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Ostwald ripening in two and three dimensions
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We present a new theoretical approach to Ostwald ripening of droplets for both two- and three-
dimensional systems, where screening effects due to interacting droplets are incorporated. The
solution of our mean-field equations gives both the coarsening rate and the droplet distribution
function. The three-dimensional results conform well to experiments, while our two-dimensional
results are in agreement with a numerical study we have performed.

When a binary mixture is cooled from the disordered
phase into the two-phase metastable region (where the
volume fraction P of the minority component is small) the
minority component condenses into spherical droplets.
On average, the droplets grow in radius R(t) as time goes
on while their number decreases: large droplets grow by
the condensation of material diffused through the ma-
t, rix from small evaporating droplets. This phenomena
is called Ostwald ripening. The classic theory for this is
due to Lifshitz and Slyozov, who studied the limit in
which the volume fraction of the minority phase tends
to zero, i.e. , P ~ 0. In an elegant calculation they de-
termined the asymptotic growth rate of the droplets to
be R = (Itt)i~s, where Iw is the coarsening rate, and
the bar denotes an average. Furthermore, they found
that the droplet distribution function obeyed the scaling

form f(R, t) = g(R/R)/R for late times, and gave an
expression for g(z), the scaling function. These features,
power-law growth and scaling, are now considered uni-
versal characteristics of the kinetics of a first-order phase
transition. s The theory of Ostwald ripening by Lifshitz
and Slyozov serves as an important example of this.

Nevertheless, it has proved dificult to rigorously test
their theory by experiment or by numerical simulation.
Experiments typically study volume fractions which are
appreciably larger than zero, while numerical work has
the additional problem of being practically difficult in
three dimensions. Previous work on extending the theory
of Lifshitz and Slyozov to nonzero P has been attempted
by many groups, using both analytic and numerical
methods. Nevertheless, this has remained a vexing prob-
lem in the field, for which a satisfactory resolution has
not been found. The major analytical progress has been
made by Marqusee and Ross, 4 and Tokuyama, Kawasaki,
and Enomoto. 5 These theories give the form of the coars-
ening rate It = Ii (P) and the scaling function g = g(z, P)
perturbatively in P, predicting that Ii increases and g
grows broader as the volume fraction increases. Unfortu-
nately, these perturbation theories can neither go beyond
O(~P), nor be applied to two-dimensional systems. Fur-
thermore, as we shall demonstrate below, so long as P is
greater than approximately 1%, the coarsening rate I& (P)

and the droplet distribution function g(z) are very sensi-
tive to higher-order terms. For two-dimensional systems,
a theory has been proposed by Marqusee, which was
extended and generalized by Zheng and Gunton. How-
ever, Marqusee s two-dimensional theory is inconsistent
with his three-dimensional theory with R,oss, while Zheng
and Gunton were not able to obtain a time-independent
scaling distribution. Recently, Ardellio published an ex-
tension to two dimensions of his phenomenological the-
ory for three-dimensional coarsening. His theory, unlike
those mentioned above however, involves an ad hoc, al-
though physically motivated free parameter.

We therefore felt it worthwhile to reinvestigate Ost-
wald ripening. The goal of this article is to present a sys-
tematic method to study Ostwald ripening in dimension
d = 2 and d = 3, at nonzero volume fractions (for sim-
plicity, P will be called the volume fraction, although in
d = 2 it is an area fraction). We use the same mean-field
technique in both cases, and test our results by compar-
ison to experiment and to a large-scale simulation study
we have conducted.

Our study makes use of dimensionless variables. Units
of length and time are given in terms of the capil-
lary length l, = 2yVm/RT and a characteristic time

l2/(DC~V ). These quantities involve the sur-
face tension p, the molar volume V~, the gas constant
R, the temperature T, the diffusion coefBcient D, and
the solute concentration in the matrix at a flat interface
C~. It is also convenient to introduce a dimensionless
concentration field 8(r) = [C(r) —C ]/C, where C(r)
is the concentration field at point r outside the droplets.

The many-droplet diffusion problem is intractable
without approximation. In the steady-state limit, the
fundamental equation iss 'tv'~8(r) = a P, i B,b(r —r;),
where N is the number of the droplets in the system,
a = 2m+~/I'(d/2), r, gives the location of the ith droplet,
and B; gives the strength of the source of current for
diffusion. This is the multiparticle diffusion equation
in the quasistationary approximation. The 6 functions
on the right-hand side of the many-body diffusion equa-
tion result from the assumption that droplet locations re-
main fixed in the space and the distances among droplets
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are much larger than the average droplet size. This is
a very good description for systems with small volume
fractions. The necessary boundary conditions are the
Gibbs-Thomson condition for the concentration field at
the curved surface of each droplet, and the imposed su-
persaturation far from all droplets, 0(r) ~~,. ,

~
R ——1/R, ,

for i = 1, . . . , I)I, and lim„0(r) = 0 „,where 0 „ is the
average concentration outside the droplets. The conser-
vation law is Q, i B, = 0, while the growth law takesJV

the forms R; = B;/R,"
Lifshitz and Slyozov made a mean-field approximation

in the limit of ttt ~ 0 to solve these equations. We shall
make use of the fact that the steady-state problem re-
sembles a homogeneous electron gas, since droplets in-
teract via the the Laplace equation in the steady-state
limit and the conservation law plays the role of charge
neutrality. We introduce screening effects among the
droplets and approximate many-droplet correlation ef-
fects in the same manner as the Thomas-Fermi mecha-
nism for Coulomb systems. Based on a mean-field ap-
proximation, the growth law must obey

d vR". = I(R;)[0,„—0(R;)],

where v = ir~/'z /I'(d'/2+ 1), assuming spherical growth.
The mean-field approximation results from the assump-
tion that the flux determining the growth rate for each
droplet is only proportional to the difference between
the boundary concentration and the average bulk con-
centration. The curvature-dependent rate coefFicient
I(R) is unknown a priori, but will be determined self-
consistently below. The continuity equation satisfies

0+( 0„=aBb(r —r) (3)
near the ith droplet, where we utilized the equation
for the time evolution of D0 „/Ot .Applying the so-
lution of Eq. (3) to the boundaries gives us 1/R;
0 „—B,V(R;/() for i = 1, . . . , N, where V(R/()
exp( R/—()/R for d = 3, V(R/() = I&o(R/() for d = 2,
and Iso is a modified Bessel function. Substituting the
solution B; and 0, of the conservation law and the above
boundary conditions into the growth law for the droplets'
radii, we obtalil

dR R' " ([RV(R/()] ' 11
dt V(R/() ( [V(R/()]-i R)

(4)

Comparing this to Eq. (1) gives I(R) = a/V(R/(), so
that ( = a J[f(R,'t)/V(R/()]dR

From this point, Eqs. (2), (4), and the above
equation can be solved straightforwardly. First we

note that the only scaling form f(R, t) can satisfy

is f(R, t) = [P/ fo z"g(z)dz]g(z)/R with z

R/R, where f is normalized by the steady-state con-
servation law P = f dRvR" f. Making the conve-

nient transformation ( = [7R and inserting the scal-
ing form f(R, t) into the ( equation, we obtain rI

Pd f g(z)/V(z/g)dz/ f z"g( )dz. Using the scaling form

f(R, t) and substituting Eq. (4) into Eq. (2), we obtain
a first-order separable partial differential equation. The
solutions's are the following: R = [Iat + R (t = 0)]'/'s
and g(z) er [exp hd/ rs r(z', h)dz']/w(z, h), where if
0 & z & z„and g(z = 0 otherwise, with w(z, h)
[z' s/V(z/rt)](o —z ') —hz and

[Rf(R, t)] = 0. (2)
(z)

() z V(z/i1)
(z)

V(z/g)

The average bulk concentration field then obeys

D0 „/Dt = 0 f ( R, t ) v R—"d R/Dt

I(R)0,„f(R, t)dR

+ I(R)0(R)f(R, t)dR

where we used Eqs. (1) and (2), integrating by parts.
We now postulate an equation of motion for the local
concentration field 0(r, t) near the ith droplet. The sim-
plest form it can satisfy is 00/Dt = t7~0 —( ~0+ S—
aB;b(r —r, ). Herein, local diffusion is modified by the
effective diffusion field from other droplets, giving rise
to the screening length ( and the background field S(2.
These quantities can be related to I(R) by integrating
the equation above and comparing with the time evo-
lution of M», /Bt, giving ( ~ = f I(R)f(R, t)dR and
S = f I(R)0(R)f(R, t)dR

Equation (1) and the above one-body diffusion equa-
tion completely specify our mean-field approximation; in-
deed, they are the only approximations we make to solve
the equations in the steady-state limit. In that limit, the
concentration field obeys

where u/(z, A) obeys u/(z„A) = 0 and u)'(z„A) = 0.
Here A is a time-independent separation factor, depen-
dent upon P and the coarsening rate IC

For vanishingly small P, these equations can be solved
analytically. In three dimensions, we recover the re-
sults of Lifshitz and Slyozovi z for gtt = 0, while our
leading-order in ~P corrections are identical to those
calculated by Tokuyama, Kawasaki, and Enomoto. 5 Our
two-dimensional results have the following form as P ~ 0:
R [Stj(z, In(tt i)]i~, and g(z) oc z exp(2/[3(z/z, )—
3])/[(z, —z)'sI'(z+ 2z, )"~'], if 0 & z & z. = 1.40647,
and g(z) = 0 otherwise. These results differ from those
of the theories for two dimensions due to Marqusee, and
Zheng and Gunton. s The logarithmic singularity in the
growth rate implies that there is no consistent steady-
state result for d = 2 when P = 0. In this regard, it
should be noted that Rogers and Desaiiz obtained a non-
steady-state result of R (t/Int)iI in d = 2 for P = 0.

For larger values of P (up to a limit discussed be-
low), we numerically solved the u)(z„A) equation self-
consistently for z, and A in two and three dimensions.
We first made a guess for o and rt, and then used the g
and u)(z„A) equations to compute new values of o and

g, repeating the procedure until consistent solutions were
obtained.
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FIG. 1. Comparison of scaled normalized distribution
functions g(z) vs scaled droplet radius z = R/R, from exper-
iment and theory for d = 3. Histograms are the experimental
distribution function at very late times (Ref. 11) for P 0.05.
Dotted, dashed, long-dashed, and solid lines are the respec-
tive predictions of I ifshitz and Slyozov (P = 0) (Ref. 1), Mar-
qusee and Ross (Ref. 4), Tokuyama, Kawasaki, and Enomoto
(Ref. 5), and us, for P = 0.05. The inset shows Coarsening
rate IC(P) vs volume fraction P. Dotted, dashed, and solid
lines correspond, respectively, to the d = 3 results of Mar-
qusee and Ross (Ref. 4), Tokuyama, Kawasaki, and Enomoto
(Ref. 5), and us. The long-dashed line is our two-dimensional
result.

FIG. 2. Plot of the scaled normalized distribution func-

tion g(z) vs the scaled radius z = R/R for d = 2. Dot-

ted, dashed, and solid lines correspond, respectively, to Mar-

qusee (Ref. 8), Ardell (Ref. 10), and us for P = 0.05. Circles,
squares, and triangles give the scaled normalized distribution
functions from the simulation, corresponding, respectively, to
the number of remaining droplets being N ~ 500, 400, and

300, for P = 0.05. The inset shows the simulation result for

growth law R = [IA+ R (t = 0)j ~, with K = 0.447. Both
axes of the inset are scaled by 10
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Figure 1 shows the theoretical predictions for the
scaled and normalized distribution functions, as well as
experimental results~~ for d = 3. Our prediction is in
good agreement with the experimental results, although
those results do not provide a strong test for theory. In
the inset we show the relation between the coarsening
rate I~ and the volume fraction P. Our theory predicts
that the coarsening rate is very sensit;ive to the volume
fraction P for both two- and three-dimensional systems
One can also see that high-order volume fraction effects
are very import, ant for the K: for example, the inset
shows that, for P ) 0.01, the perturbatively calculated
coarsening rate of Tokuyama, Kawasaki, and Enomoto
differs significantly from ours.

our theory is inapplicable to large volume fract;ions
where the screening length ( is close to the average ra-
dius of the droplets R, since we make a Thomas-Fermi
approximation and treat the droplets as point sources
and sinks. Indeed, there is no solution for (, g(z), and
tU(z„A) equations if ( & 2.7R for d = 2 and ( & 1.9R
for d = 3, corresponding to P ) 0.085 and P ) 0.06,
respectively. This gives self-consistent criteria for the
applicability of our approach.

To test our predictions for two dimensions, we have
undertaken a numerical simulation, similar to that of
Voorhees and Glicksman. We used Ewald's technique
and applied the solution of the many-body diffusion
equation to the Gibbs-Thomson boundary condition to
obtain'

+BI [In(RI /L) + b]J
—) B;E&(r;,/L),

where I is the system size, B, is a nonzero constant,
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FIG. 3. Scaled structure factor F(s) vs dimensionless
weave number x = kA, in d = 2. Circles, squares, and tri-
angles give the scaled normalized distribution functions from
the simulation, corresponding, respectively, to the number of
remaining droplets being N 500, 400, and 300.
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b = J„' tip'(I —e ' ')/t' E—i(l), r;&
——r; —rJ, and Et(z) =

f dl e ' /t.
Thc growtli la~ for R, the conservation law for B;,

and Eq. (5) e.re tlu. basic equations of our simulations.
The system was inisialized by randomly generating a set
of (R, ) consi: tent with the distribution function of our
analytical cal=ulation, the solid line in Fig. 2, and ran-
domly placing the droplets in the available space without
overlap. We also used other initial conditions, and found
that the distribution function approached the same lim-
iting form, for a given volume fraction. After setting
the initial radii and locations of the droplets, solving Eq.
(5) with the conservation law for B; gives a set of (B,).
Then, substituting the set of (B,) into the growth law

gives a new set of (R;), and so on. We used toroidal
boundary conditions and averaged over 50 independent
sets of initial condign, ions.

Typically, systerrm with 1000 droplets were studied.
The evolution of the system was followed until the total
number of droplets was reduced to approximately 300.
Figure 2 is a plot of a scaled and normalized distribu-
tion function. The data collapse of the simulation results—d+1
confirms the scaling relation f(R, t) oc g(R/R) /R
The inset shows that the average radius complies with

R = [Iit + R (t = 0)j i' s, and is consistent, with our ana-
lytic solution for R, where the numerical simulat, ions give
I~ = 0.447.

The solid line is the distribution function of our ana-
lytic calculations for P = 0.05; the dotted and dashed
lines give, respectively, the results of Marqusees and
Ardell. '0 Ardell's work, unlike our theory or Marqusee's,
involves a free parameter. Therefore, in our compari-

son, we have fixed this parameter by letting the coarsen-
ing rate I~ in his theory equal the numerically observed
rate. Marqusee's theory, with no free paramet;ers, gives
a coarsening rate of Iy = 0.373, as compared to our nu-
merical result of 0.447 and our analytic result (which also
involves no free parameters) of 0.436. Overall, our theo-
retical predictions for g(z) and Ii. compare very well to
the numerical simulation.

We expect other quantities than the distribution func-
tion to exhibit scaling. For example, the structure factor,
s(k, t) = ~bg(k, t) ~2, where b8 is the deviation of 8 from its
average value, and k is the wave number, should satisfy
a scaling form. Namely, S(k, t) = P& s(k, t)/ P& I =—d
R F(kR), where the sum Q& is over a spherical shell
defined by n —

2 & ~k~I/(2z) & n + 2
and the grid is

L = 512 . This is an important quantity, which can be
estimated directly by many experimental methods, al-
though we note again that our results for S(k, f) are for
two dimensions. Figure 3 shows a plot of the scaled struc-
ture factor where all data collapses approximately to a
single universal curve, as expected. A similar shape for
the two-dimensional scaling function for small P has been
reported recently by Chakrabarti, Toral, and Gunton, 's
who numerically solved the I angevin equation of model
B.
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