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Slip of normal-phase liquid *He on a rough boundary
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We consider the flow of normal-phase liquid *He at low temperatures in the presence of a rough
boundary, with a roughness smaller than the particle mean free path and larger than the particle
wavelength. The theoretical description of fluid slip, based on a Boltzmann-type transport equation,
is extended to a semimicroscopic treatment of rough boundaries. Results for the slip length as a
function of a Gaussian-shaped roughness are presented. Further, we find a pressure dependence of
the slip length due to Fermi-liquid interactions, not included in former theoretical approaches.

The description of transport phenomena in dilute sys-
tems like classical rarefied gases or the elementary exci-
tations of quantum liquids requires a very careful treat-
ment of the boundary conditions due to the long mean
free paths of the (quasi)particles characterizing these sys-
tems. A general problem in this context is the rough-
ness of the fluid-solid interface. We regard the case of
degenerate normal-phase liquid 3He at temperatures of
some mK; in this regime there are discrepancies between
several viscosity experiments performed by Parpia and
Rhodes,! Eisenstein, Swift, and Packard,? Ritchie, Saun-
ders, and Brewer? and the theoretical results from Jaffe?
and Jensen et al.,®> who assumed plane boundaries. The
influence of the roughness of the interface was studied by
Einzel, Panzer, and Liu® in the framework of hydrody-
namics. However, this is not valid for mean free paths A
comparable to or greater than typical dimensions of the
system like the size of the roughness itself.

In this paper we approach this subject on a level
beyond hydrodynamics by a semimicroscopic treatment
starting from a Boltzmann-type transport equation for
the distribution function f of quasiparticles. Other
approaches?™® based on a kinetic equation deal with a
phenomenological boundary condition on a plane wall
assuming a mixture of specular and diffuse quasiparticle
scattering, where the latter accounts for diffraction ef-
fects due to a microscopic roughness on an atomic scale
and/or accommodation. We regard additional features of
the boundary, given by the roughness on a much larger
length scale than the atomic ones. In particular we con-
sider a roughness larger than the particle de Broglie wave-
length 27/kr on the Fermi surface and smaller than
the mean free path A. The above-mentioned bound-
ary conditions, specular reflection and diffuse scattering
(dominated by adsorption and desorption) are now lo-
cal ones on the rough structure. The effects induced by
this roughness are shown by calculating the slip length,
which represents a measure for the ballisticity of quasi-
particle flow near boundaries. The slip length yields a
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first-order correction (in the ratio of the mean free path A
and the characteristic size d) to the usual hydrodynamics.
In particular it is an important quantity in the descrip-
tion of different types of flow experiments (Couette and
Poiseuille flows,!? surface impedance measurements®)
and directly related to measured quantities like the ef-
fective viscosity.

In the following we briefly report on dilute fluid flow
and slip theory,®” restricting ourselves for mathemati-
cal convenience to the simple case of a stationary Cou-
ette flow in the z direction in the half space (z > 0).
Then we extend it, under the above-mentioned condi-
tions, to include rough boundaries by introducing an av-
eraged distribution function and an effective scattering
law. Finally, we present our results for the slip length as
a function of a Gaussian-distributed roughness.

In the description of the flow of dilute systems one
has to take into account the slip at the boundary. This
can be done by using a hydrodynamical slip boundary
condition on the solution of Navier-Stokes equation for
the fluid velocity ugp in the bulk. For Couette flow with
a boundary at z = 0 the slip-corrected hydrodynamic
velocity is ugp(z) = a(z + ). Here the slip length ¢
and the slope a = d(u - e;)/0z are obtained by a linear
extrapolation of the fluid velocity u = [d3pv f, in the
bulk through the boundary, as shown in Fig. 1.

We first consider a stationary Couette flow with a
smooth wall at z = 0. Then the problem is only one di-
mensional in ordinary space, so f(p,r,t) = fp(z) and u
= u(z)e;. The fluid velocity u and hence the slip length
¢ are obtained from an integral equation based on the
linearized Boltzmann equation in the relaxation-time ap-
proximation
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for the deviation g,(z) = fp(2) — f°(ep — pou(z)) from
local equilibrium. Here
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FIG. 1.
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is the Fermi-Dirac distribution with the chemical po-
tential u, the temperature T', the quasiparticle energy
€p, the Boltzmann constant kg and 7 is the relaxation
time and v, = 0e¢/0p, is the quasiparticle velocity.
The quasiparticle energy is e, = € + ep(z) with the

Definition of the slip length ¢ for Couette flow.

n 0
_ ~ 3 2 Z of _ UF
Ln(a)—’ N vz>0d pp:l: (vF) 66 exp( av;) ’
~ 3 v n—1 v maf,o
&)= N d —p Pz —= -
Mo (e @) u,>o / P wp—p PeP: (vF) ( vF) de

8139

global equilibrium energy ep and the change of energy
bep(z) = (2/h3) [ d3p/'fpp'6 fp induced by the quasipar-
ticle interaction fpps, where &fp = fp — f°(e3) and h is
Planck’s constant. The boundary condition at z = 0 is
formulated in terms of a scattering law wp/_,p connecting
the current densities at the wall

RE=0 lul= [ a5 upepfS:=0 1],

where fp, = f2 ©(v.) + f ©(—v;) has been split in the
distributions for incoming and outgoing particles with
the help of the Heaviside functions ©. As the momen-
tum current density II,, = (2/h®) [d®p p; v, fp is inde-
pendent of z, one gets for u the equation

u(a) = 51%(0) /Oood&u(&) [ Lot(la—a])— Moo(a, @) ).

1)

Here the reduced quantities o = z/vpT = 2/, u(a) =
u(z)/aX with the Fermi velocity vp have been intro-
duced. In the derivation of (1) we have disregarded a
term (8f°/8¢)ée(z = 0), as was done by other authors.%7
This term represents a source for a pressure dependence
of the flow velocity and the slip length through the quasi-
particle interaction. We will come back to this point be-
low. The integral kernels in Eq. (1) are defined by

o (o) on(cei) 0

with the effective mass m*, the particle density n, and N = 2/h3nm*. The kernels M, ,,, contain through wp/_,p all
information about the boundary condition. By casting the definition of the slip length into the form [°da [u/(&)—1]
= (/A — u(0) , one obtains from Eq. (1) an approximation for ¢

(Lz—Mu) (L2 — Ms 1) +(L1+M11)(L3-‘M22)

/\ 2Ly (L1 + My,)

where L, = L,(0), My,,n = Mp,m(0,0) . One can show
that the results for ¢ from (3) are very close to those
obtained from a numerical evaluation of (1). For a more
detailed description see Ref. 7, where the special cases of
elastical specular, elastic backscattering, and diffuse scat-
tering at the smooth wall are discussed. The results show
that an agreement with the experiments!? is only possi-
ble for a sufficiently high contribution of backscattering.
However this is physically not justified at a smooth wall.
We now turn to the case of rough interfaces, which may
be described by z = £(z,y), & = 8¢/0z, & = O€/dy or
in a statistical way by the probability densities w;(£) ,
w2(&z,&y) for the height and the slopes of the surface,
respectively. With theae dens1t1es one can define the
moments 0% = (£2), 2 = 1 ((EI)+ §y)) . Two main

3)

—

complications occur due to a boundary roughness. First,
there is now a dependence on all three space dimensions
and thus the problem is very difficult to handle . We
therefore introduce a distribution function f which is av-
eraged over the surface

.fp(z) = fo(ep - pxu(z)) + gp(z) = (fp(r) )x,y
and an effective scattering law wp/_,p connecting the av-
erage particle currents related to a reference plane at

z=0

F2(2=0) |os| = / &y [S(2=0) [v)]

v, <0
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In the following we assume that the length scales o and
o /e, characterizing the roughness, are smaller than the
mean free path A, which is the scale on which the distri-
bution function varies. Then the treatment for smooth
surfaces remains valid for such a roughness, provided one
replaces f by f and wp/_.p by Wp_p.

Another problem concerns the particle-surface interac-
tion at the rough boundary. We assume that only elas-
tic scattering, adsorption, and desorption occur and that
other possible interaction effects may be neglected. The
number of particles is conserved. Elastic scattering de-
pends on the ratio of roughness (o, o/¢) to the wave-
length of the particles (2« /kr) on the Fermi surface. As
a roughness smaller than the particle wavelength is not
resolved anyway, we restrict ourselves here to the regime
of geometrical optics with o, /e > 2r/kp. Then the
elastic scattering may be regarded as pure specular scat-

tering at the surface normals n(z, y).
J
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Hence we limit our considerations to a boundary
roughness with 27 /kp <« o, 0/e < A. For normal-phase
liquid 3He there is 27/kp ~ 7 A (Ref. 8) and A > 1 um
at some mK and zero pressure.? We split the averaged
scattering law wp/_,, into two parts, one for the elastic
scattering w, and a second part for the adsorption and
desorption D,

Wp'mp = Wy oy + Dy (p,P)- (4)

The elastic part wj ,,_,, represents the probability
for a particle reaching the surface with momentum p’
and to leave it with p after one or more elastic scatter-

ing events, averaged over all surface normals n(¢;,§,) =
(=2, =&y, 1) /{1 + &2 + &2 and over all possible multi-

ple reflections. In each encounter of a particle with the
surface, elastic scattering occurs with a probability g.

Hence we can write u‘)z, as

Wpap= ¢ [ dic [dey P(f)',fx,Ey)<9(ﬁz)Q(f>',i>) R(€x,&y,p'—D)

+ / d*p[1 — ©(5.) QD' D) ] R(£s, €&y, P'—D) wz.w)- (®)

Here

©(—n-p)(—n-p)

P(f’:&ra{y) = W2(€ra5y

is the probability density that a reflection occurs at the
normal n(é;, &) , © (p.) Q(P’,p) is the probability den-
sity that no further scattering occurs and

R(&:,&y, P’ —p)=6(p—(p'—2n[n-p']))

is the specular scattering transition probability. The fea-
tures of roughness are contained in P and Q. Under the
quite general assumption that the adsorption and desorp-
tion process transfers all momentum p, of the incoming
particles to the surface on the average, D, contributes
nothing to the kernel M, , (2). Hence the second term
involving Eq. (4) for w can be dropped in the calculations
of the velocity and the slip length.

For a given rough structure one has first to determine
the function @. Then the slip length is obtained by in-
serting (5) in (2) and My m in (3). We consider here ex-
plicitly a Gaussian roughness shape in height and slopes

62
exp (—g) :
. e+
xP 2¢2 '

for which the probability @ has been found by gen-
eral statistical considerations about the intersection of
a straight line with the rough surface.® It turns out that
Q@ depends only on the mean slope €. Hence also the
M,, , and the slip length ¢ are only functions of €. Fig-
ure 2 shows our numerically calculated results for the slip

w(§) = \/;21—7;0_

1
W2 (fa: 3 Ey) = ome?

) Jdé. [dE, wa(Es,€,) O(—i-p) (—1r-p) '

length (/) as a function of the mean slope ¢ for different
contributions of elastic scattering running from pure elas-
tic scattering (¢ = 1) to pure adsorption and desorption
(o = 0). The slip length does not depend on the rough-
ness in the latter limit, but specular reflection leads to a
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FIG. 2. Slip length ¢ as function of the mean slope e for

a Gaussian-shaped roughness and for different portions g =
0,0.25,0.5,0.75,1.0 of elastic scattering.
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strong dependence of the slip length on ¢.

The experimentally determined slip lengt is
¢/A = 0.34,...,0.52, the theoretical investigations®"1°
assuming diffuse scattering on a plane wall yield (/A =
0.58, as we obtain for ¢ = 0. As an important result
we find that the slip length may, for a certain range of
roughness, lie well below the universal result for diffuse
scattering off a plane wall and that this explains these
experiments, if the roughness is rather large, ¢ > 1. Un-
fortunately, nothing is known about the size or the shape
of the roughness in these experiments and in two recent
experiments®!! which measured the roughness, the con-
ditions are outside the range of our considerations. In
Ref. 3 the roughness height is estimated to be of order
1 pm, while the mean free path is much smaller than 5
pm and in Ref. 11 the roughness (~ 20 A) is of the same
order as the particle wavelength. However, it should be
noted that we obtain finite slip lengths for pure specular
scattering due to the roughness without the assumption
of a high amount of diffuse scattering of an unclarified
physical origin. Hence one message of this paper is to
stimulate experiments examining specifically the influ-
ence of rough boundaries on degenerate quantum liquid
properties. These will give the required data to check
and improve our concept and support further theoretical
investigations. This will also help to clarify some related
questions as the role of a *He boundary layer®!!™3 in
context with an existing roughness and the pressure de-
pendence of (/) in normal fluid 3He as observed by Einzel
and Parpia.l* In the case of a “He boundary layer the
experiments suggest an enhancement of specular scatter-
ing and an increase in slip length.!! This is assumed to
come from eliminating an existing microscopic roughness
(atomic scale) and reducing the adsorption of 3He by the
superfluid *He films. In the case of a much larger rough-
ness, as treated by us, the *He layer may change the
local boundary condition to higher specularity (¢ — 1)
resulting in a smaller slip length for certain roughness
parameters (see Fig. 2). This should be proved experi-
mentally.

As in other approaches,®®7 our derivation yields so
far no pressure dependence of (/A . This changes, if the
disregarded Fermi-liquid interaction term (8f°/8¢)ée(0)
mentioned above is included. Neglecting angular-
momentum components with £ > 3 | the change of energy
at the boundary z = 0 in stationary mass flow is”

hl:2:14

7
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m [ F} F3
se0(0) = = (L pea(0) + 172
with the bare particle mass m and the £ =1 and £ = 2
spin-symmetric Fermi-liquid interaction parameters Fy,
F;. Taking into account this energy change 6¢(0) one
has to replace u(a) in the integral equation (1) by
F3 F
srm® 1O
This yields a relation between the pressure-
independent slip length calculated above — now called
(¢/A)ina — and the new pressure-dependent slip length
(¢/A)dep given by

()= (- s2im) [(©) + o]

where u;inq(0) represents the velocity at o = 0 when dis-
regarding 6¢(0). Since we have not solved the integral
equation (1) explicitly, we do not know the exact value of
uina(0). Taking the interaction parameters F}, F5 from
Refs. 8 and 15 and noting that uinq(0) is larger than
zero and may lie close to (¢/A)ind, we can make the fol-
lowing statements by inspecting relation (6). On the
one hand, there is an enhancement of the slip length,
(¢/MNdep > ((/A)ina and on the other hand (¢/A)qep in-
creases with increasing pressure, qualitatively similar to
the experimental result for the slip coefficient a;, = 6 (/A
of Ref. 14.

In summary we have shown a method to account for
rough boundaries in the theoretical description of fluid
flow in 3He. Our approach can be extended to other
flows, to other roughness shapes, and further parame-
ters like the site of the Knudsen minimum! can also be
calculated. Other systems like solutions of 3He in *He
or the normal component of suprafluid 3He can also be
included. Additionally, we found a source of pressure
dependence of the slip length due to Fermi-liquid inter-
actions. This should be a matter of a critical review of
the existing theoretical description and further theoret-
ical and experimental investigations. A more detailed
account of this concept and the results will be published
elsewhere.
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