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The imaginary part of the ac susceptibility xy’’ is studied as a function of varying ac field amplitude and
cross-section geometry in the framework of the critical-state model. We present a formalism which al-
lows a straightforward calculation of the position of the maximum of y"(7,H). Numerical results
demonstrate that, under the assumption of a general power law for the field dependence of j., the so-
called peak field deviates significantly from the penetration field for the diverse sample cross sections.
Consequently the maximum of x¥”'(T, H) cannot be considered as an intrinsic property without correcting

for the cross section.

I. INTRODUCTION

The investigation of the characteristics of flux motion
is one of the main concerns of research on high-T, super-
conductors (HTSC’s). A major concept in this field is the
critical-state model introduced by Bean, ! by Kim, Hemp-
stead, and Strnad,? and by Anderson.? According to this
model, every part of the sample (except possibly a virgin
region at the center of the sample, where no current has
been generated) carries a current as high as possible
without dissipation. Consequently, the magnetic behav-
ior is governed by the critical-current density j.; thus the
critical-state model has been used to derive the value of
the critical-current densities as well as its dependence on
the magnetic field. Nevertheless, although it is widely ac-
cepted that j, is strongly influenced by magnetic fields,
the analytical form of the dependence is still under dis-
cussion.

One of the means to determine the critical-current den-
sity of high-T, superconductors—single crystals as well
as ceramics—is the ac susceptibility. Especially the ac
loss (which is proportional to the imaginary part Y’ of
the ac susceptibility) is of interest and has been used in
different ways to determine the value and field depen-
dence of the critical-current density j, (see, e.g., Refs. 3
and 4); the incentive to this work was Ref. 5, where the
attention was focused upon the peak position of y"’ with
respect to temperature variation for different fields in or-
der to derive j..

In this work we restrict our considerations to homo-
geneous and isotropic hard type-II superconductors of
prismatical or cylindrical shape, whereby the long axis is
oriented parallel to the field. We further regard the criti-
cal field H,; as negligibly small; the fields regarded here
shall be large enough so that B =puyH in the equilibrium,
i.e., u=~1. We do not take account of surface effects,
flux-motion effects [viscous flux flow, thermally activated
flux flow (TAFF), etc.], or flux diffusion. Thus we may
treat the magnetization cycles occurring during the ac
measurement as a sequence of quasistationary processes,
as is the case in the critical-state model. Moreover, the
exact form of the time dependence of the external field is
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of no importance for the discussion here; it is sufficient to
regard it as a monotonous sweep between the negative
and positive field amplitudes.

In this paper we develop a formalism which not only
supplies a way to calculate the ac loss for varying field
amplitude and sample geometry, but also yields a means
to determine the position of the y’’ maximum as a func-
tion of these variables with respect to the penetration
field. In Sec. II we briefly repeat the general concepts
concerning the geometry of flux penetration and critical-
state model. Section III introduces the calculus to derive
X' and to determine the peak state. Then we present the
results of our numerical calculations, including the low-
and high-field behavior of ", for critical-current densi-
ties obeying a power-law dependence on the magnetic
field (Sec. IV) and conclude with Sec. V. We added an
Appendix with analytical results supplementary to Sec.
Iv.

II. BASIC EQUATIONS

A. Geometry

In general, we consider sample geometries of cylindri-
cal and prismatical shapes, whereby the length of the
sample shall be large enough with respect to its lateral di-
mensions so that we may treat the sample as infinitely
long. In particular, rectangular cross sections are studied
since they form a representative subset, as we will see
below. We identify the long axis with the z axis and as-
sume that the sample is exposed to a homogeneous exter-
nal field along the z axis. Thus the physical quantities do
not depend on the coordinate z, as variations at the end
of the sample are small with respect to the bulk and are,
therefore, neglected. Hence, we need not consider
demagnetization effects.

Thus we are dealing with quantities varying only over
the sample cross section. In order to obtain a quasi-one-
dimensional description of the critical state, we introduce
suitable coordinates for the cross section. For cylindrical
samples these are polar coordinates. Rather than the ra-
dius, however, we shall take the depth x =R —r, which is
more appropriate to describe the penetration of flux into
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the sample from the surface. The points of constant
depth x form concentrical rings of length
c(x)=2m(R —x). We shall call these rings “perimeters”
and apply this term also to their correspondents for other
sample geometries. For cross sections which are not cir-
cular, we define a perimeter as the line formed by all
points at a given depth x from the surface. (See Fig. 1;
for a discussion of flux fronts for circular and elliptical
cross sections, see also Ref. 6.)

The perimeters of convex polygonal cross sections at a
depth x are convex polygons formed by lines parallel to
the polygon sides displaced inward by the depth x (omit-
ting all line segments that are cut off at the end). In the
case of a rectangular cross section [Fig. 1(b)], the perime-
ters are rectangles whose side lengths consecutively de-
crease until we reach the central perimeter, which is re-
duced to a line, i.e., a rectangle of zero width, at a depth
of half the width of the original rectangle (x =b/2). The
lengths of these rectangular perimeters are given by
c(x)=2a+2b—8x. For cross-sectional shapes not too
unconventional (i.e., for triangles, rectangles including
the square, circles, and so forth, but not for, e.g., an el-
lipse or, even worse, a circle’s segment), the lengths of the
perimeters, c(x), are given by a linear function of the
depth x over the whole range from O to the maximal
depth R, which corresponds to the central perimeter
shrunk to a line or point:

c(x)=co—c;x, 0=x=<R, (1)

where ¢, is the length of the surface perimeter of the
sample and c,; describes the reduction of the perimeters
as one penetrates into the sample. For a circle they are
¢o=2mR and c,=2w, whereas a rectangle with side
lengths a and b has cy=2a +2b and c; =8. We restrict
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FIG. 1. Cross section of (a) a “round stripe” sample and (b) a
rectangular sample with width @ and thickness b. Also drawn
are two perimeters at depths x and x +dx, as well as the central
perimeter at the maximal depth R. See the text for further ex-
planations.
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our discussions to cross sections with perimeters (1).

The other set of coordinate lines, which are the gen-
eralized radii of the circular cross section, is generated by
straight lines perpendicular to the perimeters. Note that
these quasiradii start at the surface, though not necessari-
ly all of them extend to the central perimeter. In the
critical-state model, a quasiradius may be seen as the line
along which the flux quanta enter the sample; therefore
the flux profile runs along these lines.

Since the physical quantities, such as, e.g., the flux den-
sity, are constant over the range of a perimeter within the
critical-state model, integration over the cross section is
easily performed by adding up the contributions of
perimeters using the area element df=c(x)dx
=(cg—cx )dx, with ¢ and c, as defined above.

Thus the geometry of a sample is described by the
three parameters cg, ¢, and R. We define the number

L4 R’ @
which only depends on the shape but not on the size of
the sample. Cross sections with equal y values are ex-
pected to behave equivalently within the framework of
the critical-state model. For rectangular samples the
shape parameter ¥ is given by
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b . (3)

=1
Y=3

B. Critical-state model

In this subsection we repeat the concepts of the
critical-state model"? needed for further treatment. We
shall write the critical-current density j, in the form
o (B) = —2 @

I (B

Here we have introduced the function f(B) to describe
the field dependence. It is a symmetric [i.e.,
Sf(—B)=f(B)], non-negative function which, for physi-
cal reasons, grows monotonously for B=0. a; is a pa-
rameter to describe variations of the critical-current den-
sity due to parameters other than the magnetic field.
Typically, the variation of a; is due to changing tempera-
ture, ie., a;=a ,-(T),“’5 but it may also depend on other
parameters, e.g., defect concentration (varied by either al-
loying or annealing), neutron irradiation,’ or grain size
and morphology of the grains of granular HTSC’s.?
Equation (4) represents the assumption that the depen-
dence with respect to the field can be separated from the
remaining other parameters.

With the sample geometries discussed above, the model
allows a quasi-one-dimensional description of the current
and flux distributions within the sample. Currents will
flow along perimeters in the sample since this corre-
sponds to a minimum of penetrated flux within the sam-
ple. Flux moves along the quasiradii, mentioned above.
Consequently, the flux gradient (flux profile) is appropri-
ately expressed as a function of the surface depth x along
the quasiradial lines.
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The flux density B obeys Ampere’s law with respect to
the critical-current density:
i‘;—f =10 (B) . 5)
In this equation the sign may alternate for subsequent
depth intervals. The integration constants are fixed by
the surface condition B(x =0)=p,H for the outermost
interval and the continuity B(x; —)=B(x;+) for the fol-
lowing intervals, respectively. [If a virgin region exists in
the center of the sample, we have B(x =x,,)=0 as an ad-
ditional constraint defining the depth x,, where the virgin
region begins.] Using (4), we can integrate (5) and obtain
B as a function of x and H:

F(B)=F(Bgy)ta;(x —x,) , P
)
B=F"Y(F(By)ta;(x—x,)) ,

where F is the stem function of f, defined as
B
F(B)= B')dB’' ,
B)= [ f(B')d

with the inverse function F !, and the integration con-
stant in (6) is chosen in accordance with the condition
B(xy)=B, at some depth x, in the interval considered.

The sign in (5) and (6) is determined by the sample his-
tory: The negative sign is chosen for regions where flux
has been moved inward, corresponding to increasing
external field; the positive sign marks outward flux
motion driven by decreasing external field. Thus, in gen-
eral, continuous solutions patched together from solu-
tions according to (6) (with alternating signs) are expected
when the external field is not a monotonous function of
time.

Considering the monotonous flux profile with applied
external field H as a special case, we have the negative
sign in (6) and B(x,=0)=pyH; the penetration length
X(H) is defined as the depth at which B=0:

x(H>=aiF(poH) . ™
J

Inversely, we define the field yielding a penetration length
X as

H(x)=—F Na;x) . ®)
Ho

When the penetration length of the field amplitude
equals the sample depth R, the sample is said to be in the
penetrated state and H, =7#(R) is called the penetration
field of the sample.

As mentioned in the Introduction, we are dealing with
an ac external field of amplitude H,,. We give the solu-
tion for an external field increasing from an initial value
—H,,; the solution for decreasing field (starting from
+H,,) is analogous. In general, the solution consists of
three parts: (i) an outer region determined by the
presently applied external field H, (ii) a region where the
flux profile persists as built up by the negative-field ampli-
tude —H,,, and (iii) the virgin region:
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HoH[X(H)—x ], 0=<x=x,(H) (i)
Bla;jx,H)= {uH[—%(H,)+x], x,H)<x=x, (ii)

0, x, <x (iii) .
9)
The “apical” depth x , and amplitude depth x,, are given
by

x (H)=1[%(H)+%(H,)] ,

1
2

(10)

See also Fig. 2 for a schematic flux profile with the
respective quantities labeled. [It must be added that (9)
describes solutions for any positive value of the depth x
and is, of course, applicable only at depths smaller than
the sample depth dealt with, i.e., x <R.]

MOHm -----
HoH
B(x,H)
X(H) xA(H) X
_/J“OHm ----------
(b
'u'OHm \
K (x)
X Xm
MOHA(X)>
_'LLOHm

FIG. 2. (a) Flux density B as a function of the depth x for
given applied field H (schematic). (b) Graphical definition of the
fields #(x) [see text, Eq. (8)] and H ,(x) [Eq. (23)]. Note that
for H ,(x) the field “apex” (the minimum of the flux density)
reaches the depth x, while for #(x) the flux profile crosses the
zero level at x.
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II1I. ac LOSS

A. Total and local loss

The magnetic power loss during a cycle caused in a
sample by hysteretic behavior is given by’

w=[,av$y HaB==[ av$, BdH, (D

where H is the applied external field and B is the flux den-
sity in the sample; the volume integration extends over
the sample volume, and the circular integral is performed
over one magnetization loop with field amplitude H,,.
The imaginary part of the complex susceptibility is the
normalized power loss’

w
M= (12)
X pomH ,3, vV
where H,, is the ac amplitude of the external field and V
is the sample volume.

It is useful to perform the integrations of (11) in
separate steps. Using the flux density B(a j,H ) of (9), we
define the local-loss function

1
wla;x,H )=———— B(a;x,H)dH . (13)
J m Lo H,f, ¢(Hm) J

Note that the integration variable H is still the external
field, rather than the local-field strength. In the following
we suppress H,, and simply write w(a;x), although the
local-loss function does depend on the value of the field
amplitude H,,.

The imaginary part of the ac susceptibility y’' is the
average of the local loss over the sample. For the sample
geometries used here having the cross-sectional area
F=CoR _lcle,

I

|
=;f dx(co—cyx)wla;x)

= Y
27_1 f w(a;x )dx

_lz_fokw(ajx)x dx |, (14)

with the geometry parameter y defined above.

It is obvious that '’ depends vitally on the magnitude
and field dependence of the critical-current density (via
w), but also on the value of the sample depth R. It is easy
to see, e.g., by substitution a X=X in the integrals in (14),
that " actually depends on the product a;R rather than
on individual a; and R. Furthermore, (8) directly corre-
lates a;R to the penetration field H,. Accordingly,
reduction of either the sample thickness or strength of
the critical-current density a; (e.g., by increasing the tem-
perature), as well as an increase of the ac field, essentially
has the same effect, which can be described in terms of
the increment of the ratio of the field amplitude to the
penetratlon field, H, /H,. As discussed in the litera-
ture,®”!! when H,, /H grows, x'' first increases, but
reaches a maximum in the range H,, ~H,, and then de-
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creases to zero again. It is easy to show (see Ref. 9 or the
Appendix) that for cylindrical samples in the case of
Bean’s model (j,=a;=const) " attains its maximum
just at the penetrated state, i.e., when H,, =H b For oth-
er geometries and field dependences, the situation is more
complex than this, and the maximum of ¥"" may shift to
greater or smaller values of H,, /H,, depending on the
values of the quantities mentioned.

B. Peak state

When the imaginary part of the ac susceptibility "’ at-
tains its maximum for a given sample, the sample is said
to be in the peak state. In general, the peak state is
different from the penetrated state, and the value of the
penetration field H, can deviate from the peak field H,,
by a factor of up to 3.1 We want to derive an expression
which correlates the penetration field H, to the peak field
H for given sample shape as defined by v and the field
dependence of the critical current, f(B).

We are considering changes of the ac loss due to varia-
tions of the critical current by, e.g., the temperature,
which means that we are varying the critical-current
strength a; [Eq. (4)]. Thus the peak state condition is

ax’ _g . (15)
da

Hence, using (14),
dw(a;x)
0= a]f dx(co—c,x)——'——
j

R d
= fo dx(co—cx )x;w(ajx)

=(coR —c¢;R*)w(a;R)— fORdx(co—chx w(a;x) ,

since the local-loss function is a function of the product
a;x and the substitution a;dw(a;x)/da;=xdw(a;x)/dx
allows partial integration. We reorder the above equa-
tion and obtain an expression using the local-loss func-

tion to find the geometry parameter y for the peak state:
co _ wlaR)—(2/R [ “wlax)x dx
Y w(a,R)—(1/R) [ Fwla,x)dx

16
- (16a)

For the case that the peak field is smaller than the
penetration field, H,, <H, or, equivalently, x,, <R, (16a)
can be simplified. Since for depths greater than the
penetration length of the peak field, i.e., x >Xx,,, no
changes of the flux density occur throughout the whole
field loop; the local-loss function vanishes in this region.
Thus w(a;R)=0 and both integrations are performed
only up to x,,, giving

_ % _2 f w(a;x )x dx
R R f w(a;x)dx

Equation (16) relates the sample shape characterized
by 7 to the sample depth R; the parameters, namely, the
peak field H,, and the field dependence of the critical

(16b)
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current, f(B), are contained in the local-loss function w.
Note that the critical-current strength a; is not a truly in-
dependent parameter since both equations effectively con-
tain the product a ;R only. As follows from (8), the sam-
ple depth and penetration field are directly related. Thus
we can use (16) as an implicit relation to determine the
ratio H,, /H, between the peak and penetration fields, for
a given sample geometry and field dependence of j..

We want to emphasize that (16) determines the param-
eters ¥ and R, but poses no additional conditions on the
cross-section geometry. For this reason there are cross-
sectional shapes equivalent to each other with respect to
the peak state. Altogether, rectangles are representative
for the entire set of cross sections regarded here, with
R =b/2 and y given by (3). For instance, all regular po-
lygons, and the circle (cylindrical sample) as a limiting
case, behave in the same way since they all have y =1 (or
¢o=cR), which corresponds to a square cross section.

IV. RESULTS

A. Current dependences investigated

In the literature various forms of field dependences
f(B) of the critical-current density have been discussed
and used in the context of critical behavior of HTSC’s. 12
In this paper we want to discuss critical currents depend-
ing on the field according to

(B)=—1 17)
] —
¢ ,Uro]B IB
or f(B)=|B|A
This is a special case of the critical-current density

_ a;

j(B)=——"—— (18)

[corresponding to f(B)=|B +b0|ﬁ], which has been used
to describe the field and temperature dependences of the
intergranular currents of ceramic HTSC’s.> Equation
(18) represents a generalization of the Kim-Anderson
model® in that the heuristic field exponent 8 was intro-
duced. The original Kim-Anderson model corresponds
to B=1 and contains a constant b, which serves to avoid
the divergency in the low-field behavior of j.. In Ref. 5,
b, was found to be rather small in comparison with the
fields applied. In this paper we drop this constant, not
only for the sake of simplicity, but also for the following
reason.
Consider (5) for the field dependence (17),

(uol HIPH —ax)V/'BTV x <X(H)

B(a;x,H)= —polax —|H[PFH)VBTD | oG(H)<x <x ,(H)

x4(H)=x=x

—,u.g[a(xm _x)]l/(B-H)’
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+4B _ 9

TR (19)

which defines the shape of flux profiles according to the
critical-state model. If we change the field and spatial
scales simultaneously according to

B+—B'=AB ,
g = APy (20)

(A is an arbitrary number), (19) still holds with the same
value of a;. For the formalism discussed in this paper,
this means that all field scales are equivalent and may be
varied freely, as long as the spatial parameters, i.e., R and
¢y, are transformed according to (20b). Since the
geometry parameter Y (as well as c¢;) and field ratio
H, /H, are dimensionless numbers, they remain un-
changed at these transformations. In other words, the ac
susceptibility is invariable if the size (but not the shape)
of a sample is varied and the applied fields are adjusted
accordingly. Moreover, the condition for the peak state
(16) holds not only for varying critical current [Eq. (15)],
but also for varying field amplitude dx” /dH,, =0: The
maximum of '’ determined by measuring the susceptibil-
ity for varying probing field coincides with the one ob-
tained from a temperature-sweep measurement.

If, on the other hand, the critical-current density did
obey (18), a field scale would be introduced, viz., by, and
the scaling symmetry would be broken. The relation be-
tween the parameters y and H, /H, would then be
governed by the absolute value of the field amplitude H,,
in terms of the constant b,/u,, and the maximum of "’
for varying probing fields cannot be calculated using the
above condition (15).

B. Field profiles and local loss

In the following we apply the formalism presented in
Sec. III to critical-current densities obeying (17). The
penetration length of the applied field (7) and the corre-
lated field (8) attain the form

B
x(r)=HIH
a

F(x)=(a|x|)/B*Vsgnx ,

respectively. We use the sign function sgnx =|x|/x and

the abbreviation a=(B+1)a;/uf*'!. Thus the field

profile (9) in the sample reads'?

(21)

m

where the intervals are defined by the penetration length of the external field 96(H), the apical depth x 4, and the ampli-

tude depth x,,,:
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HE '+ |H|BH
2a ’

B+1
m

X 4(H)=

X, =(H,,)=

[As long as the external field is negative, the first interval vanishes in (21).] With the field profile (21), the local-loss

function for a given depth x is

2 Hy,
w(ax)=——=; [ Bla;x,H)dH
Mo, m
= 1212 —(H ,(x)+H,, [a(x,, —x) ]V 4 [
E m

+me(Hﬁ+l_ax)l/(B+l)dH R
F(x)

Each of the integrands of the right-hand side of (22)
represents the three intervals of (21) in reversed order.
Figure 2(b) displays the flux profiles for the external fields
—H,,, H, (x), #(x), and H,,, which form the boundaries
of the integrals in (22). The quantity

H, (x)=H(2x—x,,)

=(a|2x —x,, )1+ Vsgn(2x —x,,) (23)

corresponds to x , and denotes the value of the external
field at which flux starts to move at the depth x.

The integrals of (22) can be solved analytically for =0
or 1 (i.e., Bean’s or the Kim-Anderson model) and are
given in the Appendix. For other values of the field ex-
ponent, only numerical solutions are possible. A comput-
er program written in FORTRAN77 was employed to ob-
tain the local-loss function w(a;x) in the interval
0<x =x,, for different values of the field exponent,
B=0,...,9. The program also computes the integrals
occurring in (14) and (16); and for variable sample depth
R, the geometry parameter y of the peak state is calculat-
ed where it is defined (i.e., ¥ = 1). The results are given in
the following sections.

C. ac losses

The imaginary part of the ac susceptibility, y'’, for
different values of the field exponent B, was determined
from the calculated data mentioned in Sec. IVB using
(14). x" depends on the value of the field amplitude H,,
for given current strength a; and sample geometries y
and R. For dimensional reasons, however, it is clear that
X" only depends on dimensionless parameters, namely, ¥
and H,, /H,, where H,=7#(R) (8).

Figure 3 shows the field dependence of y'’ for different
field exponents 8 and different sample geometries; for the
sake of lucidity, the sample geometries are expressed in
terms of the side ratio b /a of a rectangular cross section.
For all values of B, ¥"' shows a maximum in the range
where H,, ~H,,; for higher as well as for lower field am-
plitudes, it decreases smoothly (except for a slight kink at
H,,=H,) and vanishes asymptotically when H,, de-

H(x) _

(ax —|H|PH)V/'6+*VgH
HA(x)

(22)

r

creases to O or diverges. As is visible from the inserted
log-log plots in Fig. 3, x" approaches asymptotical
straight lines for H,,—0 as well as for H,,— . The
slopes of these straight lines depend on the respective
value of B and are discussed below.

D. ac losses in the low-field limit

In the low-field regime (H,, <<H, or x, <<R), flux
penetrates only a small depth from the surface. There-
fore we can neglect the second term on the right-hand
side of (14), which just takes the reduction of the perime-
ter lengths at growing depth into account, and keep the
first term:

xm xm
XHOCR—Ifo w(a;x )dx=-i—f01w‘(f)df

x,, Hm B+1
—
R

H,

[og

where we substituted X=x/x,, and @(x)=w(a;x,,X).
The resulting integral does not contain the amplitude
depth x,, and is thus a constant (or, strictly speaking,
only a function of B). Thus the low-field limit shows the
asymptotic power law '’ « H8113 This can also be seen
in the insets of Fig. 3, which are log-log plots: Y’ forms
straight lines with a slope B+1 for H,, /H, <<1.

E. ac loss in the high-field limit

To derive the asymptotic behavior of x' for high field
amplitudes (H,, >>H, or x,, >>R), we first consider the
local loss (22). We have x <R, and thus x <<x,,. There
are two terms that are of interest in this limit. The first
term within the large parentheses of (22) yields a contri-

bution proportional to
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FIG. 3. (a) Imaginary part of the ac susceptibility '’ (Bean’s
model, 8=0) as a function of the amplitude of the external field
H,, normalized to the penetration field H, for different side ra-
tios b /a of a rectangular cross section. The dashed line shows
the position of the maxima of }''. Both axes of the inserted
graph are logarithmic. (b) The same as (a), but for a critical
current obeying j. < B~ !. (c) The same as (a), but for a critical
current obeying j. < B 3.
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2 | Hylx) 1
=% 1]— — ) JI/B+D
Wy T [ Hm Hm [a(xm x)]
2 2 x x 1/(B+1)
T B+1 x, X,
« X
X,
since ax,, =HE2"! and
1/(B+1)
H, x)=—H, [1-22%
xm
2 X
=~—H, |l-5—F —
" B+1 x,,

The other main contribution is contained in the second
term on the right-hand side of (22):

__2 Hx) e BHIN/B+])
w3——1TH3! fo (ax—HFP™") dH
2
2 | Hx) 1 B+1\1/(B+1)
== |—= 1— dh
= &nlk( R
Hx) MEREZCASY
oc i —_
H, X, ’

where we performed the substitution 2 =H /#(x) and
the integral turns out to be a constant (i.e., a function
only of B). To determine the dominating contribution, we
have to compare the exponents with respect to the depth
x. If B>1, then 2/(B+1)>1 and w; is the dominating
term, i.e., w(a;x)«<x2/®+1; for B< 1, on the other hand,
w, dominates the local-loss function, and we then have
w(a;x)«Xx.

For the limiting case S=1, both above formulas pre-
dict a high-field dependence w(ajx)“x. However, the
analytical solution gives

x
~—1In
xm

1+%—m

x
w(ajx)OC———
x

X
m m

m
X

This result is derived in the Appendix.

It is easy to see from (14) that y'’ retains the high-field
exponent of the local loss w; note that R substitutes for x.
Thus

B+1
R _ |4, g<i
X H, ’
2

. R b H, H,

e iR m [ 2 e |22 (|22 |, p=1
x| R Lﬁ} H,
RO 8, ) p>1
xm Hm ’ >

where we used aR =HF*' and ax,, =HE"'. Also, see
the inserted log-log plots in Fig. 3, where, for H,, >>H,,
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TABLE L. Field ratio ¢ =H, /H,, (the ratio of the field amplitude and penetration field at the maximum of x") for different sample
cross sections, expressed in terms of the side ratio b /a of a rectangular cross section, and different values of the field exponent .

b/a 0 0.05 0.1 0.2 0.3333 0.4142 0.5 0.6667 0.8 0.9 1

B

0.0 1.3333 1.3220 1.3103 1.2857 1.2450 1.2265 1.2000 1.1429 1.0909 1.0476 1.0000
0.2 1.2200 1.2113 1.2031 1.1850 1.1588 1.1415 1.1218 1.0796 1.0411 1.0092 0.9690
0.5 1.1415 1.1354 1.1292 1.1161 1.0972 1.0848 1.0708 1.0411 1.0149 0.9920 0.9569
0.7 1.1130 1.1078 1.1026 1.0915 1.0756 1.0652 1.0536 1.0291 1.0083 0.9876 0.9567
1.0 1.0859 1.0816 1.0774 1.0684 1.0556 1.0473 1.0381 1.0192 1.0040 0.9862 0.9599
1.5 1.0604 1.0572 1.0539 1.0471 1.0375 1.0315 1.0248 1.0114 1.0018 0.9882 0.9670
20 1.0462 1.0435 1.0409 1.0354 1.0278 1.0231 1.0179 1.0078 1.0012 0.9910 0.9732
25 1.0371 1.0349 1.0327 1.0282 1.0219 1.0180 1.0138 1.0058 1.0010 0.9934 0.9781
3.0 1.0309 1.0290 1.0271 1.0233 1.0179 1.0146 1.0111 1.0045 1.0008 0.9953 0.9819
4.0 1.0231 1.0215 1.0200 1.0171 1.0130 1.0105 1.0079 1.0031 1.0006 0.9978 0.9871
5.0 1.0183 1.0170 1.0159 1.0134 1.0102 1.0082 1.0060 1.0023 1.0005 0.9993 0.9904
7.0 1.0133 1.0120 1.0111 1.0093 1.0070 1.0056 1.0041 1.0015 1.0004 1.0000 0.9941
9.0 1.0099 1.0092 1.0084 1.0071 1.0053 1.0042 1.0031 1.0011 1.0003 1.0001 0.9960

x'' forms straight lines, with slopes 8+ 1 or 2 for 8 small-
er or greater than 1, respectively.

F. Peak geometries and peak fields

For the peak state a relation between the sample shape
and field ratio g =H,, /H, is supplied by (16). Table I
gives the values of the field ratio ¢ for various field ex-
ponents 3 and sample shapes as obtained from our calcu-
lations; as above, the latter is given in terms of the rec-
tangular side ratio b /a. The data for the boundary cases
b/a=0 (slab) and 1 (quadratic cross section) as well as
for 0.5 and 0.8 are graphically displayed in Fig. 4. For all
values of B, ¢ is a decreasing function of the side ratio
b/a. Only for Bean’s model does ¢=1 hold for all
geometries, and it takes values between 1 and 4. For
B> 0 the behavior of ¢ is as follows. At b=0 the value of
¢ decreases continuously from 4 with growing B, whereas
at b/a =1 it first decreases, attains a minimum of 0.9564
for f=0.60, and increases again toward 1. For high
values of B, the field ratio ¢ converges to 1 for all

FIG. 4. Field ratio ¢=H,, /H, (the ratio of the field ampli-
tude and penetration field at the maximum of y’’) as a function
of the field exponent B for different side ratios b/a of a rec-
tangular cross section.

geometries. In Fig. 5 the dependence of the peak field
H is shown as a function of the sample side ratio a /b.
H; is normalized to the penetration depth H,, yielding
the field ratio ¢.

In the above discussion of H,y, it is implicitly assumed
that the width a of the sample (which we assume to be
rectangular) is changed, but the thickness b is kept con-
stant to ensure that H, remains unchanged. However, if
the sample thickness b =2R is varied with constant sam-
ple width, the penetration depth varies as well. Thus the
absolute value of the peak field as a function of the sam-
ple thickness is

H(b)=gH,(b)=g(b/a)#(b/2) . (24)

This is shown in Fig. 6; the peak field is given in terms of
the penetration field of the corresponding quadratic sam-
ple (b=a), HY. Note that, while the field ratio ¢ mono-
tonously decreases for growing side ratio b /a (Fig. 5), the
peak field H,, now increases since the growing penetra-
tion field overcompensates the reduction of ¢. The value

T

0.0 0.2 0.4 0.6 0.8 1.0

b/a.

FIG. 5. Field ratio g=H /H, (the ratio of the field ampli-
tude and penetration field at the maximum of x’’) as a function
of the side ratio b/a of a rectangular cross section for different
values of the field exponent . The values of 8 where not given
in the figure are 2, 2.5 (dashed line), 3, 4, 5, and 7.



FIG. 6. Peak field H,: as a function of the side ratio b /a of a
rectangular cross section with constant width a for different
values of the field exponent B. The peak field is normalized to
HY, the penetration field for b /a =1.

of H,, starts from O for b =0 (i.e., a vanishingly thin sam-
ple) and increases up to the value gHY for b=a (a quad-
ratic sample). It should be noted that in (24) we used the
scaling property (20) for the penetration field H, and
sample depth R.

These results, especially the data of Fig. 6, have been
used to determine the field dependence of the critical
current in Ref. 5, where we measured the ac susceptibility
as a function of the temperature not only for different
values of the applied ac field, but also for varying sample
thickness. Field exponents B were determined by finding
a fit of the experimental data to the calculations present-
ed here. More specifically, the experimental data for con-
stant temperature but different sample cross sections
should, when scaled in an appropriate manner, arrange
along a line in Fig. 6; this indicates the field exponent 3 of
the critical-current density.

V. CONCLUSION

The imaginary part of the ac susceptibility Y depends
not only on the amplitude of the external field, but also
on the sample geometry. This result is discussed here for
sample shapes of vanishing demagnetization factor, i.e.,
long samples parallel to the field. For more complex
geometries (i.e., for nonvanishing demagnetization fac-
tor), calculations are not trivial since a quasi-one-
dimensional description is not possible. In those cases it
is obvious that the geometry dependence will be more
pronounced than discussed here.

The geometry dependence of '’ is most pronounced in
the case of a field-independent critical-current density
(Bean’s model). If a field dependence of the critical-
current density is “switched on,” i.e., if the field exponent
B increases, the geometry dependence of the ratio of the
peak and penetration fields, H,, /H,, gradually decreases.
For all geometries H,, first decreases on rising 8 from O,
so that for the geometries with small y (i.e., YR 1 or
axb) H, reaches a minimum value below H o3 the
minimal value H, /H,=0.9564 occurs at B=0.60 and
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y=1. For values of B distinctly greater than 1, H, ap-
proaches the value of H, for all geometries. For large 8
values, the discrepancy between H,; and H » is only a few
percent.

In the low- and high-field limits (H, <<H, and
H,, >>H,, respectively), the behavior of ¥ as a function
of the field amplitude is independent of the sample
geometry and exhibits a power law with respect to H,,.
The exponent is B+1 in the low-field limit,® whereas in
the high-field limit it is —(B8+1) for <1 and —2 for
B> 1.

Our results are calculated under the assumption that
Heq=1. The extension to values for p ., other than 1 is
straightforward as long as it can be regarded as constant
in the field range covered by the values of H,,: the flux
density B, and consequently the local-loss function w, and
the imaginary part of the ac susceptibility '’ are reduced
by a factor equal to p1.,. This method can also be applied
to the intergranular transition of granular HTSC’s using
the effective permeability p 4. *

Finally, one has to be rather careful if the field and
temperature dependences of Y’ are compared for
different sample cross sections. In particular, it is
noteworthy that the peak of x'(H,T) (which several au-
thors used to determine the irreversibility line) cannot be
regarded as an intrinsic property of the material without
correcting for the influence of the sample cross section.
We recommend that in measurements of the ac suscepti-
bility, as far as the maximum of the imaginary part is
used in the analysis of data, only quadratic or cylindrical
samples should be used since then the possible error due
to the field ratio ¢ =H,;, /H, is smaller than 5%.
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APPENDIX

1. Bean’s model

The field-independent critical-current density of Bean’s
model' is the limiting case of (17) for B=0. We repeat
the calculations of Sec. IV here in short for =0 giving
the analytical results.

The local-loss function (22) is

2
wla;x)=— H? —2ax(H,, —ax)
H”l
+ (H—ax)dH
Zax—H”l
=i ax 1— ax
T H, H,

Note that #(x)=ax and H ,(x)=a(2x —x,,), with
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a=a;/p, The determination of " according to (14) is
straightforward and yields

il 2 A, H_<H (Ala)
H, |7 H, | mT a
”=22/31r1x " 1y |3 2H'"]+3H"‘ 4]
y— — 2y |32 |43 —4 |,
H, H, H,
H,<H,. (Alb)

This is given graphically in Fig. 3(a).

For the determination of the peak state, we can use
(A1) directly instead of (16). First we note that the slope
of x" is positive for all H,, <H,; thus we consider only
the derivative of (A1b),

dXH « Xml « . Hp Hp
—f— o —L— 3—4— |+3——2=0,
da, dx, ! H, H,
from which

_4—3_,2—b/a
7= 3,2 23°b/a-

(A2)
|

wla;x)=—

Hx) N Hp,
+ [ —tax =) Pl + [ 7

172

X
1__
X

x
X,

1—2—x—

Xm

_|_

™ m

172
ll_

with the notation

;12 [—[HA(xH-Hm Wealx, =+ [°

T .
—+ h
5 arcsin
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We enter this into (A1) and obtain the maximum value
of x'" as a function of the sample geometry:

o2 Gy=2 2
Y3m Qy—1D4y—3) 3mg(2—g)

(A3)

The dashed lines in Fig. 3(a) connect the positions of the
X'’ maxima for varying ¢.

Equations (A2) and (A3) yield the well-known results
¢#=1 and x,=2/3m=0.2122 for cylindrical geometry
(a=b),’ whereas g=4.3 and x/, =3/47=0.2387 for slab
geometry (b —0). Between these limiting cases the field
ratio increases monotonously with growing y (falling
b /a); likewise, the maximal value Y/, increases.

2. Kim-Anderson model with b, =0

In this section we only derive the analytical form of the
local-loss function (22) with B=1 in order to discuss the
high-field behavior of x’’. The further calculations are in
principle to perform analytically, but are tedious. The
local-loss function for =1 is as follows. For x <x,, /2
we have

—(ax+H*)'*dH

H ,(x)

Hz—ax)l/deJ

172

x
) +arccosh

172
Xm
- y l ’ (A4a)
X

a=2a;/u, x,=HZ/a, H(x)=Vax, H,(x)=V alx, —2x|.

Forx >x,,/2,
2

2
m
172 172
x
2——1

Xm

1+ -

mX

m

with the same notation as above.

arccos

— H(x) 24172 Hn o 172
[— [HA(x)+Hm ]\/a(xm—x)+ [y —tax =) 2l + [ " (H?—ax) dH]
A x

Xm

(A4b)

1/2]
’

172
xm
2—— +arccosh
x

We now are able to discuss the behavior of the local loss in the high-field limit, which means that we consider depths

x <<x,,. We can then use the approximation that, for z << 1,

=i

arcsinhz ~!"?~arccoshz "!?~~—1Inz ,

Xm
X

and (A4a) simplifies to

x
+
T, TX

o

T fIn

wla;x)= 2

C—In

X
m xm

For further discussion see Sec. IV.
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