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Derivation of a single-band model for Cu02 planes by a cell-perturbation method
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A cell-perturbation method is developed for Cu02 planes in the cuprate superconductors described by
a d-p model. It is shown that a single-band t-t'-J-J' model accurately describes the low-energy physics
and how the parameters of this model vary with those of the underlying d-p model. The method is simi-

lar in spirit to Anderson s original treatment of superexchange [Phys. Rev. 115, 2 (1959)],where the ex-

change interaction is obtained in second order rather than given by the usual fourth-order result of ordi-

nary perturbation theory (a poor approximation). It is shown that O-O hopping can appreciably affect

the absolute and relative magnitudes of the effective single-band parameters and that a regime with J- t

is quite conceivable. Although triplet (intermediate) states can appreciably enhance the magnitude of
the "diagonal" effective hopping t', an effective single-band description should remain valid for all

reasonable estimates of the underlying d-p parameters. Correction terms involving hole pairs on neigh-

boring cells are derived and shown to be small. For the "undoped" case, an estimate is made of the criti-
cal charge-transfer energy for an insulator-metal transition.

I. INTRODUCTION

There has been considerable interest recently in the use
of effective single-band models to describe charge-spin in-
teractions in the Cu02 planes of cuprate superconduc-
tors. This follows the pioneering suggestion by Ander-
son' that a simple spin- —,

' Hubbard Hamiltonian should
model the essential physics. Since we are in the strong
correlation regime (Ult ))1) then, to second order in t,
the Hubbard model is equivalent to the so-called t-J mod-
el with J=4t IU

The use of an effective single-band model has been
questioned by a number of authors starting with Emery
who suggested that an extended Hubbard model, which
includes orbitals on oxygen (2p) as well as copper (3d),
should be used. It is now widely accepted that such a
model (or, rather, class of models, depending on which p
and d orbitals are retained) probably contains the essen-
tial physics as regards electronic properties over a wide
range of energies from meV to tens of eV. Indeed, such
models have been rather successful in interpreting a nurn-
ber of experiments on cuprate materials in general, par-
ticularly at the high-energy end, such as x-ray photoemis-
sion spectroscopy (XPS), electron energy-loss spectrosco-
py (EELS), etc. These models have become known

simply as "d-p" mode1s or sometimes just the d-p model
when only 3d» orbitals on Cu and o-bonded p„(p~)X

orbitals on oxygen are retained. Their justification has
not only been through agreement with experiment but
also on theoretical grounds where detailed constrained

density-functional calculations have yielded estimates of
the parameters of the model which are quantitatively
consistent with those of experiment. ' '" Although there
is some variation of these estimates, such uncertainties
are not too critical for many purposes and, in particular,
the main results of this paper. A possible exception is the
parameter s, the so-called (bare) charge-transfer energy,
which is difficult to estimate both theoretically and exper-
imentally, there being estimates ranging from —1 to -5
eV. As we shall see, the parameters which we calculate
(superexchange and effective hopping) vary rather rapidly
with c when it is small.

What is the relationship between the Hubbard model
(or t Jmodel) -and the d pmodel? Und-er what condi-
tions, if any, are they equivalent for the low-energy phys-
ics? These have been, and to some extent remain, contro-
versial questions. It is not difficult to show that when the
charge transfer (s) and the Cu-Cu Coulomb repulsion
(Ud) are the largest energies in the model the Hubbard
and d pmodels are eq-uivalent. (See, for example, Ref.
12). However, this is surely not the case for cuprate su-
perconductors. Anderson has always maintained their
essential equivalence for the low-energy physics and this
view was supported by the work of Zhang and Rice, '

who showed that in certain circumstances (namely,
sufficiently large charge-transfer energy and zero oxygen
bandwidth) the d pand t Jmode-ls are ess-entially
equivalent at low energies. Further support has been
given by numerical studies which show that the low-
energy spectrum of a d-p model does, in some cir-
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cumstances, resemble that of an effective single-band (t J)-
model. ' ' However, these results are not conclusive,
since it is difficult to estimate corrections and also what
form any such corrections would take in an effective
Hamiltonian. Furthermore, Emery and Reiter' have
given examples of where the two models give quite
different behavior that cannot be explained by an effective
single band and the matter remains controversial. In this
paper we reexamine the problem by a ceil-perturbation
method which includes the effect of finite oxygen band-
width, extending earlier work. ' We show that this
method yields accurate results over the whole range of
parameters of interest. These results support the effective
single-band picture and show that the most important
corrections are due to triplet states with one hole on
copper and one on oxygen (as conjectured by Emery and
Reiter' ). However, these corrections are still quite
small, can be accounted for perturbatively, and in our
view do not invalidate the reduction to an effective
single-band model for realistic estimates of the parame-
ters.

The layout of the paper is as follows. In Sec. II we de-
scribe brieQy the cell-perturbation method. The basic
model is defined in Sec. III and expressed in terms of ex-
act eigenstates of overlapping Cu04 cells. In Sec. IV we
consider the insulating case in which there is, on average,
one hole per cell. This is shown to be equivalent to a
Heisenberg model by second-order perturbation theory.
The variation of the nearest-neighbor exchange term with
the underlying d-p parameters is shown to be substantial-
ly different from the usual fourth-order perturbation ex-
pression for superexchange. The conducting or "doped"
case is consider in Sec. V where the reduction to a single-
band model is derived. This is a t-t'-J-J' model when
only terms up to next-nearest neighbor are retained
(longer range terms are much smaller). Comparison is
made with exact results on finite clusters in Sec. VI where
it is shown that our cell-perturbation method is very ac-
curate over the parameter range of interest. By compar-
ison, the usual perturbation results are shown to be rath-
er poor. Corrections are considered in Sec. VII where it
is shown that the most important ones are due to triplet
(intermediate) states which have the effect of renormaliz-
ing the next-nearest-neighbor hopping parameter (t') as
well as giving rise to small spin-dependent hopping terms.
Hole pairs on adjacent cells give rise to an attractive in-
teraction but this is relatively small and almost certainly
swamped by kinetic-energy effects. Finally in Sec. VIII
we discuss the results and point out that although the
method is convergent, even when c.-O, an insulator-
metal (Mott) transition must take place in the case of one
hole per cell and the critical charge-transfer gap at which
this occurs is estimated.

II. THE CELL-PERTURBATION METHOD

The basic idea behind the cell-perturbation method is
to perform a spatial decomposition of an interacting elec-
tron system into a network of equivalent cells. These
cells may be overlapping, though this is not usually the
case. A simple example is the decoInposition of a crystal

into atoms or molecules. The advantage of such a cell de-
cimation is that it has the capability of treating local
correlations to arbitrary accuracy, a fact recognized by
Hubbard in the second of his classic series of papers on
the subject. ' This is also the motivation behind the nu-
merical renormalization-group method in which the spa-
tial decomposition is done in a hierarchical fashion with
ever increasing cell sizes. A further application is to
magnetic insulators where such a localized description
leads to effective spin Hamiltonians. ' In all these cases
the procedure is basically the same. We first choose a lo-
calized one-electron basis set in which each orbital has a
label referring to its "parent" cell centered at r. The par-
ticular choice will depend on the problem under con-
sideration but, in general, it is always possible to choose
an orthonormal set, even when the cells are overlapping
(see Sec. III for a specific case of this). In principle one
can work with nonorthogonal orbitals though this leads
to mathematical difficulties which, for our purposes, are
best avoided. The Hamiltonian expressed in this local-
ized basis may be written

H =Ho+H(,
where

Ho= +ho,

and

The "cell-Hamiltonian, "ho„ is that part of H which only
involves orbitals associated with the cell located at r,
whereas U, , are the interaction terms associated with
cells at r and r'.

The next step is to express the Hamiltonian in terms of
the eigenstates of the cells, i.e., we solve the (few-electron)
Schrodinger equation

h, iv) =e, iv)

for one cell exactly (or to any desired accuracy) and then
express the Hamiltonian in this basis set, i.e.,

+ g (rv'r'p'~v„. ~rvr'p)X'„+„'„,
r, v, v'

I Ir, p, p

where X', ,=~r )(vr ~avre projection operators, using
the notation of Hubbard. ' In these expressions v denotes
collectively a complete set of quantum numbers for a sin-

gle cell, including n, the number of electrons. It should
also be noted that the two-cell matrix elements,
(rv'r'p'~u„~rvr'jM), depend only on the separation be-
tween the cells,

~

r —r' .
Thus far we have not made any approximation but

have merely expressed the Hamiltonian in a new basis.
To make further progress we reduce the size of the Hil-
bert space by generating an effective Hamiltonian using
Rayleigh-Schrodinger perturbation theory as follows. Ho
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H,,le&=El' &,

where E is a true eigenenergy of H. H,z is given explicit-

ly by the Rayleigh-Schrodinger expansion

(1 Po)—
H ~=PO H+HI HI+ ' ' ' Pp

Eo Ho
(3)

is diagonal in the cell basis and, for the cases of interest,
there will be a large degeneracy associated with its
ground state. For example, if each cell has ground-state
energy co and associated degeneracy do then Ho has
ground-state energy %co and is d 0-fold degenerate for X
cells. These do states will evolve into exact eigenstates of
H when the cell-cell interaction HI is "switched on." It
may be shown ' that these eigenstates of H may be
determined from an "effective" Schrodinger equation

(1—po)
[e&= 1+ '

H, + . . ia &.
Eo —Ho

(4)

III. THE BASIC HAMILTONIAN

In practice, of course, the Rayleigh-Schrodinger expan-
sions must be truncated and the method is most useful
when there is rapid convergence. This is indeed the case
for the problem of Cu02 planes and we will show that
second-order results are very accurate for the parameters
of interest.

The usefulness of the cell-perturbation method in gen-
real lies in the fact that H,z belongs to a smaller Hilbert

space than the original Hamiltonian, which has obvious
computational advantage for finite clusters. Further-
more, the effective Hamiltonian can sometimes be written
in a simple form, or mapped on to a related problem,
thereby giving further insight into possible low-energy
solutions.

where Po is the projection operator for the ground mani-
fold of Ho. Furthermore, the true eigenstate ~% & of H is
given by the Rayleigh-Schrodinger expansion

Let us now apply the general method outlined in Sec.
II to a single Cu02 plane. We start with the so-called d-p
model or extended Hubbard model. The Hamiltonian is

H= g (szn,' '+a~(n', ~„' +n,'t'„' )+t &[d, ( —p, „+p,„+p, „—p, „)+H.c. ]

+tpp(pr, y, apr, x, a +Pr, y, apr, x, a —P—r, y, apr, —x, a Pr, y, apr, x, a—+

(5)

In this Hamiltonian, d, creates a hole in a 3d» orbital at Cu site r, whereas p, „creates a hole in a p„orbital at

oxygen site r+ —,x, where x is a Cu-Cu lattice parameter in the x direction (and similarly for p, „).e and sz are the

energies of the localized holes. We have used a phase convention such that orbitals on each Cu02 cell transform in the
same way, with p„(p ) transforming like x (y).

The largest energy parameter is U&, the Coulomb repulsion between two holes on the same Cu site. In what follows

we shall set U& = Oo and neglect the corresponding U~ for the oxygen sites. Whilst this is not essential, it is convenient
since it enables us to obtain a number of analytic results which would otherwise not be possible. It is quite straightfor-
ward to generalize these results to finite U and U& by purely numerical means though this is not expected to make any
significant changes. (The main effect will be to renormalize the parameters of the effective single-band Hamiltonian,
which we will derive below. ) With these simplifications the Hamiltonian may be written

pp(Pr, y, apr, x, a+Pr, y, crPr, —x, a Pr, y, aPr—, —x, o Pr, y, crPr, x,a+— (6)

where P is a projection operator that ensures that no double occupation of the Cu sites can occur. [Formally,
P =g, ( 1+n ',"' )( 1 ,' n,' ' ).] —s =—s—

s& (the charge-transfer energy) and the constant energy term

s~gr[n,' '+n', „'+ n', „']=s&NI, has been dropped
Following Zhang and Rice we divide the Cu02 plane into overlapping Cu04 cells as shown in Fig. 1. The oxygen p

orbitals may now be replaced by independent linear combinations centered on each copper site. There are, of course,
only two independent combinations for each Cu site (cell) which may be chosen to be the combinations

p, „,~ —
pzy ~ pf —x ~+p, y ~ and pox Q+pzy Q p, „~—p, y ~. These states are not orthogonal since adjacent

cells have a common bridging oxygen but may be orthogonalized by forming Wannier functions. Althernatively and
equivalently we can, following Shastry, first express the p orbitals in the Bloch basis and then transform to "canonical
fermions"

+k, ~ (sk, xpk, *, sk, „Pk,„, ) ~8k

and
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Pk a l(Sk yPk x, cr+Sk xPk y, o )/Pk

where sk „=sin—,'k x, sk „=sin—,'k y, and pk=(sk „+sk „). Substituting these definitions into Eq. (6) and Fourier trans-
forming back into real space gives

T

H=P Eg(a, a, +Pt P, ) 2t—d g p(r —r')(d, a, , +H. c. )

r, r', o.

—
2t~~ g [v(r —r')(a„a,. —P, P, )+y(r —r')(a, P, +H c )] P, (7)

where

p(r) =N ' g e '"'pk,
k

v(r) =N ' g e '"'(2sk „sky/pk)
k

and

—ik-r kx ky kx ky2(s —s )s s

k Pk

The first few of these coupling constants are shown
below in Table I for an infinite plane (where we have set
the Cu-Cu lattice parameter to unity). They are seen to
fall off rapidly with distance and we shall only retain up
to next-nearest-neighbor terms. It is also a very good ap-
proximation to drop the g term mixing the a and P orbit-
als. This can be seen by comparing the exact result for
t~d =0 (oxygen bands only) with the approximate result in
which the a —P mixing is neglected. The exact energy
dispersion for the oxygen bands is +4t~~Sk xSk y

whereas
the dispersion of the a and P states is [from the t term
in Eq. (7)] +8t~~sk „sk „/(sk „+sk„). These energy
dispersions are shown in Fig. 2 along the direction (n.,0)
to m, n) and we see that the approximate dispersion
[y(r) =0] is very accurate close to the band minimum,
which is the region of interest. With the mixing of the a
and P orbitals neglected the P terms decouple (since only
the a orbitals hybridize with the d orbitals) and hence

I

may be dropped. (However, it should be noted that for a
sufficiently large number of holes the P band will become
occupied. We shall only consider the case of "low dop-
ing" in this paper. ) The Hamiltonian (7) then simplifies
to

H =Hp+H&

where

Ho= QP[sn,' '+so(d, a; +H. c. )]P
r, o

is the on-site Hamiltonian with E =e —
2t~~ v(0) and

~0= —2t dp(0). Similarly, for the interactions between
neighboring sites

H, = g P[~(r—r')(d, a,. +H. c. )

+~'(r —r')a, a, ]P,
where w(r —r') = —2t dp(r —r') and ~'(r —r')
= —2t~~v(r —r'). We note that the Hamiltonian in this
representation is of the general form given in Eq. (1) of
Sec. II [as is Eq. (7)].

The on-site Hamiltonian, Hp, is easily diagonalized.
For a cell with just one hole the single-particle base states
are ~d ) and ~a ), giving a Hamiltonian matrix

0 Wp'

7p

with eigenvalues and eigenfunctions

e+ =
—,'[e+(K +4r~)' ],

) =cos8~d ) +sin8~a ), (10)

and

~ 1(+ ) = —sin 8~ d ) +cos8
~
a )

TABLE I. Values of the first few coupling constants (in units
of the Cu-Cu lattice parameter).

FIG. 1. Overlapping CuO& cells. ~ Cu; o oxygen.

0
1

&2
2

0.958
—0.14
—0.02
—0.02

0.727
—0.273

0.122
—0.064

0
—0.133

0
0.041
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%ith the above eigenstates it is now straightforward to
express the Hamiltonian in the form given by Eq. (2).
For example, the cell-diagonal part of the Hamiltonian

Hp 1s

Ho= g [e+X++e X' +E+Xs +E Xs

+K(X, , +X, 0+X, , )]

where we have set X'„„=X'„and g X+ =X+ for brevi-

ty. In a similar fashion we could express the cell-cell in-
teraction H& in the cell-eigenstate basis but, as we shall
see, it is more convenient to leave it in terms of the one-
electron basis, Eq. (8).

FIG. 2. Comparison of exact solution for oxygen bands (solid
line) with a states only (dashed curve) along (~,0) to (~,m. ). IV. THE INSULATING CASE

with tan28= 2r—o/K Note that for ro«s we recover
the usual perturbation results: ~P+ ) = Ia ) +(ro/s)Id )
with e+-—s+ro/c, and IP )=Id ) (ro/s—)Ia ) with
e = —ro~/s. However, since we are interested in cases
for which 7p E we shall not make this second-order ap-
proximation.

Similarly for two holes on a cell the single-cell base
states are

In the insulating case there is exactly one hole per
Cu02 cell (on average). If we neglect the cell-cell interac-
tion, Eq. (8), then Ho is diagonal in the cell basis [see Eq.
(15)] and the ground manifold is 2 -fold degenerate with
energy Ep =Ne, where N is the number of cells.
Switching on the cell-cell hopping as a perturbation gives
rise to an effective Hamiltonian operating in this ground
manifold set of states [ I 0 &, 0 2, . . . ,0 z ) J [where we have
written If ) =Icr) for brevity, see Eq. (10)]. To second-
order this effective Hamiltonian is given by Eq. (3) and
we may write

, [at, a&)
2

for the singlet states and

1 —P
Ep —Hp j pE —E.

Idt, a, )+ Id), at)
P1,0)

for the triplet states. The latter are also eigenstates since
the a and d states are not mixed in the triplet manifold
and the triplet energy is thus c. Note also that we have
omitted the base state Id t, d

& ) because of the constraint
Ud = ~ (enforced by the projection operator P).

The singlet Hamiltonian matrix is

&2' '

&2r, 2s

where the intermediate states Ii ) have one or more sites
doubly occupied with holes. Note that PpHjPp=O since
H& will always transfer a hole from one site to another
and thus take us out of the ground manifold.

Examples of second-order hopping processes for
nearest-neighbor cells are shown in Fig. 3 where the in-

(b)
with eigensolutions

E~ =
—,'[3m+(e +8')' ],

~g ) =cosPId, a), +sinP~at, a~),
and

Ig+ ) = —singed, a), +cosPIat, a&),

(12)

(13)

(14)

It&
X

with tan2$ = —2&2vo/s =+2 tan8.
Cell states with three or more holes are much higher in

energy and will be neglected here. (They may, however,
be important as intermediate states when hole pair-pair
interactions on neighboring sites are considered. See Sec.
VI.)

FIG. 3. Second-order hopping processes for nearest-neighbor
cells (X=Cu04 cell). (a) via a triplet. (b) via a singlet (includes
spin exchange).
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termediate two-hole states are those derived in Sec. III.
Note that processes are allowed for adjacent spins both
parallel [Fig. 3(a}] and antiparallel [Fig. 3(b)]. This
should be contrasted with a single-band spin- —,

' model
(such as the Hubbard model) where a spin may only hop
to an adjacent site if it has the opposite spin because of
the Pauli principle. However, we emphasize that, as with
the single-band Hubbard model, this is a second-order
calculation which, as we will show, gives rise to the usual
(fourth-order) magnetic superexchange in a certain limit;
though in general the present method is much more accu-
rate. In this sense it is similar to Anderson's original
treatment of transition-metal salts where the hybridiza-
tion of the d electrons on a magnetic ion with the p orbit-
als on surrounding ligands is taken into account first and
the superexchange is given in second order. With this
cell approach there are, of course, longer range hopping
processes of exactly the same form but these fall off rap-
idly with distance.

Using these intermediate states in the second-order
perturbation expression enables the effective Hamiltonian
to be written in the form (dropping the constant
PoHoPo e gQ' =Ne Po)

v(R)=P[r(R)(dot aa +de ao +H. c. )

+r'(R)(ao aR +H. c. )]P . (20)

In Eq. (16) the angular brackets denote summation over
pairs of sites r and r' (not necessarily nearest neighbors),
i.e., a pair is only counted once. In deriving this equation
we have used the symmetry relations

& ((', ,„Olu(R) I
1', 1&=

& @',,„Olv(R) I 1, 1 &

=
& 1(& z, Olv(R)lcr, cr &/v 2

and

&1(+,Olu(R)ll, g &= —&1(',Olu(R)ll, 1& .

Equation (16) can be simplified further using the identi-
ties

g X' X' =
—,'+2sp,', (21)

and u(R) is that part of H& [Eq. (8)] referring to interac-
tions between two cells only, located at 0 and R=r —r',
i.e.,

where

[b, ,X' X' +( —,'b, , +6 ~)X' X'
(r, r'), o

+(—,'6, —b2)X' X' ], (16) and

g X' X' =
—,
' —2sp,'

CT

(22)

(23)

b,2(R}=—2I & g, olu(R)11, 1 & I'

E+ —2e

2I & 1(',Olu(R) I1, 1& I'

E —2e

X' . =Icr, &&cr,'I,
2I & @o',.Olu(R) la, a & I'

b, ,(R)=
e —2e

(17)

(18)

(19)

Substituting these relations into Eq. (16) and dropping a
constant term gives

H,~= g J(r—r')s s
(r, r')

(24)

where J=6]—262. Hence, to second order in the cell-
cell interaction, the effective Hamiltonian reduces to a
Heisenberg model. Detailed calculation using Eqs. (9),
(10), (12), (13), (18), and (19) gives

J(r—r') = [r(r —r')cos(29)+ —,'r'(r —r')sin(28) ]

e —
—,'c

[r(r —r')[v'2cos(()+sin(28)sing)+r'(r —r')(2 sin 8 sing+ sing cosp)]v'2

E —2e
(25)

vov(r —r')
X 1+2

p r —r'
pp

4
tpd
—3

(26)

In this expression the contribution that arises from inter-
mediate states in which two holes form a singlet P'+ has
been dropped since it has a large energy compared with
the other singlet state g and the triplet states and is
negligible.

We can examine the perturbation limit of J by expand-
ing in powers of t d /c. This gives, to lowest order

vov(r —r') t
J(r—r') =256@~(r—r') 1+

p(r —r')

I

Substituting the numerical values of the coupling con-
stants for nearest-neighbor cells from Table I we get

ppJ=4.6 1+1.87
i td1+3.74 —3E'

(27)

We see from these equations that one of the main effects
of t is to increase the superexchange by reducing the
charge-transfer gap from c to E= c.—2vptpp which is sim-

ply due to the kinetic energy of the oxygen hole around
the Cu04 cell. The usual fourth-order perturbation result
for the suPerexchange with tpp

=0 and Ud = ~ is
J=4t & IE and for this case the expression (27) is in error
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FIG. 6. A fifth-order hopping process which involves direct
O-O hopping.

0&
4 5

FIG. 4. Ratio of charge-transfer matrix element to energy re-
quired to make transfer vs p-d energy splitting (c ).

by 15%. The source of this error may be traced to the
neglect of longer-range hopping terms in Ht [Eq. (8)]
which are themselves a consequence of the orthogonaliza-
tion procedure which gave the a orbitals. For the case of
two cells there are only nearest-neighbor interactions and
we shall see in Sec. VI that in this case the fourth-order
perturbation result is reproduced exactly. The important
point is that the general result [Eq. (25)] remains a good
approximation even when t d, t, and c are all of the
same order. This can be seen from comparisons with ex-
act solutions for finite clusters (see Sec. VI) and by an ex-
amination of the ratios of the matrix element for charge
transfer to energy denominators. The largest ratio

are plots of the general cell-perturbation result [Eq. (25}]
with the results of ordinary perturbation theory [actually
Eq. (27)] represented by the dashed lines. We also see
from this figure that t makes a relatively large contribu-
tion to the superexchange, particularly when the charge-
transfer energy e. is small. We also include in the figure a
plot of the next-nearest-neighbor superexchange J' for
t =0.5, which is seen to be much smaller though still
appreciable for small c. The contribution to J' due to tpd

is extremely small being a direct consequence of the
longer-range hopping terms generated by the orthogonal-
ization procedure.

Finally we note that Eq. (27} is similar to what we
would expect from ordinary perturbation theory, with

hopping processes involving t first occurring in fifth or-
der, i.e., fourth order in t d and first order in t . A typi-
cal process is shown in Fig. 6.

V. THE DOPED INSULATOR

R =
E —2e

[see Eq. (19)] is for intermediate states with two holes on
the same site in the singlet state g . For nearest-
neighbor cells this ratio is plotted in Fig. 4 as a function
of c. for tpp =0 and 0.5, with tpd 1. We see that the ratio
remains less than unity even for c.-0, indicating conver-
gence of the cell-perturbation expansion (though less con-
vergent with increasing tz) By com. parison, ordinary
perturbation theory is hopelessly divergent in this region
as can be seen in Fig. 5, where we plot the nearest-
neighbor superexchange J as a function of c., again for
tpp 0 and 0.5 and tpd

= 1 . In this figure the solid lines

When further holes are introduced into the Cu02 plane
(which is achieved by doping or a change of stochiometry
in the actual materials) it becomes metallic since there is
no barrier to charge transfer for sites which are doubly
occupied. The effective Hamiltonian for the ground man-
ifold is still given by Eq. (3), but Po will now contain
states with doubly occupied sites but no unoccupied sites
since these will be much higher in energy. We will also
assume that the doubly occupied sites remain in the sing-
let ground state, g' [see Eq. (13)] in Po, i.e., that the
other singlet and particularly the triplet are sufficiently
high in energy to be accounted for perturbatively, and
will therefore be in 1 —Pp. This will be justified later.

Since the singlets may hop from site to site we must
add to the effective Hamiltonian for the insulating case
[Eq. (16)] the first-order term

0.6 .

0.4-

PoH, Po= g t(r —r')[X,' X', +H. c.],
& r, r' &,a

where [see Eq. (20)]

t(r —r')=(o, s~v(r —r'}~s,o ),

(28)

(29)

02-

0 0

FIG. 5. Superexchange vs e with and without direct O-O
hopping. Dashed lines are the results for ordinary (fourth-
order) perturbation theory [Eq. (27)].

r r'
s'Aa's 0 r —rr r', —a 0 (30)

where Pp ensures that we remain in the ground manifold.

and we have written ~P', g ) = ~s, cr ) for brevity. Now
the Hubbard X operators interchange a two-hole singlet
at one site with a single hole at an adjacent site and may
thus be mapped onto a single-band kinetic-energy opera-
tor, i.e.,
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contrary to what might be expected, direct O-O hopping
is ineffective in significantly increasing the magnitude of
t' relative to t over the parameter range of interest. How-
ever, it should be noted that the change in the sign of t'
can have an important effect on the hole dispersion, such
as changing the positions in k space of the band extre-
ma. "

Finally let us consider the excited states in which a pair
of holes form a triplet. We have assumed that these
states are sufficiently high in energy to be excluded from
the ground manifold. For this assumption to be valid,
i.e., in order to account for these states by perturbation
theory, then the ratio ( ( —o, g', ~ ~

u
~ g, o ) /b, E ( should

be small, where hE is the energy denominator E—E
Explicit calculation gives

0.12 .

OB .

0.04

0
4

C

FIG. 10. Ratio of singlet-triplet transfer matrix element to
energy required to make transfer (EE ) vs c.

&
—a, y', , ~u(r —r')~ttr', o &

hE
r(r —r')sin 8 sing —r'(r —r') [(1/~2)cos 8 cosP+ —,'sin(28)sing]

E—E
(36)

This ratio is plotted in Fig. 10 for nearest-neighbor cells
and is always less than unity. We note that for t~~ =0.5
the ratio increases with e,. This is because the singlet-
triplet splitting hE becomes smaller as e increases (van-
ishing in the unphysical limit e~ ~) whilst the hopping
matrix elements will always have a term linear in t z.
Such a breakdown of perturbation theory when c is large
is also consistent with the result that the t-t'-J-J' model
cannot be valid when c~ 00. This follows because J and
J' would both be zero in this limit and we would thus
have a t t' model -for the constrained effective single band
(the Nagaoka limit). However, this cannot be the case
since we know that in this limit the problem is exactly
soluble because the oxygen holes completely decouple
from the copper spins and we simply have an uncon-
strained oxygen band (an ordinary tight-binding band
based on the a orbitals). For realistic parameters, howev-
er, the perturbation expansion converges rapidly and the
singlet to triplet hopping may be accounted for as a virtu-
al process and gives a relatively small correction to t' (see
Sec. VII).

VI. COMPARISON WITH NUMERICAL RESULTS
FOR FINITE CLUSTERS

The analysis of the previous sections which resulted in
the t-t'-J-J' model is quite general and may be applied to
finite clusters of N cells. The only difference between the
various cases is the magnitude of the parameters p and v.
In Table I these parameters are appropriate to an infinite
CuOz sheet. In this section we shall consider clusters of
just two cells in order to compare our cell-perturbation
results with exact diagonalizations.

Consider first the case of Cu207 shown in Fig. 11 i.e.,
two CuO4 cells with a common bridging oxygen. This
case has been studied in detail in Ref. 15 in which the
cluster is diagonalized exactly for realistic values of the
energy parameters and the low-energy physics is shown
to be described accurately by a t-J model. Here we shall

again perform exact diagonalizations but with Ud=00
and U =0, comparing these results with our cell-
perturbation method to investigate its accuracy when t~~
and e are varied. In particular, we are interested in small
e where we expect the low-order perturbation expansions
to be less accurate.

For the insulating case of just two holes in Cu207, the
results of Sec. IV still apply and the low-energy physics is
described by a Heisenberg Hamiltonian [cf. Eqs. (24) and
(25)]. However, in this case the pd hybridization parame-
ters are pa=(&5+~3)/4=0. 992, p, =(&3—&5)/4
= —0.126, vo= —",, ——0.9333, and v, = ——

,', = —0.2667. In
deriving these values we did not use the general expres-
sions in Eq. (7) directly since these would correspond to
the somewhat trivial case of Cuz04 with periodic bound-
ary conditions. Rather, as with Zhang and Rice, we
formed the symmetric combinations centered on each Cu

I
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I
I
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I
I
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FIG. 11. Cu207 and Cu20s.



AND L F FEINERJ H. JEFFEERSON, H. ESK~~

0.15 .

0.1

7968

Hamil-. In the resultingprthogpnalized.
e dropped, as

site directly and o
) rhj&als we«

'
h

metric or
neinte

n the antisymm =, he superexchang
large-E 1jmit becomes c

(a)

45

256p~itdJ2 4 4tdJ=
3 cE

= —' exactly.e have used Ie last step we

result as we

where, in th
sual perturbation

'
hbpr

retrieve the usu
1 nearest-neig

Thus we
p ce]ls there is o y

e the mpreot very arge
since fpr two

1 we must useopping. W e
fprthesuperexc a g

=0.

hen ~ is&
chang~ressjon (25)
=0 an«, ~—

accurate exp
lpt J vs ~ fpr

~u
dia ona»-

I Fig 12(a) we p o
1t wirh exac«ag

n
imate resu s

uster.
' go
d" Hamilto i E ."three-band" am'

orbitals droppe .

b
'

barely percep
'

t iven in Sec.dd support to th g

ected, being

th
III or

ur a ip ives exce en
'g

Ppp'
n for pargoo apd proximation

0.05

0.
4 5

02

0.15

WW

~ ~

0.1

0.05

0
4

C
51

xact results (dots) with

)
(')"S"'"

h
' g

resultso or
'f dinary perturbation e

08-

0.6-

0.4 .

0.2-

0

0$ .

0.4-

0.3

\

\

it„-0

5

(b)

should be com-These results s

yp a' t e y.
over the full range o r

of 2er thana ac
i.e., three

error greate
"do ed" case i

rt =0
ex ellent agreement wit e

the whole range o p
gIn or er

g
'1 '

curately de ri
wn in Fig. o = . . Not

h 11 his no coupling betw cent ec

VII. CORR ECTION TERMS
02-

t -0
01-

0
54

s) withn of exact results (dot

suits of ordinary pertur a i

thod for deriving ang o Present metho
that itlo

1in rinciple, a sys
t n we shall ca cu

1 i 1
*

is sec io
the are re

ed
t'-J-J' terms derive

t '
d t trThe rs

d t h b
from two ho 4

what controversia dstates ash been somew a c



45 DERIVATION OF A SINGLE-BAND MODEL FOR Cu02. . . 7969

suggested (see Ref. 17) that their proximity in energy to
the singlet states may render an effective single-band
model invalid. However, as we showed at the end of Sec.
V, the matrix element for hopping is small compared
with the singlet-triplet energy splitting and this leads to a
small correction for next-nearest-neighbor hopping pro-
cesses, such as the one shown in Fig. 14. The effect is
merely to change t' by an amount

X X X

FIG. 14. Next-nearest-neighbor cell hopping via a triplet in-

termediate state (X=Cu04 cell).

&
—cr, o,s ~H, ~

o,—t, cr—) & o—, t, o I—H, ~s, cr, —o )
b,E

&cr,

slav

it, —o ) &
—o,

trav

is, o )
AE

I~,sin 8 sing —r', [(1/&2)cos 8 cosP+ —,'sin(28)sing] j

K—E
(38)

where u is the interaction between two neighboring cells,
s is the singlet state of two holes, 0. is the spin state of one
hole, and t is the triplet state (S,= —2o ) of the two holes
in the intermediate state. In Fig. 15 we plot 5t'/t' vs s
for t =0 and 0.5 from which we see that the correction
is indeed quite small, though increasing with c for
t~~ =0.5 (due to the singlet-triplet splitting getting small-
er whilst the cell-hopping matrix element tends to a con-
stant; see the discussion at the end of Sec. V).

Note that the process shown in Fig. 14 is only allowed
when sites 2 and 3 are of opposite spin though there are
no such restrictions when the intermediate state is ~gI o),
for which spins 2 and 3 may be either parallel or antipar-
allel. In the latter case a spin flip is involved in the re-
sulting diagonal hop of the Zhang-Rice singlet. Further-
more, it may be shown, by explicit calculation, that the
corresponding matrix elements for all processes with
S, =O in the triplet intermediate state are smaller by a
factor v 2 compared with those with S,=El. Thus the
corrections to next-nearest-neighbor hopping do not sim-
ply renormalize t' but depend in magnitude on the local
spin con6guration and can involve spin flips. It should be
noted that similar next-nearest-neighbor hopping terms
(including spin flips) also arise when the t-J model is de-
rived from the single-band Hubbard model. However,
these always involve singlet intermediate states as shown,

I

for example, in Fig. 16. Similar processes are also al-
lowed here but we point out that such corrections are
much smaller than those involving triplet intermediate
states (due to high intermediate-state energies of the sing-
lets) and, as pointed out by Etnery and Reiter, ' it is the
triplet states, which give rise to the most important
corrections. Although these corrections are quite small
relative to t', they may well be comparable with J (de-
pending on parameters) and may thus have a significant
effect pn charge mptipn. ' Nevertheless, this dpes npt
invalidate an effective single-band description and the
correction terms in the effective Hamiltonian may be ac-
curately computed as described above.

The other correction term we will consider is the in-
teraction between pairs of holes on neighboring cells.
These are of potential importance for superconductivity
since if such an interaction were attractive it could be a
source of pairing. We will, in fact, show that the interac-
tion is indeed attractive, though very small. The question
as to how this might contribute to Cooper pairing and su-
perconductivity is a very difficult one and will not be con-
sidered further in this paper. We merely point out that
this attraction between singlets on neighboring cells can
be thought of as an attraction between the underlying ox-
ygen holes, which move in a background of static (Cu)
spins and that such a small attractive interaction will al-
most certainly be swamped by kinetic-energy (hopping)
terms which would mitigate against pairing.

0.4

02

0.1

I y'&
X

It&
X X

X
X I y'&

X

It&
X

-0.1

0 4 ~ 5

l$&

X

lt&
X

Iy'&
X

FIG. 15. Relative correction to next-nearest-neighbor hop-
ping (6t'/t') via a triplet intermediate state, with and without
direct O-O hopping.

FIG. 16. Other (less important) next-nearest-neighbor hop-
ping processes which also occur in the single-band Hubbard
model (X= Cu04 cell).
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I y'&
X X X

( 4}ocloci)
X

FIG. 17. Hole-hole attraction process which occurs for
neighboring cells that are doubly occupied.

In Fig. 17 we show two neighboring cells which are
doubly occupied with holes, each cell being in its lowest
singlet ground state. Interaction between the cells may
again be calculated by second-order perturbation theory
giving rise to a term in the effective single-band Hamil-
tonian

H „,= bPD —g (n, —1)(n;—1) P0,
(r, r')

(39}

where

2(E—E )+e
(40}

and

M=(i ~v ~s, s )

=r, [2 cos8sin(2$)+sin8(1 ', cos —P)—]

+r', [—,'cos8cos P
—2 ' sin8sin(2$)] .

(41)

0.035

0.025

0.015

0.005

0 4 56

FIG. 18. Hole-hole attraction potential for neighboring cells
which are doubly occupied.

This matrix element is the same for all four intermedi-
ate states corresponding to one hole on one cell (in the
state ~e )) and three holes in the other cell (in the state
~d a,a, )).

In Fig. 18 we plot 6 vs c again for tpp =0 and 0.5 with

Spy 1 . We see that this is indeed a smal 1 energy com-
pared with other effective interactions.

VIII. DISCUSSION AND SUMMARY

A comparison of the graphs for nearest-neighbor su-
perexchange and effective hopping for the infinite plane
(Figs. 5 and 7) and for the two-cell cluster Cu207 (Fig. 12)
shows that the magnitude of these quantities is always
slightly larger for the infinite plane. This may be expect-
ed since the holes can increase their kinetic energy in the
infinite plane. This is reflected in the delocalization of
the Wannier functions and a corresponding increase in
the parameters p, and v, characterizing nearest-neighbor
cell interactions. What is less obvious is that the magni-
tude of the next-nearest-neighbor hopping t' is
significantly smaller for the infinite plane than for the
two-cell cluster Cu208. The main reason for this
difference is that there is no contribution to t' from the
pd interaction for the case of Cu208, i.e., p2=0, whereas
for the infinite plane the pd interaction makes a finite
contribution which partially cancels the contribution due
to O-O hopping [since p2 are v2 are of opposite signs, see
Eq. (32) and Table I]. This can also be seen in Fig. 9,
which shows that t' changes sign as t is increased from
zero, vanishing at t =0.15t &.

A further quantitative difference between the two-cell
case and the infinite plane is the size of the correction 5t'
due to triplet intermediate states (see Figs. 14 and 15).
For Cu208 the correction due to triplet states is very
small, especially for small c, as can be seen by comparing
the exact results with the second-order cell-perturbation
result [see Fig. 13(b)]. On the other hand, for the infinite
plane the corresponding correction is quite appreciable
(-10% or more depending on E). The reason for this ap-
parent discrepancy is because the process shown in Fig.
14 is not allowed for Cuz08. However, let us again em-

phasize that although these triplet states give the largest
correction for the infinite plane, they can be accounted
for quite satisfactorily by perturbation theory where they
appear as intermediate states and an effective single-band
description remains valid. We can in principle, of course,
generate a more accurate single-band effective Hamiltoni-
an with longer-range interactions by going to higher or-
ders in perturbation theory, though such corrections are
expected to be relatively small due to the smallness of the
expansion parameters (see, for example, Figs. 4 and 10).

Finally, let us briefly consider the insulator-metal (IM)
transition which must occur when the "bare" charge-
transfer energy c. becomes sufficiently small. Now the
perturbation method used in this paper is convergent
right down to c.=O where the second-order approxima-
tion remains fairly good. Although this implies that the
Heisenberg model wi11 yield good estimates of the true
low-lying eigenstates, even for c=O, it does not prove
that the model will remain insulating as may be seen from
the following argument. Consider a plane with a large
number of cells, 2N, with the number of holes equal to
the number of cells. If we consider the manifold of states
with exactly one hole per cell then the analysis of Sec. IV
shows that the eigenstates emanating from these base
states are given by a Heisenberg model. We now consider
a set of states in which a hole is transferred from one-half
of the plane to the other. Thus one-half of the plane has
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N —1 cells singly occupied with holes and one cell unoc-
cupied, whereas the other half will have a doubly occu-
pied cell with the remainder singly occupied. Relative to
the states with one hole per cell the unoccuppied cell con-
tains an electron, whereas the doubly occupied site con-
tains an (extra) hole. We shall refer to these extra
charges as the electron and hole. Now in the limit that N
becomes infinitely large we may regard the two halves of
the plane as independent as regards the motion of the
electron in one-half and the hole in the other. According
to the results of Sec. V we may describe the motion of the
hole by a t-t'-J-J' model and there will be similar
effective single-band model describing the motion of the
electron. Let the ground-state energies for these "t-J"
Hamiltonians with iV cells be Eo" and Eo ' for the elec-
tron and hole, respectively, and let the ground-state ener-

gy of the Heisenberg model with 2N cells be Eo. Then
the true energy to make a charge transfer taking into ac-
count the kinetic energies of the electron and hole is
AE=Eo" +ED ' —Eo and an IM transition will take
place when DE=0. In order to determine precisely
where this transition will occur requires exact solutions
of the Heisenberg and t-J models, but these are not
presently available and even approximate solutions are
unreliable. However, we point out that if accurate solu-
tions do become available the critical region in parameter
space (e, t~d, t~~) for an IM transition should also be cal-
culable to high accuracy. (Note that this is not the case
for the single-band Hubbard model which is approxi-
mately equivalent to a t-J model only in the region
J=4t lU« t, i.e., t«U. However, the IM transition
occurs for t —U where a low-order perturbation expan-
sion in tlU is invalid. ) In the absence of accurate solu-
tions of the effective single-band models let us make a
crude (over)estimate of the critical s for the IM transition
with t d/t =2. To do this we cut the perturbation ex-
pansions off at first order. This gives Eo =2N c.

Eo"=(N 1)e +e„—and Eo ' =(N 1)e +eh, i—.e.,
AE =c,+c& —2c, where c, and c.

& are the minimum en-
ergies of the electron and hole performing their band
motion. Note that there are no J dependencies in these
expressions as they are only to first order. Since these
(charge-spin) interactions inhibit charge motion we are
thus overestimating the kinetic energies of the electron
and hole. We shall further simplify the problem by just
using the simple nearest-neighbor tight-binding expres-
sions for a free electron and hole which again gives a
greater kinetic energy than with the constrained
motion. ' Thus we get AE=E —4( ~t, (+ ~tl, ~ ) 2e-
where t„=t is given by Eq. (32) and, by explicit calcula-
tion for the effective electron hopping,
t, =r,sin(28)+r&sin 8. Solving hE =0 gives the IM
transition at c/t d=2. 79. This is remarkably close to
what has been obtained by Grilli et al. in a mean-field
slave boson theory for the d-p model, in which charge-

spin interactions were also ignored. However, we do
emphasize that this rather crude overestimate of the criti-
cal charge-transfer gap could be substantially reduced if
proper account were made of the reduction in mobility of
the electron and hole due to charge-spin interactions.

The main results of this paper may be summarized as
follows.

(i) An effective single-band model accurately describes
the low-energy states of Cu-0 planes for charge concen-
trations (doping) close to the insulating phase. The
effective single-band parameters may be derived in terms
of the underlying d -p parameters using a cell-
perturbation method.

(ii) O-O hopping enhances all the effective single-band
parameters with the enhancement of the superexchange
greatest, particularly for small (bare) charge-transfer en-

ergies. For realistic values of the d-p parameters the su-

perexchange and hopping terms are expected to be com-
parable (0.3 &J/t & 1).

(iii) The largest corrections are due to triplet states
though these may be accounted for by perturbation
theory where they appear as intermediate states. They
include three site terms similar to those which arise in the
derivation of the t-J model from the Hubbard model but
occur for quite different reasons and may be somewhat
larger in magnitude. Other corrections, such as hole-hole
attraction terms, are much smaller.

(iv) An upper limit on the critical (bare) charge-transfer
energy for an insulator-metal transition is c, =2.79 for
t~z= —,

' (in units of ted) This c. ould be substantially re-

duced by charge-spin interactions.
(v) Our cell-perturbation expansion is highly conver-

gent and the second-order result remains a good approxi-
mation even in the parameter range where J-t. This
would not be the case for the single-band Hubbard mod-
el, of course, which only approximates to a t-J model
when J« t.

The above conclusions may no longer be valid when
further orbitals in the d-p model are considered and the
effect of apical oxygen ions taken into account. Indeed
there is some evidence that this may lead to further low-
energy states which become degenerate, or nearly so,
with the Zhang-Rice singlets, rendering an effective
single-band description inadequate. We hope to dis-
cuss these cases in more detail in a forthcoming publica-
tion.
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