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Recent data for the time correlation function for multiply scattered light in reflection are shown to be
universal.

In a recent paper, ' data for the time correlation func-
tion for multiply scattered light in reflection are
presented as a function of particle size and optical polar-
ization. In the penultimate sentence of their introduc-
tion, the authors of Ref. 1 claim their data "show that
contrary to previous reports (their Ref. 9, our Ref. 3),
the form of the autocorrelation functions is not universal,
but instead depends on both particle size and polariza-
tion. " Is this correct, or do these data actually support the
universality that we reported previously?

Our claim of universality was based upon a scalar-wave
treatment of the optical field and its agreement with our
experiments. What is the application of this scalar
theory (if any) to a vector optical field? For the time
correlation problem, the major differences between scalar
and vector fields is the different relative weights of the
Feynman paths associated with transport of the multiply
scattered light. Different polarization channels of the
vector field weigh these paths differently. For a linearly
polarized input, for example, the parallel, copolarized
output channel weighs short, polarization preserving
paths more heavily than does the scalar theory, while the
perpendicular, crosspolarized channel places greater rela-
tive weight on the long, depolarizing paths. Clearly then,
the closest equivalent to the scalar theory is to collect
both channels simultaneously, i.e., to simply collect all
the multiply scattered light without any polarization bias.
This is what we did in our previous experiments. We
demonstrate here that when this approach is applied to
the data of Ref. 1, also these data confirm the system in-
dependence of the unbiased time correlation function in
reflection, which we reported previously based on scalar
theory.

Consider as an example a linearly polarized input field.
Denoting the copolarized output channel by the subscript

~~, and the crosspolarized channel by the subscript l, the
unbiased (i.e., total) intensity I (t) is simply

I (t) =I~~(t)+It(t) .

Since the fluctuations in the two orthogonal output chan-
nels are uncorrelated at all times, we may write the un-
biased (i.e., equal weight for both channels) electric-field
time correlation function ( G&(t) ) as

G, (t, y) =exp( y&—6t/r), (2)

where ~ is the single scattering correlation time. From
Eqs. (1) and (2) we obtain (y, ) of the unbiased electric-
field time correlation function

(3)

In Table I, we list the results of the above analysis as
applied to all the data of Ref. 1 for which both y and (I )
are reported. As may be seen, the same universal value of
(y, ) =2.06+0.03 emerges for widely different particle
sizes and for both linearly and circularly polarized input
fields.

The unbiased intensity-intensity time correlation func-
tion (G2(t)), which is easily measured by collecting all
the scattered light with no polarization bias, is also well
approximated by a stretched exponential

( Gz(t} ) =exp( —2(y2) v'6t/r), (4)

where

& y, &
= [&I„&'y„+&I, &'y, ]/[&I„&'+&I, &'] . (S)

Values for (yz) are given in Table I, from which it may
be seen that also here the same universal value of
(y2) =2.0+0. 1 etnerges for the different particle sizes
for linearly and circularly polarized light, while the aver-
age 5% dispersion matches well the stated 5% error lim-
its of Ref. 1.

In Figs. 1 and 3 of Ref. 1, the y's are plotted for a wid-
er range of particle sizes than is listed in Table I, but the
corresponding (I ) are not reported, so these additional

(G, (t)) =[(Iii GJ(' y

+(IJ )GJ(t, yJ)]/[(Ii)+(IJ )],
where y parametrizes the differences between the two
channels. (G& ) may, for example, be measured in a
heterodyne experiment using a polarizer at 45' to com-
bine with equal weight the optical fields from both chan-
nels. Working within the framework of scalar wave
theory, Pine et al. , and Edrei and Kaveh have suggest-
ed for short times the compact form
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TABLE I. Analysis of time correlation data. Data from Ref. 1.

Polarization
state

Linear

Particle
diam. (pm)

0.091
0.605

Xp

1.45
1.96

Vq

3.06
2.18

1.78
1.05

&yt &'

2.03
2.07

(y, )"

1.84
2.06

Circular 0.091
0.605

2.68
1.72

1.59
2.62

0.69
1.40

2.04
2.10

ave. =2.06
+0.03

1.94
2.02

ave. =2.0
+0.1

'The subscripts p and q refer to either the
~~

and j. channels for linear, or the + and —channels for cir-
cular polarization.
(y, ) is defined in Eq. (3), (yz) in Eq. (5).

and

1+p
yopposite ~ y0 &

p+p

a
ysame p yopposite

(7a)

(7b)

where a= —', and yo is the scalar value of y. In Table II
we compare the measured y with the results of Eqs. (7)
using as the value of yo appropriate to the data of Ref. 1,
yo=2. 06. As may be noted from this table, Eqs. (7) pro-

data points cannot presently be included in the table.
Nonetheless, it is clear from the trends displayed in these
two figures that all of the data mill closely follow the re-
sults of Table I. Accordingly, we conclude that the data
of Ref. 1 fully support the system independence we re-
ported previously based on scalar theory, so that these
data make an important contribution by significantly en-
larging the domain over which this system-independent
behavior is verified experimentally.

We now note that even the individual y's of the vari-
ous polarization channels also are given by a simple
empirical formula. Defining a depolarization factor

P =
& opposite & ~& same &

where the subscript "same" refers to an output polariza-
tion channel which is the same as that of the input field,
while the subscript "opposite" refers to the opposite
channel (i.e., for linear polarization, same denotes

~~
and

opposite denotes i, while for circular polarization same
denotes + and opposite denotes —), we find

vide a nearly perfect description of the data for widely
different particle sizes for both linear and circular polar-
izations.

Although the data do exhibit the expected system-
independent behavior, yo is somewhat larger than the ex-
pected scalar theory value

yo= 1+6= 1.7104. . . ,

where 6, which arises from the boundary conditions for
the diffusion equation, is obtained from Milne theory.
This implies that the measured 62(t) may be too narrow.
We suggest here that the source of this narrowing is the
insidious problem of internal surface reflections, '

which act to reinject a portion of the scattered light.
This reinjection leads to an artificial elongation of the
Feynman paths traversed by the photon, and thus to an
artificial narrowing of the time correlation function.
Relevant here is the total fraction r of the scattered light,
which is returned to the sample by these internal
reflections. We note that because multiple scattering
scrambles the incident beam direction, r can greatly
exceed the typical 4% reflectivity for normal incidence.

There are two important sources of internal surface
reflection. The potentially largest source is total internal
reflection at the external glass-air interface of the sample
cell. Assuming more-or-less isotropic emission of the
diffusely scattered light, and taking account of refraction
at the inner water-glass interface, we estimate that a little
over half the scattered light is returned to the sample by
this mechanism. This is a potentially significant problem.

TABLE II. Comparison of theory and experiment for y.

Polarization

state

Linear

Particle

diam. (pm)

0.091
0.605

0.56
0.95

Meas.
b

3 p

1.45
1.96

b
Yp

1.45
1.99

Calc.
meas.

1.00
1.02

Meas.

Vq

3.06
2.18

Calc.

Yq

3.15
2.13

Calc.
meas.

1.03
0.98

Circular 0.091
0.605

1.45
0.71

2.68
1.72

2.68
1.67
ave.

1.00
0.97

= 1.00
+0.02

1.59
2.62

1.63
2.61
ave.

1.03
1.00

= 1.01
+0.02

'p= (It ) l(Ii ) for linear, and (I ) /(I+ ) for circular polarization.
The subscripts p and q refer to either the

~~
and J. channels for linear, or the + and —channels for cir-

cular polarization.
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When recognized in advance, it can be avoided by proper
experimental technique. In uncontrolled experiments,
however, it will manifest itself to a greater or lesser extent
depending upon the precise details of the sample and cell
geometries, the collecting optics, etc. For example, in the
typical glass cell with windows a few mm in thickness,
one usually sees a distinct, luminous ring which sur-
rounds the central bright spot produced by the incident
laser beam. This ring arises from the total internal
reflections described above. If the laser beam diameter is
less than the window thickness (it is not clear that this is
true for Ref. 1), the luminous ring is well separated frotn
the main spot and can be masked out, thereby avoiding
the worst part of the problem. Even if this is done, how-
ever, one is still left with the lesser problem of light reem-
itted by the ring being partially reflected back into the
central spot, so that either very thick cell windows, or
some index matching technique' is required to eliminate
the reflection problem altogether. With a large beam di-
ameter (1 cm was used in Ref. 1) and thin cell windows, a
substantial fraction of the scattered light is necessarily re-
turned to the sample, thereby leading to a significant
value for r and thus to a significant narrowing of the mea-
sured correlation function. Since no mention at all is
made of these important effects in either Ref. 1, or in ear-
lier work by this group, and only minimal experimental
details are reported, we are unable to provide a first-
principle estimate of r for their experimental arrange-
ment.

The second source of internal surface reflections is
essentially unavoidable. This is the Fresnel reflection at
the internal water-glass interface. Assuming equal ampli-
tude s- and p-polarized components in the multiply scat-
tered light, we estimate for this effect r =0.12, which sets
the lower limit for this quantity.

We have recently shown' that for reflection from a
thick sample, as in the experiments of Ref. 1, the ap-
parent (measured) value of the time correlation function

G2 in the presence of internal reflections is related to the
true value G2 of the correlation in the absence of
reflections, independent of the form of G2, by

G2(r)=(1 r) G—2/[1 r—+G2 j

Using the compact form Eq. (4) for G2, this leads to the
relationship between an apparent value y', and a true
value yo,

y'=yo/(1 —r) .

From Eq. (9) and the data of Table I, we are able to esti-
mate that for the experiments of Ref. 1, r =0.17, so that
surface reflections appear to play a significant role here,
resulting in a half-width for G2 which is almost 30%%uo too
small. It appears, then, that the absolute accuracy of S%%uo

claimed in Ref. 1 may be prematurely optimistic. We
note that, since r is a property of a given experimental ap-
paratus, the system independence of the time correlation
function is preserved for that apparatus, albeit with an
erroneous value of y. It is thus clear that in all future
careful work special attention must be paid to minimizing
internal surface reflections, and to properly correcting
the data for the unavoidable reflections that do remain. '

In summary, we have shown that by simply collecting
the scattered light without polarization bias, the univer-

sality of the time correlation function in reflection, which
we had reported previously based upon scalar theory, is
fully preserved. Although the detailed, complicated be-
havior of particular polarization channels may be of some
significance in certain instances, the universality of the
unbiased time correlation function will clearly always be
of primary importance. We have also shown that the in-
dividual polarization channels themselves follow a simple
law which is expressed in terms of the easily measured
depolarization p.
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