Amplitude ratios at the extraordinary transition

Paul J. Upton*

Institut für Festkorperforschung des Forschungszentrums Jülich, Postfach 1913, D-5170 Jülich, Federal Republic of Germany

(Received 7 October 1991}

The amplitude ratio $Q = K_+ / K_-$, for the leading singular terms in the excess free energy above and below the critical temperature at the *extraordinary* transition for the semi-infinite scalar ϕ^4 field theory, is studied using renormalization-group methods in dimension $d=4-\epsilon$. This is expected to be pertinent (at $d = 3$) to a binary fluid mixture near its critical end point. We find that $Q \approx -\sqrt{2}+1.521\epsilon+O(\epsilon^2)$, which is within 0.1% of that obtained from using *local free-energy functionals*. Similar agreement between these two methods is found for another amplitude relation involving the critical adsorption profile.

Consider the common experimental system of binaryfluid mixture held in a sealed container with its liquid phases in coexistence with its vapor phase α . At the *criti*cal end point for this system, corresponding to the consolute point $(T = T_c)$ at liquid-vapor coexistence, the liquid phase becomes critical in the presence of a noncritical spectator phase, i.e., the vapor α . This will give rise to a singularity in the liquid-vapor interfacial tension, $\Sigma_{\alpha}(T)$, of the form $1-3$

$$
\Sigma_{\alpha}(T) \sim \Sigma_0(T) + K_{\pm} |t|^{\mu} + \cdots \quad \text{as } T \to T_c \pm , \qquad (1)
$$

where $t = (T - T_c)/T_c$ and $\Sigma_0(T) > 0$ is some analytic background term. The exponent μ for the leading singular term is predicted by $scaling²$ to be given by $\mu = (d - 1)v$ for $d \leq 4$ and $\mu = \frac{3}{2}$ for $d > 4$, where d is the bulk dimension of the system and ν is the usual correlation-length exponent for the critical phase. The critical amplitude ratio $Q \equiv K_+/K_-$ is expected to be universal. 3

Similar behavior to (1) is also found for a fiuid (e.g., single-component liquid-vapor system or, more generally, a system with order-parameter symmetry $n = 1$) against a rigid wall near its bulk critical point. In this case $\Sigma_{\alpha}(T)$ would refer to the wall or excess free energy, usually denoted $f_s(T)$ in the literature of surface critical phenomena.⁴ It has been suggested that Q for the wall system is identical to that of the previously described situation, so that the noncritical spectator phase may be replaced by an *effective* wall.³ For fluid systems one usually finds preferential adsorption of one of the ordered phases against the wall (or spectator phase), which implies the presence of a symmetry-breaking field h_1 on the wall. Hence, at $T = T_c$, the bulk would order in the presence of an already ordered surface, and in accordance with accepted belief, such a phase transition would be in the universality class of the extraordinary transition, as it is called in the nomenclature of surface critical phenomena. ⁴

A recently proposed theory³ predicted the values of Q for a range of universality classes, including that of the $n = 1$ extraordinary transition of interest to this Brief Report. Among the methods used was a theory that introduced a local free-energy functional for the orderparameter profile which was adapted to incorporate nonclassical criticality. It therefore gave Q as a function of d for $2 \le d \le 4$.^{3(b)} Of course, for $d \ge 4$, Q reduces to its mean-field value $Q = -\sqrt{2}$.¹

The purpose of this Brief Report is to compare predictions of this local-functional theory against those of renormalization-group methods involving an expansion in $\epsilon = 4 - d$. Results will be presented to $O(\epsilon)$ after a concise sketch of the basic method. Details of the calculation will be presented in a longer publication generalized for the *n*-vector model.⁶

A field-theoretical description for surface critical phenomena⁴ starts from the semi-infinite Landau-Ginzburg-Wilson *effective* Hamiltonian $\mathcal{H}[\phi]$ for a bare scalar field whson effective Hammonian $\mathcal{F}[\psi]$ for a part scalar field
 $\phi = \phi(\mathbf{x}_{\parallel}, z)$, where \mathbf{x}_{\parallel} is a $(d-1)$ -dimensional vector parallel to the wall at $z = 0$. The Hamiltonian is given by

$$
\mathcal{H}[\phi] = \int_0^\infty dz \int d^{d-1} \mathbf{x}_{\parallel} \left[\frac{1}{2} |\nabla \phi|^2 + \frac{1}{2} [t_0 + c_0 \delta(z)] \phi^2 + \frac{u_0}{4!} \phi^4 - [h_0 + h_{1,0} \delta(z)] \phi \right].
$$
\n(2)

Unrenormalized correlation functions are obtained from functional derivatives of $\ln \int \mathcal{D}\phi \exp(-\mathcal{H}[\phi])$. Divergences in these are removed, as usual, from the reparametrization of the bare field ϕ and the bare parameters $(t_0, c_0, u_0, h_0, h_{1,0})$ in terms of the renormalized field ϕ_R and the renormalized parameters (t, c, u, h, h_1) , respectively.⁴ The *ordinary* transition occurs at $h = h_1 = t = 0$ and $c > 0$ and is characterized by the bulk and surface ordering at the same temperature $t = 0$. The extraordinary transition, where the bulk orders against an already ordered surface, occurs at $h = h_1 = t = 0$ and $c < 0$. These transitions are separated by a multicritical point, the special transition, at $h = h_1 = t = c = 0$. Much is already known about ordinary and special transitions.⁴ However, mainly because of technical difficulties caused by the presence of a nontrivial order-parameter profile $m(z) = \langle \phi(\mathbf{x}_{\parallel}, z) \rangle$ for both $t > 0$ and $t < 0$, considerably

less is known about the extraordinary transition.^{5,7-14}

As mentioned before, the extraordinary transition is pertinent to fluid systems since, if $h_1 \neq 0$ for any $c < \infty$ (indeed, for fluids one would expect $c > 0$), the leading singular terms in excess quantities would behave as if $h_1 = 0$ with $c < 0$. This can easily be seen at zero-loop (mean-field) order⁵ and demonstrated more generally by considering the renormalization-group (RG) flows. ' Henceforth, we shall therefore set $h = h_1 = 0$ with $c < 0$.

The amplitudes K_{\pm} in (1) are most conveniently obtained from the excess internal energy

$$
E_s(T) = \int_0^\infty dz \left[E(z) - E(\infty) \right] , \qquad (3)
$$

where $E(z) = \frac{1}{2} \langle \phi^2(\mathbf{x}_{\parallel},z) \rangle$ is the energy density. The renormalized excess internal energy is related to $\Sigma_{\alpha}(T) \equiv f_s(T)$ through $E_s^R(T) = \frac{\partial \Sigma_{\alpha}}{\partial t}$, from which we can identify the amplitudes K_{\pm} from the coefficients of $|t|^{\mu-1}$ in $E_s^R(T)$. In order to obtain K_{\pm} to $O(\epsilon)$, one applies the loop expansion^{15,4} to $m(z)$ and $E(z)$. This involves writing $m(z) = m^{[0]}(z) + m^{[1]}(z) + O(2\text{-loop})$ and $E(z) = E^{[0]}(z) + E^{[1]}(z) + O(2\text{-loop})$, where the numbers in the superscripts refer to the order in the loop expansion. When using *dimensional regularization*, 16 the one-loop terms will contain poles in ϵ as $\epsilon \rightarrow 0$. These poles are removed by renormalization of the bare quantities. Universal asymptotic behavior then follows from setting the parameters at their infrared-stable RG fixed-point values.

At zero-loop order (mean-field theory), $m^{\{0\}}(z)$ is deter-At zero-loop order (inean-lield theory), m^{3} (z) is determined by $\delta \mathcal{H} / \delta \phi = 0$ for $\phi = m^{[0]}(z)$. The resulting Euler-Lagrange equation, with a boundary condition at $z = 0$ involving $c_0 < 0$, can be solved to yield^{17,7}

$$
m^{[0]}(z) = 2 \left[\frac{3t_0}{u_0} \right]^{1/2} \operatorname{csch}[(z+z_0)t_0^{1/2}], \qquad (4a)
$$

for $0 < t_0 < |c_0|^2$, where $\tanh(t_0^{1/2}z_0)=t_0^{1/2}/|c_0|$, and

$$
m^{[0]}(z) = \left[\frac{6|t_0|}{u_0}\right]^{1/2} \coth[(z+z_0)(|t_0|/2)^{1/2}], \qquad (4b)
$$

for
$$
t_0 < 0
$$
 with

$$
\sinh[(2|t_0|)^{1/2}z_0] = (2|t_0|)^{1/2}/|c_0|.
$$

Since $E^{[0]}(z) = \frac{1}{2} [m^{[0]}(z)]^2$, the excess internal energy at zero loop, $E_s^{[0]}$, is¹¹

$$
E_s^{[0]} = \left(\frac{6}{u_0}\right) (|c_0| - t_0^{1/2}), \qquad (5a)
$$

for $0 < t_0 < |c_0|^2$, and

$$
E_s^{[0]} = \frac{3|c_0|}{u_0} \left[1 + \left[1 + \frac{2|t_0|}{c_0^2} \right]^{1/2} \right] - \frac{3\sqrt{2}|t_0|^{1/2}}{u_0} , \quad (5b)
$$

for $t_0 < 0$. Note that, even at zero loop, one finds nonanalytic corrections to scaling with leading behavio $\propto |t_0|/|c_0|$.¹¹ However, the leading singular term $\propto |t_0|/|c_0|$.¹¹ However, the leading singular terms $(\propto |t_0|^{1/2})$ are independent of c_0 . Hence (as is generall true of excess quantities¹³), in order to determine the universal asymptotic properties, we can set c_0 at its infrared-stable RG fixed-point value c^* before taking $\epsilon \rightarrow 0$. Since for the extraordinary transition $c^* \rightarrow -\infty$, this will simplify the calculation of $m^{[1]}(z)$ and $E^{[1]}(z)$.

From the standard loop expansion,^{15,4} $m^{[1]}(z)$ and $E^{[1]}(z)$ are given by

$$
m^{[1]}(z) = -\frac{u_0}{2} \int_0^\infty dz' \, \tilde{G}^{[0]}(p=0; z, z') m^{[0]}(z')
$$

$$
\times \int_p \tilde{G}^{[0]}(p, z', z') , \qquad (6a)
$$

$$
E^{[1]}(z) = m^{[0]}(z) m^{[1]}(z) + \frac{1}{2} \int_{p} \tilde{G}^{[0]}(p; z, z) , \qquad (6b)
$$

where $\int_{p} \equiv S_{d-1} \int_{0}^{\infty} p^{d-2} dp / (2\pi)^{d-1}$, with S_d denoting the surface area of a unit d sphere and $\tilde{G}^{[0]}(p; z, z')$ is the zero-loop propagator Fourier transformed with respect to the $(d - 1)$ -dimensional \mathbf{x}_{\parallel} coordinate, which is a Green's function for the Schrödinger equation

$$
[-\partial_z^2 + p^2 + t_0 + u_0 E^{[0]}(z)] \widetilde{G}^{[0]}(p; z, z') = \delta(z - z') , \quad (7)
$$

with boundary condition $(\partial_z - c_0) \tilde{G}^{[0]}(p; z, z') = 0$ for $z = 0$ and $z' > 0$. Clearly, $\tilde{G}^{[0]}(p; z, z') = \tilde{G}^{[0]}(p; z', z)$, and Eq. (7) can be solved ' $t^{(4)}$ to yield, as $c_0 \rightarrow -\infty$ and for $z \geq z'$,

$$
\tilde{G}^{[0]}(p \, ; z, z') = \frac{g_0 \, A_+(p; \tilde{z}) e^{-\omega_p \tilde{z}} \left[\, A_-(p \, ; \tilde{z}') e^{\omega_p \tilde{z}'} - A_+(p \, ; \tilde{z}') e^{-\omega_p \tilde{z}'} \right]}{2\omega_p (\omega_p^2 - 1)(\omega_p^2 - 4)},\tag{8a}
$$

where

$$
A_{\pm}(p;\tilde{z}) = 3 \coth^2 \tilde{z} \pm 3\omega_p \coth \tilde{z} + \omega_p^2 - 1 \;, \tag{8b} \qquad E_s^R = \tilde{\mu}^{\epsilon-1} Z_t E_s^R
$$

with $\tilde{z} = z/g_0$, $\tilde{z}' = z'/g_0$, $\omega_p^2 = g_0^2 (t_0^2 g_0^2 + p^2)$, and with $z_0 = t_0^{-1/2}$ [= (2/|t₀|)^{1/2}] for $t_0 > 0$ [$t_0 < 0$].

In order to calculate $E_s^{[1]}$, Eqs. (8) are substituted into (6) and then (3) and the resulting integrals in z , z' , and p are performed. In doing so, one encounters divergent integrals. By using dimensional regularization,¹⁶ these divergencies are isolated as simple poles in ϵ as $\epsilon \rightarrow 0$. The poles are then subtracted away by the usual multiplicative renormalizations^{15,4}

$$
t_0 = \tilde{\mu}^2 Z_t t + t_b, \quad u_0 = \tilde{\mu}^{\epsilon} 2^d \pi^{d/2} Z_u u \ ,
$$

$$
E_s^R = \tilde{\mu}^{\epsilon-1} Z_t E_s \ ,
$$
 (9)

where $\tilde{\mu}$ is the usual arbitrary inverse length scale and, since dimensional regularization is used, $t_b = 0$. Additive since dimensional regularization is used, $t_b = 0$. Additive
renormalization is not required for E_s .^{13,18} The factors Z_t and Z_u , which are well known, ¹⁵ have the form $Z_i = 1 + a_i u / \epsilon + O(u^2)$, leading to a pole in $E_s^{R[0]}$, which cancels exactly with the pole in $E_s^{R[\hat{1}]}$. This then gives an expression for E_s^R valid to one-loop order.⁶ Finally, to obtain universal critical properties, u is set at its

infrared-stable RG fixed-point value $u^* = \frac{1}{3} \epsilon + O(\epsilon^2)$ for infrared-stable RG fixed-point value $u^* = \frac{1}{3} \epsilon + O(\epsilon^2)$ for $\epsilon > 0$.¹⁵ Since the leading singular term in E_s^R is $\pm \mu K_{\pm} |t|^{\mu-1}$ as $t \rightarrow 0^{\pm}$, with the scaling law $\mu = (d-1)\nu$ now confirmed to $O(\epsilon)$, ⁶ one immediately obtains the required quantity

$$
Q = \frac{K_{+}}{K_{-}} = -\sqrt{2} \left[1 + \epsilon \left[\frac{1}{4} - \frac{5\pi}{36} - \frac{\pi}{6\sqrt{3}} + \frac{\ln 2}{4} + \frac{\ln(2 - \sqrt{3})}{\sqrt{3}} \right] + O(\epsilon^{2}) \right]
$$

= -\sqrt{2} + 1.521 257 378 ϵ + O(\epsilon²) . (10)

In order to compare (10) to results obtained from local-functional theory, we now briefly review the method developed by Fisher and Upton.^{3,19} One starts by intro ducing a free-energy functional $\mathcal{F}_{\varepsilon}[m]$, for the orderparameter profile $m(z)$, which is assumed to depend on $m(z)$ and $\dot{m} = dm/dz$, but not on higher derivatives. Therefore one writes

$$
\mathcal{F}_s[m] = \int_0^\infty dz \, \mathcal{A}(m, \dot{m}; T, h) + f_1(m_1; h_1, c) \;, \qquad (11)
$$

where $m_1 = m (z = 0)$ and usually one takes $f_1 = -h_1 m_1 + \frac{1}{2} c m_1^2$. Also, $\mathcal{A}(m_\infty, 0)=0$, where $m_{\infty} = m (z = \infty)$. The equilibrium profile $m (z)$ is that which minimizes $\mathcal{F}_s[m]$ and $\Sigma_\alpha(T, h) = \min_{[m]} \mathcal{F}_s$. The familiar squared-gradient Landau theory corresponds to
the choice $\mathcal{A} = \frac{1}{2} A_0 \dot{m}^2 + V(m) - V(m_\infty)$, where $V(m) = \frac{1}{2}tm^2 + (1/4)!um^4 - hm$. To go beyond mean field theory, one chooses forms for A which incorporate nonclassical bulk critical exponents. Pioneering work in this direction was performed by Fisk and Widom²⁰ and, later, for $T = T_c$, by Fisher and de Gennes.²¹ More recently, Fisher and Upton³ considered a class of theories where $\mathcal{A}(m,m) = [1 + \mathcal{G}(X)]W(m)$, with $W(m) = W(m; T, h)$ being related to the bulk free energy^{3(b)} and min_m $W(m) = 0$ reproduces the bulk equation of state [so, clearly, $W(m_\infty)=0$]. The dimensionless
quantity $X = X(m, m; T, h)$ is given by^{3(b)} $X = X(m, \dot{m}; T, h)$ $\overline{X} = \xi m / \sqrt{2\chi W}$, where $\xi = \xi(m;T)$ is the correlation length and $\chi = \chi(m; T)$ the susceptibility of a system with homogeneous magnetization m. From the Euler-Lagrange equations that extremize (11) (and additional conditions to ensure thermodynamic consistency³), we find that the surface free energy $\Sigma_{\alpha}(T, h)$ is given by $3(b)$, 19

$$
\Sigma_{\alpha} = \int_{m_{\infty}}^{m_1} dm \, (2\xi^2 W / \chi)^{1/2} + f_1(m_1) \; . \tag{12}
$$

Thus we now have an expression for Σ_{α} in terms of bulk quantities which are relatively well understood. In particular, we require that W , χ , and ξ be analytic in the single-phase region of the phase diagram and have the appropriate scaling form in the vicinity of the critical point ($T = T_c$, $h = 0$). A convenient way of achieving this is to use Schofield's linear parametric model²² for the (bulk) equation of state. This is known to be consistent with the ϵ expansion to $O(\epsilon^2)$ inclusive.²³ Similar parametric models²⁴ have been constructed for $\xi(m; T)$ which are also consistent with ϵ expansion.²⁵ Hence, by substituting parametric model expressions into (12), one can derive an ϵ expansion for Q, which, to $O(\epsilon)$, was found to $be^{19,26}$

$$
Q = -\sqrt{2} + 1.52296_2 \epsilon + O(\epsilon^2) \tag{13}
$$

This should be compared with (10).

One can also use these methods to study an amplitude relation involving the magnetization profile $m(z)$ at the critical point (with $h_1 \neq 0$) where a phenomenon known as critical adsorption occurs. where a phenomenon known a
 $^{1,8-10}$ Here scaling²¹ predict critical adsorption occurs.^{21,6} ¹⁰ Here scaling²¹ predict
that $m(z) \approx P_c z^{-\beta/\nu}$ as $z \to \infty$ at $T = T_c$ and $h = 0$, where β is the usual bulk (spontaneous) magnetization exponent. If, along the critical isotherm $(T = T_c, h \neq 0)$ we have that It, along the critical isotherm $(T = T_c, h \neq 0)$ we have that $h \approx D|m_{\infty}|^{\delta}$ sgn(m_{∞}) and $\xi \approx f_c |h|^{-\nu/\beta\delta}$ (which define the usual bulk amplitudes D and f_c and the bulk exponent δ), then the amplitude relation ponent o), then the amphitude relation
 $R_P \equiv P_c^{v/\beta} D^{v/\beta\delta} / f_c$ should be universal. Local-function methods leading to Eq. (12) predict a particularly simple expression for this, involving only the bulk exponents:

$$
R_P = \frac{\beta}{\nu} \left(\frac{\delta(\delta + 1)}{2} \right)^{1/2} . \tag{14}
$$

Given the known ϵ expansions for the bulk exponents,¹⁵ local-functional theory predicts that R_p $=\sqrt{6}(1-0.2083\epsilon)+O(\epsilon^2)$. This should be compared with the results of a field-theoretical calculation⁶ [using
Eq. (6a) at $t = 0$], which gives R_f Eq. (6a) at $t = 0$, which
= $\sqrt{6}(1-0.207896745\epsilon) + O(\epsilon^2)$.

In conclusion, we have shown that phenomenological local-functional theories are consistent with the ϵ expansion, as derived from field theory, at $O(\epsilon)$ to within about 0.1%. The local-functional theory has the strength that it can be applied with relative ease to any dimension, including the physically interesting $d = 3$ case, which was the focus of previous work.^{3,19} In contrast, field-theor calculations are extremely difficult to perform beyond $O(\epsilon)$, and results presented here will not give reliable information about $d = 3$. Note, in particular, that simply putting $\epsilon = 1$ in either (10) or (13) gives $Q \approx 0.1$, whereas it is believed, largely on the basis of local-functional theory,³ that $Q \approx -0.82 \pm 0.01$ when $d = 3$, with Q being a highly nonlinear function of d . Also, substituting modern estimates for the $d = 3$ exponents²⁷ into (14) gives $R_p \approx 1.93$. It would be interesting to see how this compares with experiment. However, an important conclusion to be drawn from the results near $d=4$ as presented here is that local-functional theory, as applied to the extraordinary transition, should be quite reliable and probably accurate to within a few percent.

I am indebted to Erich Eisenriegler for very helpful discussions throughout the course of this work. I also thank Michael E. Fisher for initial motivation and useful correspondence. The hospitality of the Forschungszentrums Jülich is gratefully acknowledged.

- 'Present address: Theoretical Physics, 1, Keble Road, Oxford, OX1 3NP, England.
- 'F. Ramos-Gomez and B. Widom, Physica (Amsterdam) 104A, 595 (1980); D. J. Klinger, Ph.D thesis, Cornell University, 1985 (unpublished).
- ²B. Widom, Chem. Soc. Rev. **14**, 121 (1985).
- 3 (a) M. E. Fisher and P. J. Upton, Phys. Rev. Lett. 65, 2402 {1990);(b) 65, 3405 (1990).
- ⁴For a review, see H. W. Diehl, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, London, 1986), Vol. 10.
- ⁵A. J. Bray and M. A. Moore, J. Phys. A 10, 1927 (1977).
- ⁶P. J. Upton (unpublished).
- 7T. C. Lubensky and M. H. Rubin, Phys. Rev. B 12, 3885 (1975).
- $8J.$ Rudnick and D. Jasnow, Phys. Rev. Lett. 48, 1059 (1982).
- 9 S. Leibler and L. Peliti, J. Phys. C 15, L403 (1982).
- 10 L. Peliti and S. Leibler, J. Phys. C 16, 2635 (1983); E. Brézin and S. Leibler, Phys. Rev. B27, 594 (1983).
- ¹¹Y. Okabe and K. Ohno, Phys. Rev. B 30, 6573 (1984).
- $12K$. Ohno and Y. Okabe, Prog. Theor. Phys. 72, 736 (1984).
- ¹³E. Eisenriegler, J. Chem. Phys. **81**, 4666 (1984).
- ¹⁴K. Ohno and Y. Okabe, Phys. Rev. B 39, 9764 (1989).
- ^{15}D . J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (McGraw-Hill, New York, 1978; World

Scientific, Singapore, 1984).

- G. 't Hooft and M. Veltman, Nucl. Phys. 844, 189 (1972).
- 17P. Kumar, Phys. Rev. B 10, 2928 (1974).
- 18Y. Y. Goldschmidt and D. Jasnow, Phys. Rev. B 29, 3990 (1984).
- ¹⁹M. E. Fisher and P. J. Upton (unpublished).
- ²⁰S. Fisk and B. Widom, J. Chem. Phys. **50**, 3219 (1969).
- $21M$. E. Fisher and P.-G. de Gennes, C.R. Acad. Sci. 287, 207 (1978).
- ²²P. Schofield, Phys. Rev. Lett. **22**, 606 (1969); P. Schofield, J. D. Litster, and J. T. Ho, ibid. 23, 1098 (1969); M. E. Fisher, in Critical Phenomena, Proceedings of the International School of Physics "Enrico Fermi," Course LI, Verona, 1970, edited by M. J. Green (Academic, New York, 1971).
- ²³E. Brézin, D. J. Wallace, and K. G. Wilson, Phys. Rev. Lett. 29, 591 (1972); Phys. Rev. B 7, 232 (1973).
- 24H. B.Tarko and M. E. Fisher, Phys. Rev. Lett. 31, 926 (1973); Phys. Rev. B 11, 1217 (1975).
- M. Combescot, M. Droz, and J. M. Kosterlitz, Phys. Rev. Lett. 33, 705 (1974); Phys. Rev. B 11, 4661 (1975).
- ²⁶This can be seen from the slope of $Q(d)$ at $d = 4 \text{in Fig. 1 of}$ Ref. 3(b).
- ²⁷See, for example, A. J. Liu and M. E. Fisher, Physica (Amsterdam) 156A, 35 (1989), and references therein.