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Amplitude ratios at the extraordinary transition
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The amplitude ratio Q =K+ /K, for the leading singular terms in the excess free energy above and
below the critical temperature at the extraordinary transition for the semi-infinite scalar P field theory,
is studied using renormalization-group methods in dimension d =4—e. This is expected to be pertinent
(at d =3) to a binary fiuid mixture near its critical end point. We find that g = —v'2+1. 521e+O(e ),
which is within 0.1% of that obtained from using local free ener-gy functionals Si.milar agreement be-

tween these two methods is found for another amplitude relation involving the critical adsorption
profile.

Consider the common experimental system of binary-
Auid mixture held in a sealed container with its liquid
phases in coexistence with its vapor phase n. At the criti-
cal end point for this system, corresponding to the conso-
lute point (T = T, ) at liquid-vapor coexistence, the liquid
phase becomes critical in the presence of a noncritical
spectator phase, i.e., the vapor cz. This will give rise to a
singularity in the liquid-vapor interfacial tension, X (T),
of the form'

X (T)-Xo(T)+K+ ltl"+ as T~T,+,
where t =(T —T, )/T, and Xo(T))0 is some analytic
background term. The exponent p for the leading singu-
lar term is predicted by scaling to be given by
p=(d —1)v for d &4 and p= —', for d )4, where d is the
bulk dimension of the system and v is the usual
correlation-length exponent for the critical phase. The
critical amplitude ratio Q:IC+/K is—expected to be
universal.

Similar behavior to (1) is also found for a fiuid (e.g. ,
single-component liquid-vapor system or, more generally,
a system with order-parameter symmetry n = 1) against a
rigid wall near its bulk critical point. In this case X ( T)
would refer to the wall or excess free energy, usually
denoted f, ( T) in the literature of surface critical phenom-
ena. It has been suggested that Q for the wall system is
identical to that of the previously described situation, so
that the noncritical spectator phase may be replaced by
an effective wall. For fluid systems one usually finds
preferential adsorption of one of the ordered phases
against the wall (or spectator phase), which implies the
presence of a symmetry-breaking field h, on the wall.
Hence, at T =T„ the bulk would order in the presence of
an already ordered surface, and in accordance with ac-
cepted belief, such a phase transition ~ould be in the
universality class of the extraordinary transition, as it is
called in the nomenclature of surface critical phenome-
na. 4

A recently proposed theory predicted the values of Q
for a range of universality classes, including that of the
n = 1 extraordinary transition of interest to this Brief Re-
port. Among the methods used was a theory that intro-

duced a local free-energy functional for the order-
parameter profile which was adapted to incorporate non-
classical criticality. It therefore gave Q as a function of d
for 2 & d & 4.3' ' Of course, for d 4, Q reduces to its
mean-field value Q = —&2.'

The purpose of this Brief Report is to compare predic-
tions of this local-functional theory against those of
renormalization-group methods involving an expansion
in e=4 d. Results w—ill be presented to O(e) after a con-
cise sketch of the basic method. Details of the calcula-
tion will be presented in a longer publication generalized
for the n-vector model.

A field-theoretical description for surface critical phe-
nomena starts from the semi-infinite Landau-Ginzburg-
Wilson effective Hamiltonian &[/] for a bare scalar field

p =
tb(x~~~, z), where xl is a (d —1)-dimensional vector

parallel to the wall at z =0. The Hamiltonian is given by

W[P]= f ™dzfd' 'x~, —IV'Pl'+ —[to+c,fi(z)]P'

+ tb4 [ho+hi o5(z)](b

Unrenormalized correlation functions are obtained from
functional derivatives of ln f2)P e p( x—&[(b]). Diver-

gences in these are removed, as usual, from the
reparametrization of the bare field (b and the bare param-
eters (t u oh oho, o) in terms of the renormalized field

Pz and the renormalized parameters (t, c, u, h, hi), respec-
tively. The ordinary transition occurs at h =h& =t =0
and c )0 and is characterized by the bulk and surface or-
dering at the same temperature t =0. The extraordinary
transition, where the bulk orders against an already or-
dered surface, occurs at h =h& =t =0 and c &0. These
transitions are separated by a multicritical point, the spe-
cial transition, at h =h&:t =c =0. Much is already
known about ordinary and special transitions. However,
mainly because of technical dif5culties caused by the
presence of a nontrivial order-parameter profile
m (z)= (p(xl, z)) for both t )0 and t &0, considerably
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[Ol(z) =2 csch[(z+zo)toi ], (4a)
Qp

for 0&to& icoi, where tanh(to zo)=to /ico, and
' 1/2

coth [(z +zo )( i to i /2) 'i ],
Qp

(4b)

for tp &0 with

less is known about the extraordinary transition. '

As mentioned before, the extraordinary transition is
pertinent to fluid systems since, if h&%0 for any c & ~
(indeed, for fluids one would expect c )0), the leading
singular terms in excess quantities would behave as if
h, =0 with c &0. This can easily be seen at zero-loop
(mean-field) order and demonstrated more generally by
considering the renormalization-group (RG) flows. '

Henceforth, we shall therefore set h =h, =0 with c & 0.
The amplitudes K+ in (1) are most conveniently ob-

tained from the excess internal energy

E, ( T)= f dz [E(z) —E ( 00 )], (3)
0

where E(z)= —,'(P (x[,z)) is the energy density. The re-

normalized excess internal energy is related to
X (T)=f,(T) through E, (T)=OX /Bt, from which we

can identify the amplitudes E+ from the coefficients of
iti" ' in E, (T). In order to obtain K+ to O(e), one ap-
plies the loop expansion' ' to m (z) and E(z). This in-
volves writing m (z) =m [ )(z)+m ['l(z)+O(2-loop) and
E(z)=E (z)+E ' (z)+O(2-loop), where the numbers in
the superscripts refer to the order in the loop expansion.
When using dimensional regularization, ' the one-loop
terms will contain poles in e as a~0. These poles are re-
moved by renormalization of the bare quantities. Univer-
sal asymptotic behavior then follows from setting the pa-
rameters at their infrared-stable RG fixed-point values.

At zero-loop order (mean-field theory), m [ )(z) is deter-
mined by 5&/5$ =0 for P =m [ )(z). The resulting
Euler-Lagrange equation, with a boundary condition at
z =0 involving cp & 0, can be solved to yield' '

1/2
0

E[0]
$

Qp
(ic, i

—t,'"), (5a)

for 0& to & icoi, and

3ic, i 2 t,
E,[0]= ' 1+ 1+

2
Qp cp

3v'2it, i'"
Qp

(Sb)

for tp &0. Note that, even at zero loop, one finds nonana-
lytic corrections to scaling with leading behavior
~

I to I /I co i. " However, the leading singular terms
( ~

i to i

'
) are independent of co. Hence (as is generally

true of excess quantities' ), in order to determine the
universal asymptotic properties, we can set cp at its
infrared-stable RG fixed-point value c* before taking
e~O. Since for the extraordinary transition c*~—00,
this will simplify the calculation of m [')(z) and E[')(z).

From the standard loop expansion, ' m[')(z) and
E[')(z) are given by

m ' (z) = — f dz' G (p =0;z,z')m (z')
0

X G p, z', z'
p

E[')(z)=m [ )(z)m [')(z)+—,
' f G [ )(p;z, z),

p

(6a)

(6b)

where f =Sd, f o"p dp/(2n)', wit. h Sd denoting

the surface area of a unit d sphere and G[ )(p;z, z') is the
zero-loop propagator Fourier transformed with respect to
the (d —1)-dimensional x[[ coordinate, which is a Green s
function for the Schrodinger equation

[ r), +p +t—+u E[ )(z)]6[ )(p;, ')=5(z —'),
with boundary condition (8, —co)G[ )(p;z, z')=0 for
z =0 and z') 0. Clearly, G[ )(p;z, z') =G[ )(p;z', z), and
Eq. (7) can be solved ' to yield, as co~ —0D and for
z z

sinh[(2itoi)' zo]=(2itoi)' /icoi .

Since E[ )(z)= —,'[m[ )(z)], the excess internal energy at
zero loop, E[0], is11

I I

go A+(p;z)e ~ [A (p;z')e ~ —A+(p;z')e ' ]G"'(p;z, z )=
2'~~ (co —1)(co —4)

(8a)

where

A+(p;z)=3coth z 3co~cothz+to~ —1, (8b) ER=-e 1Z E
with z =z/go, z'=z'/go, co =go(togo+p ), and
go=to ' [=(2/itoi)' ] for t )0o[to &0].

In order to calculate E,['~, Eqs. (8) are substituted into
(6) and then (3) and the resulting integrals in z, z', and p
are performed. In doing so, one encounters divergent in-
tegrals. By using dimensional regularization, ' these
divergencies are isolated as simple poles in e as e~O.
The poles are then subtracted away by the usual multipli-
cative renormalizations' '

where p is the usual arbitrary inverse length scale and,
since dimensional regularization is used, tb =0. Additive
renormalization is not required for E, . ' ' The factors
Z, and Z„, which are well known, ' have the form
Z;=1+a;u/e+0(u ), leading to a pole in E, ), which
cancels exactly with the pole in E, ' . This then gives an
expression for E, valid to one-loop order. Finally, to
obtain universal critical properties, u is set at its
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infrared-stable RG fixed-point value u ' =
—,
' »+ 0 (» ) for

e )0. ' Since the leading singular term in E," is
+pK+~t~" ' as t~O+, with the scaling law p=(d —1)v
now confirmed to 0(»), one immediately obtains the re-
quired quantity

1 5~= —&2 1+» ——
4 36

ln2

6&3 4

ln(2 —U'3 )

v'3

= —v 2+ l. 521 257 378»+ 0(» ) . (10)

X =f dm(2$ W/X)'~ +f~(m&) . (12)

Thus we now have an expression for X in terms of
bulk quantities which are relatively well understood. In
particular, we require that W, X, and g be analytic in the
single-phase region of the phase diagram and have the
appropriate scaling form in the vicinity of the critical
point (T =T„h =0). A convenient way of achieving this
is to use Schofield's linear parametric model for the
(bulk) equation of state. This is known to be consistent
with the» expansion to 0(» ) inclusive. Similar para-

In order to compare (10) to results obtained from
local functi-onal theory, we now briefly review the method
developed by Fisher and Upton. ' One starts by intro-
ducing a free-energy functional P, [m], for the order-
parameter profile rn(z), which is assumed to depend on
m(z) and m =dmldz, but not on higher derivatives.
Therefore one writes

9;[m]=f dzA(m, m;T, h)+ f, (m&', h„c),
0

where m, =m (z =0) and usually one takes
f, = —h, m, + —,'cm f. Also, A(m „,0)=0, where
m „=m (z = oo ). The equilibrium profile m (z) is that
which minimizes 9', [m ] and X ( T, h ) =min( ) V, . The fa-
miliar squared-gradient Landau theory corresponds to
the choice A =

—,
' Rom + V(m) —V(m „), where

V(m)= —,'trn +(I/4!)um" —hm. To go beyond mean-
field theory, one chooses forms for A which incorporate
nonclassical bulk critical exponents. Pioneering work
in this direction was performed by Fisk and Widom
and, later, for T =T„by Fisher and de Gennes. ' More
recently, Fisher and Upton considered a class of
theories where A(m, m)=[1+9(X)]W(m), with
W(m) = W(m; T, h) being related to the bulk free
energy '"' and min W(m) =0 reproduces the bulk equa-
tion of state [so, clearly, W(m „)=0]. The dimensionless
quantity X =X(m, m; T, h) is given by3~b'

X=gml&2XW, where g=g(m;T) is the correlation
length and X=X(m; T) the susceptibility of a system with

homogeneous magnetization m. From the Euler-
Lagrange equations that extremize (11) (and additional
conditions to ensure thermodynamic consistency ), we
find that the surface free energy X ( T, h ) is given by ' "

metric models have been constructed for g(m; T) which
are also consistent with e expansion. Hence, by substi-
tuting parametric model expressions into (12), one can
derive an» expansion for Q, which, to 0(»), was found to
b 19 26

Q = —&2+ l. 522 96'»+ 0(» ) . (13)

This should be compared with (10).
One can also use these methods to study an amplitude

relation involving the magnetization profile m (z) at the
critical point (with h, WO) where a phenomenon known as
critical adsorption occurs. ' ' Here scaling ' predicts
that m (z) =P,z ~ ' as z —+ ~ at T =T, and h =0, where

P is the usual bulk (spontaneous) magnetization exponent.
If, along the critical isotherm (T = T„h%0) we have that
h =D~m„~ sgn(m„) and g=f, ~!h~

' ~ (which defines
the usual bulk amplitudes D and f, and the bulk ex-
ponent 8), then the amplitude relation
R p

=P,"~~D'—~ If, should be universal. Local-functional
methods leading to Eq. (12) predict a particularly simple
expression for this, involving only the bulk exponents:

1/2
P 5(5+1)

(14)
v 2

I am indebted to Erich Eisenriegler for very helpful
discussions throughout the course of this work. I also
thank Michael E. Fisher for initial motivation and useful
correspondence. The hospitality of the Forschungszen-
trums Julich is gratefully acknowledged.

Given the known e expansions for the bulk exponents, '

local-functional theory predicts that R~
=&6(1—0.2083»)+0(» ). This should be compared
with the results of a field-theoretical calculation [using
Eq. (6a) at t =0], which gives R p
=&6(1—0.207 896 745»)+0 (» ).

In conclusion, we have shown that phenornenological
local-functional theories are consistent with the e expan-
sion, as derived from field theory, at 0 (») to within about
0.1%. The local-functional theory has the strength that
it can be applied with relative ease to any dimension, in-
cluding the physically interesting d =3 case, which was
the focus of previous work. ' In contrast, field-theory
calculations are extremely difBcult to perform beyond
0 (»), and results presented here will not give reliable in-
formation about d =3. Note, in particular, that simply
putting»=1 in either (10) or (13) gives Q =0.1, whereas
it is believed, largely on the basis of local-functional
theory, that Q = —0.82+0.01 when d =3, with Q being
a highly nonlinear function of d. Also, substituting
modern estimates for the d =3 exponents into (14) gives
Rz -—1.93. It would be interesting to see how this com-
pares with experiment. However, an important con-
clusion to be drawn from the results near d=4 as
presented here is that local-functional theory, as applied
to the extraordinary transition, should be quite reliable
and probably accurate to within a few percent.
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