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The triangular planar antiferromagnet (TPA) in an external magnetic field H is widely studied
both analytically and numerically. Low-temperature expansion of the free energy shows that the
infinite degeneracy of the minimum-energy configurations is lifted by thermal fluctuations and Monte
Carlo simulation provides a rich phase diagram in the H-T plane where three different configurations
are encircled by the paramagnetic saturated phase. Here, we give explicitly the elementary excitation
dispersion curves. The field dependence of the uniform modes is closely related to the minimum-
energy configuration selected by thermal fluctuations. Some real compounds are indicated as possible
candidates to test experimentally the phenomenology of the TPA model, We have also explained the
stability over a finite region in the H-T plane of the phase characterized by two spins parallel and
one spin antiparallel to the field in the magnetic cell. The stabilizing mechanism of this phase arises
from crucial nonlinear effects. For this phase the presence of long-range order is proven analytically.

I. INTRODUCTION

The misfit between antiferromagnetism and triangular
structure is a well-known source of interesting frustration
phenomena. A classical example where this frustration is
found is the Ising triangular antiferromagnet, which was
solved exactly by Wannier. This model shows a behav-
ior quite different from the square Ising antiferromagnet
where a second-order phase transition is found. 2 Indeed,
the triangular Ising antiferromagnet is disordered not
only at any finite temperature but even at zero tempera-
ture with a finite entropy S(0) = 0.3231R.i As concerns
the continuous symmetry models such as planar, XY,
and Heisenberg models, long-range order (LRO) is pre-
vented at any finite temperature for any 1D and 2D lat-
tice structure on the basis of the well-known Mermin and
Wagner theorem. The triangular planar antiferromag-
net (TPA) has been extensively studied by both Monte
Carlo (MC) simulations and analytic low-temperature
expansions ' in zero and finite external magnetic field.

An interesting phase diagram is suggested by MC
simulations. 45 Some remarkable features of the phase
diagram are (i) the lifting at finite temperature of the
infinite degeneracy, which is present at zero temperature
at any magnetic field, and (ii) a sequence of three or-
dered phases at fixed temperature as the magnetic field
is increased until the saturated paramagnetic phase is
reached.

The analytic approach to the TPA (Refs. 6 and 7) con-
sists of a low-temperature expansion of the free energy,
the leading term of which is given by the harmonic ap-
proximation. The so-obtained harmonic free energy se-
lects a configuration with the spins of the three sublat-
tices forming an angle of nearly 120' at low field, with
one spin opposite to the field. In contrast, in Fig. 2 of
Ref. 4 the suggested configuration is a nearly 120' config-
uration with one spin pointing along the field. The same
assumption about the ground-state configuration was re-
cently performed to explain the magnetic-resonance ex-

perimental data concerning CsCuCls in an external mag-
netic field. This magnetic insulator consists of weakly
interacting spin chains crossing the c plane according to
a triangular lattice. An easy plane anisotropy is present
so that the Hamiltonian model shows an XY symme-
try. We notice that the behavior of the uniform modes
in an external magnetic field perpendicular to the chains
is strongly dependent on the actual ground-state config-
uration. In particular, crossings between the resonance
frequencies are expected for the ground-state configura-
tion assumed in Ref. 8, at variance with the experiment.
In contrast, no crossing occurs if the ground state pointed
out in Refs. 6 and 7 is assumed. We stress that magnetic-
resonance experiment in this and related compounds of
the hexagonal ABX3-type should be interesting tests of
the rich phenomenology related to the frustration of the
TPA model.

In Sec. II we give explicitly the dispersion curves of the
elementary excitations of the TPA model for selected val-
ues of the magnetic field. Moreover, we prove that nonlin-
ear contributions to the free energy explain the stability
over a finite region in the H-T plane of the configura-
tion we call "up-up-down" phase where two spins of the
magnetic cell are parallel and the third spin is opposite
to the field.

In Sec. III we give analytic support to the existence
of genuine LRO in agreement with the indications ob-
tained by MC simulation. We have also performed MC
calculations for temperatures lower than those explored
iq literature in order to test the agreement between the
low-temperature analytic results with the intermediate-
temperature numerical calculations.

II. ELEMENTARY EXCITATIONS
AND CRUCIAL NONLINEAR EFFECTS

The Hamiltonian of the model is

'H=2J ) S;.S~ —pH. ) S, ,
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where i labels the sites of a triangular lattice, ( ij
means distinct nearest-neighbor (NN) pairs of two-

dimensional spins, 2J is the exchange coupling, p is the
magnetic moment of a spin, H is the external magnetic
field. Strictly following Refs. 6 and 7 we divide the tri-
angular lattice in three sublattices on which the spins are

supposed to form angles $1 + @;,p2 + @;,p3 + It,
(~) (~) (3)

with the external magnetic field. $1, P2, $3 are the angles
that the spins of each sublattice form with the external
magnetic field in the minimum free-energy configuration.
gI'l(s = 1, 2, 3) are small deviations around the equi-
librium configuration. If we expand Hamiltonian (1) in

I

powers of Q,.
'

we obtain

n = Zp+) (2)

where

42 = 4* , 43 = 0+, (3)

where n labels the number of gI' present in the Hamil-
tonian contribution W„.Minimization of E0 with respect
to P;, i = 1, 2, 3, gives the ground-state configurations'

1
cos P+ ——— h —cos P p sin P g(3 —h2 + 2h cos P)/(1 + h2 —2h cos P)2.

1
sin P+ —— —sin P p (h —cos P)g(3 —h2 + 2h cos g)/(I + h2 —2h cos P)

2 . (4)

with pM & p—& pM, where pM = w for 0 & h & 1, pM = cos [(h —3)/2hj for 1 & h & 3 and h = pH/6J. As one
can see from Eqs. (3) and (4) the ground state shows infinite degeneracy also in the presence of an external field. 4 Such
configurations are explicitly given by Eqs. (3) and (4) for the first time. For h ) 3 the minimum-energy configuration
is unique and corresponds to the saturated phase $1 ——p2

——$3 ——0. The ground-state energy is independent of p
and reads

Ep —— JN(3+ h—)

for 0 ( h & 3 and

Ep ——6JN(l —h)

for h ) 3. The first term of the sum appearing in Eq. (2) reads

3

Z =3J ) ) y&",X**'y~''l,

s,s'=1 q

(6)

where

) gI'le '~", 3 = 1, 2, 3
gN/3

and

Aq ——
( 1

T~ C(O'if S1 0'2)

pq cos ]

P~ Cos(41 —$2) y~ Cos(41 —P3) )
1 P& cos($2 —

4 3)
7q cos(q~2 —$3) 1 )

(9)

for O&h&3, and

Aq—
1/h —2

h —2 pq
h —2j

for h ) 3. The structure factor reads

(10)
2 ]~3

dQ~
0

1
F2 ——Ep+ kggTN ln ~—

2 ( kIiT j
2r/3

+ kaTN( )2— dqz ln(det Az).

(12)

v&
pz

——) e''1 "' = — e''1 + 2e '~ / cos qz . (11)3 ( 2

Notice that Eq. (8) of Ref. 6 is identical to our Eq. (9) ex-
cept that A, and A are interchanged. The free energy
of the mode(i. in harmonic approximation reads

The free energy (12) is minimum for

PM —3) P2 = A = cos , (I+ h&

)
when Q(h&1 and

(13)
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, (h' —3l
q~y —PM = cos

2h

, (h'+3
P2 = Ps ———cos

4h

(14)

when 1&h&3.
A selection in the infinite ground-state manifold is per-

formed by thermal fluctuations as correctly stated by
Kawamura. Incidentally, we notice that an imaginary
free energy for h ) ~2 —1 = 0.414 would be obtained
on the basis of Ref. 6 because the determinant of A&
quoted there becomes negative at the zone boundary
q = (2x/3, 2s/~3) due to the discrepancy between our
Eq. (9) and Eq. (8) of Ref. 6. However, the above dis-
crepancy does not affect the ground-state configuration.
The elementary excitation energies huq' are related to
the eigenvalues of the Az matrix given by Eq. (9) for
0 & h & 3 or by Eq. (10) for h ) 3. Indeed,

r~&'& = 3JX&'~, (15)

where A&' 's are the solutions of the equation

(1 —A ) —(1 —A~) ~p~~ f(h) + g(h) ~ (p + y' ) = 0

h~~'&=0, &~i"l = —J 3p(2h+h )]

for0&h&1
(20)

~h —2 —A~) —3(h —2 —A~)~p~[2+ (p + y* ) = 0.

(19)
The elementary excitation energies in the (1,1) direction
are shown for h = 0, h = 0.5, h = 1 in Fig. 1, and for
h = 2, h = 3, h = 4 in Fig. 2, respectively. With our
choice of axis the (1,1) direction corresponds to 0 & q

2x/3, q&
——0. As one can see for 0 & h & 3 no gap

appears in the excitation spectrum, whereas a gap opens
for h ) 3. The absence of gap for h & 3 is probably
an artifact of the harmonic approximation because the
lifting of the ground-state infinite degeneracy caused by
the magnetic field at finite temperature suggests that a
gap should appear if nonlinear contributions to the free
energy were taken into account. We will return to this
point in Sec. III.

In view of the promising experimental test by magnetic
sonance in A.BX3 compounds we give explicitly the

field dependence of the uniform mode~

with

f(h) = 4 (h+ 1) —2(h+ 1) +4

h~i l =0 h~~ ' l=-J 3p 1+-'(h2 —5)2

for 1&h&3

(21)

q(h) = ~(h+ 1) [(h+ 1)2 —2]

for 0&h&1and

f(h) = 1+ s (h —5), g(h) = -' (h2 —5) (18)

for 1 & h & 3. For h ) 3 the eigenvalues A&' 's are the
solutions of the equation

h~'i '1=3J(h —3), &~i l =3Jh (22)

for h&3.
Note that the qualitative behavior agrees with exper-

imental data shown in Fig. 5b of Ref. 8. In contrast, a
quite different behavior is found if the ground-state con-
figuration was that assumed in Ref. 8 with a spin parallel
to the field. In this case one should have

h=O
.0 ~ ~ 'I I f I I I ~ l I ~ I I l ~ I ~ I3. 3.0 ~ ~ I ~

~
I ~ ~ I 3.0

}1=1.0

2.5 2.5
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3
1.5

1.0 1.0 1.0

0.5 0.5 0.5

0.0
0 0.5 1 1.5 2

0.0
0 0.5 1 1.5 2

0.0
0 0.5 1 1.5 2

q„(1,1)

FIG. l. Elementary excitation energies for h = 0, 0.5, and 1 in harmonic approximation along the (1,1) direction.



45 TRIANGULAR PLANAR ANTIFERROMAGNET IN AN EXTERNAL. . . 7939

h=2. 0 h=3. 0 h=4. 0
4 i I I ~

]
I ~ I I

[
I I I ~

[
I 1 I I

3

3

0
0 0.5 1 1.5 2

0 I

0 05 I, 1.5 2

I I I I I I I I I I I I I I I I I I I I

0 0.5 1 1.5 2

q„(1,1)

FIG. 2. Elementary excitation energies for h = 2, 3, and 4 in harmonic approximation along the (1,1) direction.

n~"'=O n~" 3& =-'J [3~(21 —Z') (23)

for 0 ( h ( 3, so that a crossing between the gaps should
occur at h = 2.

We consider now what happens at low but finite tem-
perature in the neighborhood of h = 1. We are particu-
larly interested in the mechanism that st, abilizes the "up-
up-down" phase over a finite region of the H-T plane as
found by MC simulation. 4 3 If one limits oneself to linear
approximation one should expect that such a configura-
tion is stable only at h = 1 even for T g 0, because
the corresponding free energy becomes imaginary when
h g 1. Here we show that crucial nonlinear contribu-
tions to the thermal renormalization of the elementary
excitations support LRO. Moreover, we find that the low-
temperature phase boundaries between the configuration
for h 1 and the low-field (h ( 1) and the intermediate-
field (1 ( h ( 3) configurations show the behavior sug-
gested by the MC simulation.

A perturbative approach using '82 given by Eq. (7) as
unperturbed Hamiltonian is prevented by divergences in
T contributions. For this reason we introduce a "trial"
bilinear Hamiltonian where the coeKcients A" are vari-
ational parameters that is

3

Z =3J ) ) q&'I~;"y~"I.
s,s'=1 q

(24)

So doing the perturbation expansion of the variational
free energy reads

F, = Fp+ (&+'83 —'Rp)p, (25)

(26)

and ( )p means thermal average over the canonical en-
semble of 'Mp. The "effective" interaction potential V
is

where

21

2kgy T (27)

where Fo is the free energy corresponding to the "trial"
Hamiltonian 'Ho

1 12rr Jl 1
Fp ——Ep+ kr3TN In — ~+ kIrT ) ln(de—t Aq)k~T) 2

+3 — 8J ) ~q +q +q, p [ sin(4 i —02)(yq. 0q, '0q 0q —yq', 0q", @q",'0q",')
qi, q2, q~

(28)

In Eq. (28) one has
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sin(Pq —P2) = sin(Ps —Pq) = 2+3 —h2 —2h

sin($2 —Ps) = 2(1+ h)+3 —h —2h

for 0 ( h & 1 and

for 1 & h & 3. In Eq. (27) Q4 reads

3J= -4~
q& )q&) q3) q4

T

qi q~ qS q~

~qi+q~+q3+q~, o

s=1

sin(P& —P2) = —sin(Ps —P&) = 4/10h —h —9, sin(Pz —Ps) = 0

+ cos(y2 ys) 4& y(2)@(2)@(~)y(s) 6& y(~)y(2)y(s)@(s) + 4&' y(2)@(s)@(s)y(s)

+cos(y y, ) 4~ y( )g( )q( )q( ) 6~ y( )y( )q( )y( ) +4~' @( )@( )y( )y( ) (31)

In Eq. (31) one has

1+
COS 1 2 —COS 3 1 —

)

(32)

h —5
Pq

h —5
4 Yq

(37)

h2+ 2h —1
cos 2 — 3

2

for 0 & h & 1 and

h2 —5
cos(fy —Qg) = cos($3 Q$) — cos($2 $3) = 1

for 1 & h & 3. The "self-energy" Zz' in Eq. (34) is given
by

3
(vg(8)g(s'))c 6J ) - (q(.')y( )) g '(q( ')g( ))

A" = A" +Eq (34)

For convenience of the reader we give explicitly the &z
matrix for the three configurations that meet at the triple
point (h = 1,T = 0)

A 1+h
2 ~q

1+h
2

1+h

h +2h —1
fq

(33)

for 1 & h & 3. Minimization of F„with respect to the
variational parameters A" leads to

(38)

The superscript c means cumulant. In the neighbor-
hood of h = 1 we perform a low-temperature expansion
in ~1 —h~ retaining only temperature-independent con-

tributionss

linear in
~
1 —h

~
and temperature-dependent

contributions independent of ~1 —h~. Within this ap-
proximation W3 can be neglected because it contains a
~1 —h~ I factor so that its second-order contribution to
the free energy [see Eq. (25)] is proportional to ~1 —h~

times a temperature-dependent factor vanishing for van-

ishing temperature, while W4 is account;ed for because
it provides temperature-dependent contributions of the
same order as 'Rs but independent of ~1 —h~. The solu-
tion of Eq. (38) reads

l 1+h h +2h —1
7q 2 7q

for 0 ( h ( 1. In the "up-up-down" configuration one
has

X'q = ~12&q

where

~is7q 'l
—~23Vq

—~2sv~
(39)

and

(
2 —hj

2 q q
—

s t (3Ig —4I2),

Z&q
——st(Iq —I2), (41)
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K~2 =
s t (Ii —4I2) s

E2s ——st(Ii + I2),

with t = k&T!2J and

(42)

(43)

AF = J—N(1 —h ) + skggTN(1 —h)G,

where

3 ) - 1+ 5lvgl' —3(v,'+ v,') 2A, ,
N det Ag

(49)

I, = —) ' l~'I - —~I (tI, ),N det A~ 2x

(~'+ ~
det A&

(44)

h = 1 — t~lnt~.
2

7r 3
(51)

The above approximate value of G is obtained by keeping
the leading singular contribution. In our approximation
we find that the "up-up-down" phase is stable in the H T-
plane below h = 1 and above the line of equation

The approximate values of I~ and I2 are obtained by
keeping the leading singular contribution. Notice that

det A~ = 1 —3(p~)' + (y + y* )

-(&»+»»)(I —I~.l')
+2(2~12 + ~23) .Iy&l

—
2 b', + v,') (4~)

In the long-wavelength limit we have

In the low-temperature limit our evaluation of the phase
boundary is in good agreement with the extrapolation of
the MC data. For example, for t = 0.1 both Eq. (51) and
MC simulation give h 0.9.

III. ORDER PARAMETER

det A —
q + —

q t(Ii + 10')4 2

16 12

=—
q + q t(lnt(3, ~S,

(47)

The interesting MC simulations s are suitably inter-
preted on the basis of the order parameters

1
(e}ii) = — (cos pc) + es" s(cos eis) + ee"&s(cos eis}),

and

b,F+ = JN(h —1)——~skye TN(h —1) (48)

As one can see the convergence of I~ and I~ is assured just
by the singular temperature-dependent contribution in
det Az, whereas a standard perturbation approach can-
not pick up this contribution.

We are now able to compare the free energies of the
three phases, which meet at the triple point h = 1, t = 0.
Let us call LF+ the difference between the free energies
of the high field (h ) 1) and the "up-up-down" phases
and AF the difference between the free energies of the
loio field (h ( 1) and the "up-up-down" phases. We
obtain

(e}e) = —(sin gc) + e ' i (sings} + e ' i (sings)) .
3

(52)

In Fig. 3 of Ref. 4 are quoted the magnitudes of these
order parameters as function of the magnetic field at fixed
temperature. The spin configuration suggested in Fig. 2
of the same reference is rotated by 180' with respect to
the configuration suggested by the analytic expansion.
However, we show that the spin configuration consistent
with Fig. 3 of Ref. 4 is just that obtained in Refs. 6 and
7. Indeed, we have evaluated the zero-temperature values
of [(@~~)) and [(g~) (, obtaining

l(@i()I = —
I

—cost —-h
I

+ —»n'0
I

1 (3 1 } 3 . 2 /3 —h +2hcosg'}}

[(gg)) = — —sin P+ —(h —cosP)
1 9 . 2 3 q (3 —h2+2hcosgl

(53)

In Figs. 3 and 4 we draw [(@~~)(
and )(@~)[ for iti = 0

(the configuration suggested by Ref. 4) and for P = 4iM

[the configuration suggested by Eqs. (13) and (14)]. It
is clearly seen that the order parameters obtained by
the MC simulations4 are a natural evolution of the zero-
temperature order parameters corresponding to i' = i)}iM.

We have performed MC simulation on a sample of
18 x 18, 24 x 24, and 30 x 30 spins for temperatures
lower than those explored in Ref. 4. We find that our
results for t = 0.1 shown in Fig. 4 agree with the zero-
temperature values of the order parameters and have the
same qualitative behavior as the t = 0.4 values of Ref. 4. (cos(p, + QI l)) = cos p, (cos @I'l), (54)

I

We would like to remark on the existence of LRO
phases in this model. The proof of existence of LRO
could be hardly achieved on the basis of MC simulation
even for the largest samples considered in Refs. 4 and 5.
Indeed we prove that LRO is absent in a triangular pla-
nar antiferromagnet, even if a magnetic field is present,
when we limit ourselves to the harmonic approximation.
Indeed let us consider the average component of the spins
on a generic sublattice
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0.6

0.4 0.4

0.2 0.2

0.0
0 0.5 1.5

h
2.5

0.0

FIG. 3. Zero-temperature order parameters ((@)))) and

)(gj ) ~
for (ft = 0 as function of h.

where

FIG. 4. Zero-temperature order parameters ((g)()) and

~(Qz)~ for (() = P)tr as function of h are shown by continuous
curves. Diamonds, stars, and squares are the same quantities
at t = 0.1 obtained by MC simulation for 18 x 18, 24 x 24,
and 30 x 30 samples, respectively.

(55) (cos gI'))

Notice that

q

where A 1 is the inverse of the matrix A& defined in
Eqs. (9) and (10). The series (55) can be summed to
give

I

2~/S
= exp

6 (2n)2 ()

2 /~S
dq„(A ')

(57)

The explicit expression of (A ~)„for the first sublattice
with 0 & 6 (1 reads

1 ——(h2+ 2h —1) + -q2 (h2+ 2h —1) +
[9 —h'(h + 2)2] — '

q [33 —9h (h + 2)2] + . (58)

As one can see (cos @,
'

) vanishes at any finite temper-
ature even if the magnetic field is present because of a
logarithmic divergence in the argument of the exponen-
tial. However, this divergence for a sample of linear size

I, should give

(cos(&. + 4,"))= c» 4.(L) '~""' (59)

At t = 0.4 for I = 24 and I = 48 one obtains 0.943 cos P,
and 0.931cos P„respectively. This apparent LRO is

clearly an artifact of the finite size of the sample at least
when only harmonic contributions are taken into account.
Note that the harmonic approximation provides very ac-
curate values of the internal energy for temperatures as
high as t = 0.1, as we have checked by comparison be-
tween the low-temperature expansion and MC calcula-
tion for selected values of the magnetic field. Obviously
we do not exclude that nonlinear contributions could sup-
port LRO. Indeed we expect that nonlinear contributions
modify crucially Eq. (57). Consequently the spin average
is modified, and the LRO described by Eq. (59), which

is an artifact of the finite size in the harmonic approx-
imation, becomes reliable via a possible replacement of
the "unphysical" power of I by a nonlinear contribution,
say a power of T. Further theoretical effort will be neces-
sary to clarify this point. However, we can prove that a
genuine LRO is supported by anharmonic contributions
for the "up-up-down" phase. On the basis of the calcu-
lations performed in Sec. II we have to replace (A ~)„
by (Aq )» in Eq. (57). For h = 1 we have

(cos(y + y. t )):cos y (v /12tt)tl ln t~ I+0.046t

(60)

In Sec. II we have seen that linear approximation for
0 & h & 3 provides at least one excitation with zero
energy cost at the zone center (see Figs. 1 and 2) and
we have anticipated that this should be an artifact of
the harmonic approximation. We give partial support to
this guess on the basis of our evaluation of the leading
nonlinear contributions for h = 1. We find the following
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values of the uniform mode energies in the "up-up-down"
configuration.

h~o = 0, hire —12JZ, h~o = 9J(1 —Z),

where

(61)

Z = tllntl (62)

We notice that linear approximation provides two zero-
energy uniform modes at h = 1, while nonlinear effects
we have accounted for lift one of them. It is reasonable to
think that higher-order nonlinear contributions lift even
the last zero-energy uniform mode.

On the basis of the analytic dependence on t shown
in Eq. (60) one expects a significant thermal demagne-
tization in the low-temperature limit, but this peculiar
behavior is restricted to a very narrow range of temper-
ature because of the smallness of the numerical coefti-
cient appearing in the exponential. An analogous sce-
nario was recently found on the ferro-helix phase bound-
ary of the quantum Heisenberg tetragonal model with
in-plane interactions up to third neighbors and a ferro-
magnetic nearest-neighbor interplane interaction. In this
model the linear spin-wave theory suggests a divergent
demagnetization at any finite temperature, whereas cru-
cial nonlinear contributions to the spin-wave self-energy
restoring LRO appear already at the first-order Hartree-
Fock correction. The resulting LRO shows in this model
a peculiar behavior in the low-temperature range because
the order by thermal disorder o becomes effective only at,

I

intermediate temperatures, so that a steep demagnetiza-
tion of 40% or 50% sets up within temperature t = 0.1
or 0.2.9

Finally, we offer a coniment on the persistence of the
~3x ~3 periodicity in an external magnetic field at finite
temperature. A simple argument has been given in the
Appendix of Ref. 5 showing that the ground state (T = 0
configuration) consists of the spin arrangement where in

each triangle

pHSg+ Sg+ S3— (63)

where G is a reciprocal lattice wave vector and Q is the
helix wave vector (4ir/3, 0):

&i= —2l 9J I 1(Q)
9 &11'
2 (QJ)

where

(65)

At finite but low temperature (P ~ oo), a straightfor-
ward saddle-point evaluation of the partition function
can show that such configurations must dominate the
thermodynamics. However, the locking of commensu-
rate helices by an external magnetic field at nonzero T
can be rigorously proven, because b-like terms appear in
an exact low-temperature low-field expansion of the free
energy. In particular such contribution for 120' three-
sublat tice configuration reads

A F3 s(IJH) —Ai Nje&T cos(3$) ) b(3Q —C), (64)
G

I(Q) =- lJ(&+ q) —J(q)j IJ(Q —q) —J(q)j
N, [2J(4) —J(Q+ q) —J(q)jl:2J(&) —J(& —q) —J(q)j

(66)

with

I' 1 W3 ~
J(q) = 2J cos q + 2 cos -q cos qz l

. (67)

By numerical integration we have I(Q) = 0.1524. Sub-
stituting this value in the free energy (64) we obtain

A F3 s k~TNh 0.2032 cos(3$) ) b(3Q —G),
G

(68)

IV. SUMMARY AND CONCLUDING REMARKS

We have shown that analytic expansion and MC
simulations4 5 give concordant suggestions about the

which coincides with the expansion of Eq. (12) for small
fields except for the b factor. Equation (68) shows that
the ~3x ~3 periodicity is preserved at finite temperature
as a special case of the more general locking of commen-
surate helices. In the present situation the helical struc-
ture is caused by the misfit between antiferromagnetism
and triangular lattice (frustration from lattice topology).
However, a generic helix can be produced on a generic lat-
tice by suitable exchange competitions (frustration from
competition).

I

phase diagram in the field-temperature (H T) plane. To-
this end we have also performed MC calculations at tem-
perature low enough to match with the zero-temperature
analytic result. We have explicitly evaluated the elemen-
tary excitation energies obtained in harmonic approxima-
tion and we have found that no gap appears for vanish-

ing wave vectors in the ordered phases although thermal
fluctuations select one spin configuration out of the zero-
temperature infinitely degenerate manifold. We believe,
however, that nonlinear contributions should provide a
gap at finite temperature. This is a relevant point be-
cause the model should be disordered at any finite tem-
perature if the essential physics was fully treated within
the harmonic approximation. Further theoretical effort
is required to understand whether the LRO suggested
by MC calculation is a reliable result or it is an artifact
of the finite-size sample. However we have proven that
a genuine LRO onsets at h = 1 in the "up-up-down"
phase. The mechanism supporting LRO originates from
crucial nonlinear effects that we have accounted for by
a variational approach because they cannot be treated
conveniently by a standard perturbation approach owing
to divergences in T~ contributions. Such crucial nonlin-
ear contributions lead also to the stability over a finite
region of the H-T plane of the "up-up-down" configura-
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tion. The persistence of the ~3 x ~3 periodicity in an
external magnetic field is traced back to the locking of
commensurate helix configurations in an external mag-
netic field.

Finally, we suggest CsVX3, with X=C1, Br, I (Ref. 12)
as possible candidates to see the phenomenology of the
triangular planar ant, iferromagnet in an external mag-
netic field. From a magnetic point of view these systems
are chains along the c axis of localized spins S = 3/'2.
The chains are arranged to form triangular lattice in the
planes perpendicular to the c axis. The small easy-plane
anisotropy forces the system in the symmetry class of
the present model. As concerns the transition in the H-
T plane we are interested in, t, he relevant coupling is the
interchain coupling J' 10 s meV (Ref. 12) so that
the saturation field h, = 3 in our notation corresponds
to external magnetic fields of 1.4, 4.4, and 18.8 kG, for

CsVC13, CsVBr3, and CsVI3, respectively. Magnetic res-
onances in CsCuCls, s where the weak interacting spin
chains with S = 1/2 can be simulated at temperature low

enough as a triangular Heisenberg antiferromagnet with

easy plane anisotropy, show that the uniform modes are
changed by an external magnetic field perpendicular to
the chains in a way confirming the lifting of infinite de-

generacy of the minimum energy configurations, as sug-
gested by the low-temperature free-energy expansion of
the TPA model.
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