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Carlsson-Gelatt-Ehrenreich technique and the Mobius inversion theorem
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The Mobius inversion theorem is first applied to different lattices so as to improve the Carlsson-
Gelatt-Ehrenreich technique and give very fast convergence.
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It is well known that pairwise potentials are widely used
in calculations of mechanical and defect properties of
metals. The inverse cohesive energy problem is to deter-
mine the pairwise potential from the ab initio calculated
or experimentally measured cohesive energy. ' Carlsson,
Gelatt, and Ehrenreich (CGE) have derived an exact pro-
cedure to convert the cohesive energy of an isostructural
one-component system as a function of volume to find the
radial pair potential, with evaluation of the applicability
of this pairwise potential ~

' Here, we present an im-
proved method based on the Mobius inversion formula
with very fast convergence.

Assuming that for a given crystal structure the cohesive
energy E of one-component system can be written as a
sum over atomic sites of a radial pairwise potential

E(ri)= 2 Z +(IRI) =-,' Z W„e(&„ri),
R~O p

where r t is the nearest-neighbor distance and 4 is the
pairwise potential. In the final expression of Eq. (I) the
sum is over spherical shell, p, containing Wp atoms at a
distance r~ =s„r

~
from the atom at the origin, and s„ is

the dimensionless ratio of the pth-neighbor distance to the
nearest one r ~. Equation (1) can be written in terms of a
linear operator L:

E(r~) =Lett(r~) =g T„et'(r~)
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respectively. In practice, calculating Eq. (7) would be a
time-consuming process with slow convergence. It would
be convenient to combine the same E(nr) terms together
from diA'erent summations in Eq. (7). In other words, it is
possible to express Eq. (7) as

@(r) =E (r ) + g p (n) E (nr ) (8)
n~2

if the inversion coeScient p(n) in Eq. (8) can be deter-
mined. This is possible from the Mobius inversion
theorem which states ' that if

F(x)= g f(nx)
n l

for the pairwise potential in terms of the cohesive energy
function. Notice that all the parameters s„and W„are
determined by the crystal structure under consideration.

For the linear atomic chain, W„=2 and s„=p, then (1)
and (5) become

E(r) = g @(nr) (6)
n I

and

@(r)= E(r) —g E(pr)+ g E(pqr)
p 2 p, q 2

T„f(x) = ( I /2) W„f(s„x) .

Therefore,

T) 'E(r)

(3) then

f(x) = g p(n)f(nx) (10)
n I

and vice versa, provided that the related sums converge.
Thus, the coe%cient p(n) in (8) is just identical to the
Mobius function in (10) defined as

XT) 'E(r).
Substituting Eq. (3) in Eq. (4), the final result can be ob-
tained,

l, whenn=l,
p(n) = ' ( —1)', when n is a product of s distinct primes,

0, when n includes repeated factors.

This indicates a lot of cancellations in Eq. (7), which is
important to speed the calculation based on the Mobius
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+4 g e[[p'+(p+q)']'".].
p, q I

(i 3)
I

theorem. Now let us use the theorem to improve the CGE
technique.

From the above example of the linear atomic chain, the
effect of the TI in the original CGE scheme only applies
to the nearest neighbors, and in our modified CGE
scheme, the effective operator T I is expanded signi-
ficantly as

T( f(x) = g f(nx),
n I

which applies to all the atoms in the chain, and we know
the existence of T~* ' based on the Mobius theorem.

Since both the operators I. and T~ in Eqs. (2) and (3)
are structure dependent, in this paper we only present
some examples for illustrating the new scheme. The dom-
inate point is to determine the operator TI, and give the
explicit expression of the corresponding inverse operator
T age

—I
I

For a square lattice, the cohesive energy can be written
as

~(.) =2 g e[[p'+(q- I)']'~"]. (i2)
p, q I

According to the CGE scheme, when (p, q
—I ) ~ 8, there

exist 41 different sp terms with a maximum value of 128.
According to our modified CGE scheme, Eq. (13) can

be rewritten as

E(r) = 2 g bb(nr)+@(J2nr)]
n I

F|G. l. A 20 square lattice that can be divided into eight
equivalent sections.

where the terms @(nr) represents the coordinate axes and
A(J2nr) corresponds to diagonals as shown in Fig. 1.
Now let us define the operator TI* as

T~ f(r) =2 g [f(nr)+f(J2nr)], (i4)
n I

then the corresponding inverse operator T ' can be ex-
pressed as

T~ f(I ) =
~ g ( I ) m ~

p( )nf(2 mt— h' ~r) (15)
nr, n I

since

Ti* 'T f(r) = —,
' g ( —I)"' ' (n)T~ f(2 "' nr) = g ( —1)"' p(n)[f(2t"' ' nsr)+f(2 ' 2&gnsr)]

n], n = I nt, n, s I

1

= g p(n) g ( —I)"'+ g (—I)"' ' f(2"'~ nsr) = g p(n)f(nsr) = g g(sr) =f(r) (i6)
n=l n~ 0 nt =

I n, s = I s=l

where g(r) =P„-~p(n) f(nr) is used. From the second summation in Eq. (14), one can construct the s„with 63 diff'erent

sp; the maximum is 320. This indicates the faster convergence of the modified CGE scheme than the original one. After
choosing T~, Eqs. (3) and (4) are still available except that the atoms in the most close-packed direction need not be
counted again. Therefore, we have

4(x) =
1
—g T)* 'Tp+ g T) 'T„T) 'T„— T* 'E(x) = —,

' g ( —I)"' 'p(n)E(2' "'nx)
p 2 p,q 2 ln, n I

I

4
nt i, nr 2, n l, n2 = I

( —I)""+"" p(n~)p(nq) g TpF. (2 ' ' n)n 2)x+, (17)
p 2

where, as in Eq. (14), the T„ is equal to

T„E(x)=4E(s„x), for s„~64.
ln practice, these terms alone are enough for calculating
with high accuracy and stability.

The hexagon lattice essentially is a complex lattice. As
shown in Fig. 2(a), one can introduce a line to separate
the lattice into the upper and lower parts. Let us reflect
all the lattice points marked by circles in the upper half-
space to the lower one; all the lattice points marked with
open circles will go to the centers of hexagons in the lower
half-space [see Fig. 2(b)]. After this so-called partial
symmetry operation, each of the half-spaces has a single
structure. The upper one has an elementary parallelo-

+3 g [+[(3p'-+q +3pq)'~ r]
p, q

= I

+eh[3(3p +q +3pq) ' r]J .

In Eq. (19), the terms of 4(nr) represent the most close-
packed directions, and +(J3nr) and N(3nr) correspond

(18)

I

gram with a length of 43x, and the lower one with the
length x. Since the partial symmetry operation does not
change the distance of any lattice point from the origin, it
does not affect our calculation. Therefore, the cohesive
energy can be rewritten as

E(x) = —g [&(nr)+2@(J3nr)+&(3nr)l
n=I
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to secondmost and thirdmost close-packed directions. Ac-
cording to our modified CGE scheme, the operator Tl
can be chosen as

and the corresponding inverse operator is

Tl 'f(x) = —,
' g ( —I)"'+"p(gg)f(3'"'+"'" ' )

nt, n, u I

Tl f(x) = —', g [f(nr)+2f(J3nr)+f(3nr)] (19)
n I

I
since

(20)

Tn —(Tnf(x) —2 g ( 1)m+u&(n) Tuf(3(m+ u)/2 —lnr)
nt, n, u I

( 1 )m+utg (gg) [f(3 (m+u)/2 (gg&&) + 2f(3 (m+u)/2 —l J3/gU&) +f(3 (m+u)/2 —
l3tgU&)]

nt, n, u, t «I

( 1 )m+u~ (n) [g(3 (m+u)/2 ln&&r+g(3 (m+u)/2 —lan )]
n, n, u, t I

where

g(x) -f(x)+f(v 3x) .
Similar to Eq. (17), it is given

Tn —
I Tnf(x) g ( 1)m —

ltg(gg) g ( 1)u+ g ( 1)u —
I g(3(m —I)/2+u/2/gpr)

(21)

(22)

m, n, t I u 0

( 1)m I
tg( gg)[—f( 3( m—I)/2/gg'r)+f(3(m —I)/2 jggggr)] g p(tg)f(ggUr) f(&)

ni, n, t I n v I

The three-dimensional (3D) close-packed hexagonal structure lattice can be treated in the similar way.
The cohesive energy for fcc structure can be written as

E(x) -3 g e(nx)+6 g (e[(p'+q')' 'x]+ej[(p —
2 )'+(q ——,

' )']'/'x])
n I p, q I

+4 g (e[(p'+q'+u')' 'x+3ej[(p ——,
' )'+(q —

—,
' )'+u']'/'x])

p, q, u I

6+ [@(nxjJ2)+ —,
' @(nx)]+6 g (4[(p +q )' x]+@j[(p—

—,
' ) +(q —

—,
' ) ]' x])

n I

+4 g (e[(p2+q 2+u') (/2x]+3@j[(p ——')2+ (q —
2 )'+u'] '/ x]) .

p, q, u I

(23)

(24)

Introducing an operator T I so that

Tl f(x) 6 g [f(nx/J2)+ & f(nx)],
n I

it can be shown, as before, that

Tu —(f(x) I g ( I )m —It( g)fgg(2
/2mg)gx

nf, n I

(26)

where f(x) is any function which makes the above sum-
mations convergent. Based on this formula, Mookerjee et
al. have completed an ab initio pairwise potential calcula-
tion for copper successfully and Li et a/ have comp. leted
the calculation for Cu, Al, and Ni.

The cohesive energy for a bcc structure can be given as

»r»J»J»J»&»&»&»

(b)

LIL,

LIL
ILr

~r
IL
»(
IL,

u pper

ILILILIL IL
L ILILIL I F1G. 2. (a) A 2D hexagonal

lattice is separated into two parts
by the line shown in this figure.
All the points marked by 0 in

the upper part are reflected to
the lower part as the centers of
all the hexagons. This is the so-
called partial symmetry opera-
tion. (b) After the partial sym-
metry operation, both the upper
and lower semiplanes become
single structures.

lower lower
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E(x) =3 g e(nx)+6 g [e[(p'+q') 't'x]]
n=l

+4 Q (e[(p'+q'+u') ' 'x]+e[(p ——, )'+(q ——,
' )'+(u ——,

' )'] ' 'x])
p, q, u =

I

=4 g [e(J3nx/2) + —,
' e(nx) ]+6 g e[(p +q ) 't x]

n=l p,q=l

+4+ (e[(p'+q'+u') ' 'x]+e[[(p —
& )'+(q —

&
)'+(u —

—, )'] ' 'x]), (27)

where the terms e(J3nx/2) are from diagonals (the most
closed-packed direction in bcc structure), the terms
e(nx) represent the axis which is the secondmost close-
packed direction, and the g' means that the sum is not
over the case of p=q=u. For our modified CGE tech-
nique, we define the operator B by

I

and the inverse operator can be obtained as

8 'f(x) =
4 g ( —1)"' '( 4

)"' 'p(n)f[(2/J3)"'nx]
nr, n =

I

Bf(x) =4 g [f(J3nx/2)+ ,' f(nx)]-,
n=l

(2S) since

8 'Bf(x) = —,
' g ( —1)"' '(4 )"' p(n)Bf[(2/J3)'nx]

nr, n =
l

( —I)"' '( —)"' 'p(n)[f[(2/J3)"'(J3/2)nsx]+(3/4)f[(2/J3)"'nsx]]
r&r, n, s =1

= g p(n) f(nsx) =f(x) .
n, s = l

(30)

Li et al. have completed a calculation for Mo and Cr suc-
cessfully [9].

The Mobius function and the Mobius theorem are in-

troduced to solve the important inverse cohesive energy
problem proposed by Carlsson, Gilatt, and Ehrenreich,
and a modified CGE scheme is obtained with very fast
convergence. There are several reasons for the fast con-
vergence. First, T

1
has covered the most important series

of atoms instead of only the nearest neighbors. Second,
the Mobius function allows cancellations of many terms
that have to be calculated in the original CGE scheme.
Third, the higher-perturbation terms play a much smaller
role since the operator Tl* ' is much more powerful then

Tl '. By this method, many calculations for pairwise po-
tentials become realistic since ab initio calculations for
cohesive energy with variable lattice spacing are already
available today. Of more importance is that the method
indicates the potential application of number theory to
physics 5 6 I 0 1 3

As Carlsson, Gelatt, and Ehrenreich have indicated, '

there exist here the advantages and shortcomings of the
radial pairwise potential approximation represented by
Eq. ( I ). It might be desirable to include volume-
dependent or density-dependent eA'ects in a more explicit
fashion, accompanied by the presented method. As well

as the ion-ion interaction, ' ' the anisotropic properties are
also needed for further study.
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