coupled by Josephson in-

teraction. The situation is reminiscent of the supercon-
ductivity of layered systems where the 2D Fermi liquids in

the layers are unstable against Cooper pairing and they
interact via interlayer tunneling. In the present case lay-
ers are replaced by spheres which can be occupied by only
a few electrons and the origin of the pairing is not Cooper
instability but a dimensionality effect. For layered ma-
terials it can be shown that the critical temperature T,. is

not altered by the Josephson coupling. ' Therefore, in the
present case it is expected that kgT VOQO, which leads
to a reasonable value for the coupling constant Vo. Since
the infinite layers are replaced by finite spheres, charging
effects due to the occupation of a sphere by an excess pair
can be important. In fact, treating the C60 molecules as
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spherical capacitors we find that charging energy is a few
eV. This implies that the C60 molecule can be occupied by
only one pair (formed by the third and the fourth elec-
trons donated by the alkali-metal atoms) when the solid is
in the superconductive phase. Nevertheless, for a correct
description of the system, a 3D net of Josephson junctions
including charging effects should be studied in detail.

In conclusion, we have shown that in analogy to 2D and
ID systems, an attractive interaction always yields a
bound state for particles constrained to move on the sur-
face of a sphere. In the crystal composed of those spheres,
a transition to the superconducting phase associated with

the formation of pairs can be observed. Such a mecha-
nism can be thought to be operational in the superconduc-
tivity of the alkali-metal-doped C60 solid. Nevertheless,
existing data about this class of materials are incomplete,
and do not allow us to draw conclusions about the origin
of the attractive interaction and the nature of the mecha-
nism of the superconductivity.
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