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The riiulticharinel Iwondo model exhibits non-Fermi-liquid behavior in the overscreened case, when

the riuinber of channels, k, is greater than twice the size of the impurity spin, s. We show that,
for overscreeuing, exchange anisotropy is irrelevant at the low-temperature fixed point for s = 1/2
or s = k/2 —1/2, but relevant for all other values of s. However, an external field or channel

asy ni Ilie t, ry is rele van t, prod uci ng crossover to Fermi-liquid fixed points with different phase shifts
for each spin in the first case and for each channel in the second. These results are elucidated by
explicit, comparison of analytic finite-size spectra derived from conformal field theory with those
obtained froiu numerical renormalization-group calculations. The relevance of the results (for k = 2

and s = 1/'&) to the quadrupolar Ixoudo Hamiltouian, which has been proposed as a model for

many uranium-based heavy-fermion materials, will be briefly discussed. Also, a larger, syrnplectic
syminetry Sp(2k) is shown to be present in the k-channel I&oudo model.

I. INTRODUCTION

Recent experimental'"' and theoretical develop-
ments ' have generated renewed interest in the
ruultichau. nel Kondo nlodel proposed by Nozieres and
Blandin. ' The model describes antiferronzagnetic cou-

pling of k degenerate channels or flavors of spin-
&

conduc-

tion electrons [with dispersion relation e(k)] to a quantum

impurity spin SI of arbitrary size s. Placing the impurity
at, the origin, the Hamiltonian is given by

'li = ) c(k)e, 'tcr-. ,
—JSI ) —c"' opc~,

p
k l; k'

I%ere e&,. annihilates electrons of'wave vector k (running

over the Brillouin zone), spin ci = 1, 2 and channel index
i = 1, 2, . . . , k; o represents the three Pauli matrices for
the spin degrees of freedoms and the exchange integral J
is negative (antiferromagnetic). We use raised spin and

Havor indices on creation operators and a. repeated index
summation convention.

Nozieres and Blalidin demoristrated that in the over-
screened case, i.e. , when the number of channels ex-
ceeds twice the impurity spin, this model will possess
a uon-trivial zero-t, emperat, ure (T) fixed point with a
», o~i-I'er~nz-ti qui ~I excitatiorl spectrum. In particular,13

as was shown in subsequent work, for the case k = 2,
s = 1/2, the specific heat and susceptibility increments
due to the impurity diverge logarithmically as T ~ 0,
while the added T = 0 entropy is (1/2) ln(2). t~

Moreover, the resistivity was recently shown to saturate
to its residual zero temperature value with a non-trivial
power law in T rather than T as in the normal Kondo
problem, derivable from Fermi-liquid theory. '

It has recently been discovered that for the dilute al-

loy system Yi U Pda the specific heat, resistivity, and
residual entropy appear to behave in the above fashion
for z & 0.2. Hence, for the first time there is concrete
experimental evidence for the overscreened two-channel
Kondo model, associated in this case with the uranium
ions. The data make clear that this Kondo effect most
likely arises from quadrupolar degrees of freedom on the
uranium sites —i.e. , a non-Kramers I'3 state on the
U"+ ions is orbitally quenched by the conduction states
in two channels guaranteed degenerate by time reversal.
It has been proposed that this two-channel quadrupolar
I&ondo model (when extended to the lattice) may also de-
scribe the heavy-fermion superconductors UBei3 UPt3,
and URu2Si2.

Independently of these developments, a conformal field
theory (CFT) approach to the multichannel model has
been developed, which allows for an exact evaluation
of thermodynamic properties, static and dynamic cor-
relation functions, and finite-size energy spectra in the
asymptotic regime near the critical point. This pow-
erful approach allows a complete classificat, ion of all rel-
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evant, marginal, and irrelevant perturbations about the
critical point as well. This is of considerable phenomeno-
logical interest, since the quadrupolar Kondo effect will

possess, generically, anisotropic exchange coupling, and
may be perturbed by application of uniaxial stress (pre-
cisely analogous to a magnetic field in the usual Kondo
effect) and magnetic field (which couples to the channel
degrees of freedom in the quadrupolar Kondo effect). In
what follows we shall avoid possible confusion by adher-
ing to the usual spin-Kondo-effect terminology.

Many of these results can be obtained independently
with numerical renormalization-group (NRG) calcula-
tions following the pioneering work of Wilson (for the
single channel s = 1/2 modelis) and Cragg, Lloyd, and
Nozieres (for the k = 2, s = 1/2 model'9). While the
fixed-point spectra have been derived analytically from
the CFT approach, it is useful to apply the NRG tech-
nique for two reasons: (i) The CFT approach rests upon a
central "fusion rule" hypothesis, which has not been com-
pletely justified from first principles but may be tested
against other approaches such as the NRG and (ii) within
the NRG approach the various perturbations are writ-
ten in terms of the original impurity and conduction-
electron operators. This has intuitive appeal, although at
low temperatures impurity and conduction electrons lose
their identity, which, in the CFT approach, is reflected
by the absorption of the impurity spin into the spectrum.
Thus, it is of interest to compare the NRG spectra with
the finite-size spectra derived from the CFT approach.

In this paper we shall demonstrate that for the over-
screened model (i) exchange anisotropy is an irrelevant
perturbation when s = 1/2 or s = k/2 —I/2 but relevant
in all other cases, (ii) a magnetic field is a relevant per-
turbation driving the system to a fixed point where the
impurity spin is polarized and the conduction electrons
form a Fermi liquid, (iii) as anticipated by Nozieres and
Blandin, for k=2, breaking of channel degeneracy drives
the system to a fixed point, which is a product of two
free fermion spectra, one with a ir/2 phase shift and the
other without phase shift —that is, one channel exhibits
the ordinary Kondo effect and the other channel is de-
coupled, (iv) NRG spectrum and the analytic CFT spec-
trum agree well at the non-Fermi-liquid fixed point when
k=2, s = 1/2, and (v) the NRG approach provides in-
tuition complementary to the CFT method, which helps
us understand in a different way the irrelevance of the
exchange anisotropy. We shall also point out that the
symmetry of the k-channel I&ondo model, in continuum
or lattice formulations, is larger than seems to have
been previously noticed, namely, SU(2) xSp(2k). The
(symplectic) Sp(2k) band symmetry contains both the
SU(k) x U(1) "fiavor" and charge symmetries used previ-
ously in the CFT approach and the [SU(2)]" "isospin"
or "axial charge" symmetries used in the NRG approach.
[For the case k = 1, Sp(2) is isomorphic to the SU(2) ax-
ial charge symmetry of Ref. 2Q. While this reference used
the notation axial charge for the complete three-vector of
symmetry generators, we reserve this name for the third
component only and refer to the complete three-vector
as isospin. For k = 2, Sp(4) is isomorphic to SO(5).]
This paper is divided into the following sections: Sec-

tion II discusses the (symplectic) Sp(2k) symmetry (this
section, even though rather fundamental, is not neces-
sary for an understanding of the rest of the paper and

may be skipped, at first reading). Section III discusses
the mapping of Eq. (1.1) into a form amenable to the
CFT approach, reviews this approach, presents all the
CFT results relevant to this work, and discusses the ef-

fect of various symmetry breaking perturbations. Sec-
tion IV summarizes briefiy the NRG approach. Section
V provides a comparison of CFT results with those of the
NRG, Finally, Sec. VI summarizes our results and points
out possible connections to experiment.

II. GENERAL SYMMETRY CONSIDERATIONS

The multichannel Kondo Hamiltonian of Eq. (1.1) has
an "obvious" SU(2) xSU(k) x U(1) symmetry correspond-
ing to the possibility of making unitary transformations,
which mix the two spin components of the electron opera-
tors, the k flavor components, or multiply all components
by a common phase. This symmetry was used extensively
in the conformal field theory treatment. In the NRG
approach conserved axial charges and isospins have been
used: for k channels there are k extra SU(2) symmetries
that commute with ordinary spin. The ith axial charge is

simply given by the total number of electrons in channel
i. These isospins do not commute wit, h flavor. Instead,
as we show in the following, there is a larger symmetry
group, namely, the symplectic group Sp(2k), of which
both SU(k) x U(1) and [SU(2)]" are subgroups.

These symmetries exist under very general conditions:
Consider a more general form of the k-channel Hamilto-
nian, Eq. (1.1):

(2.1)

Here N is the particle number, n and n' run over a
complete set of eigenstates of the noninteracting (single-
particle) Hamiltonian with J = 0, having energy c(n)
(c„'tcreates eigenstate n of spin projection n in chan-
nel i) We will show in the .following that the symplecfic
symmetry holds whenever the Hamiltonian in Eq. (2.1)
is particle-hole symmetric.

This means more explicitly that there is a one-to-one
map of the single-particle eigenstates into themselves,
n ~ m = n, such that e(n) = —e(n) and h = n for an
appropriate choice of the chemical potential p (note that
n is a func/ion of n). The particle-hole transformation is

then defined as c„~s pct (s p is the antisymmetric
tensor). The Kondo interaction is particle-hole symrnet-
ric when the function f satisfies f(nqi, nz) = f(nz, ni).

When the noninteracting Hamiltonian is translation-
ally invariant, n labels the momentum, k, within the Bril-
louin zone. [Notice that for a local Kondo interaction the
function f(k, k') is constant. ] If, in this case, the energy-
momentum dispersion relation is linearized around the
Fermi-level (with a symmetric cutoff), particle-hole sym-
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metry is automat;ic.
If the noninteracting Hamiltonian is nondiagonal, the

particle-hole transformation is realized in general byc„~c~pU„c, where U is unitary. The non-
interacting Hamiltonian used in Wilson's NRG is a spe-
cial case of not necessarily spatially uniform hopping (of
arbitrary distance) between the two sublattices A and B
of a bipartite lattice (in any dimension)

) t~ v (c&cy + c&c~) —JSI c& orr&c~ —o p t,

S„,= ) c„')(o P/2) c„p;+ SI, (2.3)

(2.2)

where t~ „=t& ~ ——0 unless z g A and y g B. This
Hamiltonian is particle-hole symmetric as can be seen
from the symmeti'y cg ~ ~ 5~pc, , ci, ~ (—l)s pci,tp tP

where a g A, b g B.
We now study the symmetries of the general Hamilto-

nian in Eq. (2.1), assuming particle-hole symmetry. The
spin-symmetry generators are

or

) c„;sPS'&c„p,+ H-.c., (2.10)

This is zero whenever f(ni, n2) = f (n2, ni) because the
matrix c ~a is symmetric for all three components of o.

P
It can be checked that [I, , Q, ] = I, , [I, , I,+] = —2Q;
[where I,+ = (I,:)t], thus satisfying k mutually commut-
ing copies of the SU(2) algebra. Note that while the axial
charges Q, are special cases of flavor generators, the I, 's

are not, and furthermore they do not commute with the
fiavor generators [Eq. (2.5)]. Clearly by calculating com-
mutators of all these symmetry generators with the flavor
generators, we can produce new ones, and eventually the
algebra will close.

Let us look at this problem a little more systematically.
The most general Hermitian fermion bilinear, which com-
mutes with the ordinary spin operators [Eq. (2.3)] can be
seen to be either of the for m

) (ct"M,'c„,—trM)

the total charge is

Q = ) ctt' ctt, tt, i r

and the flavor SU(k) generators are

IA ) a, it(TAy

(2.4)

(2 5)

where M is Hermitian and S is a (complex) symmetric
matrix (and i and j are summed). This can be proven

in analogy to Eqs. (2.8) and (2.9). The total number of
(Hermitian) symmetry generators is k for the first set
and k(k+ 1) for the second, a total of k(2k + 1). It can

be verified that these generators obey the commutation
relations defining the symplectic algebra Sp(2k): Explic-
itly the generators of Sp(2k) can be defined as the set of
2k dimensional Hermitian matrices, A, obeying

where the T~ 's (A = 1, 2, . . . ,
k2 —1) are a basis of trace-

less Hermitian k x k matrices.
The k axial charge generators are

ATA+ AA = 0,

where A is the canonical antisymmetric matrix:

(2.11)

Q, = (1/2) ) [c„')c„;—1], i = 1, . . . , k. (2.|)) (2.12)

(Note that i is not summed over in the above equation
nor in the next few. ) The Q, 's can be completed into k

s«s «SU(2) isospin generators in combination with

Here Iy and Oy represent k-dimensional unit and zero

matrices. It can easily be seen that the most general

matrix, Q, satisfying this condition is of the form

I, =(1/2)) c„., «, ps P, i =1, . . . , k (2.7) 9 M
(2.13)

(recall that A is to be thought of as a function of n )lt.
can be easily verified that (n and h not summed)

[(e(n)ctt ac, itt+ e(&)crt ctt, tt, i)r e ycitct'ai]tt, ,

= [e(n) + e(A)]e ~c„-;c„;= 0 (2.8)

due to the particle-hole symmetry condition. This proves
that I, (and similarly I,+) does indeed commute with the
kinetic part of the Hamiltonian, Eq. (2.1). The commu-
tator with the Aondo interaction follows from

where M is Hermitian and S is symmetric. [The (Lie)
algebra of generators A in Eq. (2.13) is commonly re-

ferred to~i as Ck.] It can be checked explicitly that the

commutation relations of the operators

) (c„'tM,'c„,—trM), (I/2) ) c ;c CS"c-rr, „,

and (—1/2) P„c)'e pS,
* c„- '~ are equivalent to those of

the matrices

) aIl d ~ )

respectively. This establishes the Sp(2k) fia»i symm«ry
of the Kondo problem.

ln the special case of k = 1, Sp(2) is equiv-

alent to SU(2), corresponding to the "axial-charge

symmetry" 2 In the case k = 2, Sp(4) is equivalent
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to SO(5). For Sp(2k), SU(k) x U(1) (flavor and charge),
and [SU(2)]" (axial isospins) are subgroups as antici-
pated.

III. CONFORMAL FIELD THEORY APPROACH

A CFT approach has recently been developed for the
Kondo effect effect. For a pedagogical up-to-date re-
view, see also Ref. 8. (Related work has been done inde-
pendently in Refs. 12 and 23.) In this section we recapit-
ulate the essential features of this approach and identify
the relevant and irrelevant operators associated with the
various physical symmetry-breaking terms, which may
be added to the Hamiltonian of Eq. (1.1) (exchange
anisotropy, spin field, and channel field). We shall di-
vide this section into a discussion of the rewriting of
Eq. (1.1) in the Sugawara form (Sec. III A), a discus-
sion of the derivation of resulting spectra via conformal
field theory (Sec. III B), and finally a discussion of var-
ious symmetry-breaking perturbations within the CFT
approach (Sec. III C).

A. Sugawara form of the Hamiltonian

Due to the spherical symmetry of the problem spec-
ified by Eq. (1.1), we may eliminate all but the s-wave
component of the electrons, leading to an effective one-
dimensional quantum problem defined on the half line
(z ) 0). We introduce position space left and right
moving (or equivalently incoming and outgoing) fermion
fields gr. and gR associated with the s-partial waves of
the conduction states and having a Fermi velocity vF (see
Ref. 5 for details).

In terms of these fields, the Hamiltonian of Eq. (1.1)
is thus rewritten as

'8 = (vF/2ir) dz~ if' (z)
d@, r(z)

+Arr Sy g~ (0) crP—@;pr.(0) ~.

(3.6)

The Hamiltonian in the form of Eq. (3.6) is useful be-
cause it is then possible to write the free-fermion Hamil-
tonian in the so-called Sugawara form, which is a sum
of three commuting terms, quadratic, respectively, in
charge, spin, and channel (or flavor) currents. Indeed,
the entire Hamiltonian 'R may be written in the Sug-
awara form at the low-temperature fixed point. To see
this, note that the Kondo interaction involves only the
spin current. Fourier transforming on a finite line seg-
ment —I & z & I of length 2l (with, for convenience,
antiperiodic boundary conditions) the spin part of the
Hamiltonian (which contains the Kondo interaction) be-
comes

OO OO):J-~ J~:+Ar~ ). J
lI 2+ka= —OO A= —OO

(3.7)
Here the J„'sare Fourier modes of the spin current op-
erator

Jr(z) = -&J.'(z)& &*rir(z)L (3.8)

(3.9)

and the "::" denotes normal ordering. The Fourier
modes obey the SU(2)-"level"-k Kac-Moody commuta-
tion relations

+0 + +lilt )

'8 0
—(vF/27r)

j~f iuL

.@, l( )
dW, ~R(z) l

dz )

where the free Hamiltonian is

(3.1)

(3 2) f~=& +~r, (3.10)

The crucial point to derive from the above observations
is as follows: When Arr —2/(k + 2) (which corresponds
to the low-temperature fixed point), the interacting spin
Hamiltonian of Eq. (3.7) becomes equivalent to the free-
spin Hamiltonian when written in terms of the shifted
current operators

and the Kondo interaction is (A~ = —vJ, where v is the
density of states per spin per channel)

+int— "; ~'[~ (0)+~."'(0)]

x —~ [Q,pr, (0) + Q,pri(0)]. (3.3)

These fermion fields are normalized so that

(similar for gR) and obey the boundary condition

Nr. (0) = Ori(0).

(3 4)

(3.5)

This boundary condition allows us to define a left-moving
field also at z & 0 by gr, (—z) = @ri(z). The Hamiltonian
can thus be written entirely in terms of left movers

which obey the same Kac-Moody algebra as the free op-
erators [specified by Eq. (3.9)]. (&his point can be ver-
ified by writing out the Sugawara form spin term cor-
responding to g and expanding the square. ) Since the
spectrum of the Hamiltonian is determined by the Kac-
Moody commutation relations, it follows that, at the low-
temperature fixed point we obtain simply a spectrum
described by the same Kac-Moody algebra as the free
fermions.

B. Spectra of the Hamiltonian: Fusion rules

The spectrum of a conformal field theory consists of
sets of states with integer spaced energy levels (in units
of vFir/I where I is the length of the system) known as
"conformal towers. " In the SU(2) case these conformal
towers are labeled uniquely by the spin j of the lowest
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energy state. At level k, there is one conformal tower
for each j = 0, 1/2, . . . , k/2. (Note that j is the spin of
the lowest-energy state within a given conformal tower;
in general, the higher energy states have different spin. )

In the U(1) xSU(2) x SU(k) case we will obtain a set of
conformal towers as the levels deriving from the direct
product of charge, spin, and flavor states. The struc-
ture of the conformal towers is completely determined
by the Kac-Moody commutation relations. However, the
combinations of spin, charge, and flavor towers, which
actually occur in the physical spectrum are determined
by auxiliary conditions that derive from the boundary
conditions. In the free-fermion problem, selection rules
determine which direct products of charge, spin, and fla-
vor conformal towers occur. These rules can be derived
from Fermi statistics as we show in Sec. V for k = 2 chan-
nels. At the low-temperature fixed point these selection
rules are modified. Thus the low-energy spectrum will
be completely determined if we can somehow find these
modified selection rules.

The above transformation from J to J [Eq. (3.10)]
suggested the "fusion rule" hypothesis, which we now
describe. Upon absorption of an impurity of spin s (by
the shift of J to J), each conformal tower corresponding
to a lowest-energy state of spin j, gets replaced by the
set of conformal towers with spin

(3.11)

These "fusion rules" 2~ are a generalization (actually a re-
striction) of the ordinary SU(2) angular-momentum ad-
dition rules. Note in particular that they ensure that
we riever obtain a conformal tower of spin j & k/2, con-
sistent with the fact that such towers cannot exist in
the level-k theory. Precisely these fusion rules have been
shown to govern the operator product expansion in the
conformal field theory. Our new hypothesis of Ref. 4 was
that they also govern the process of absorption of an im-

purity spin.
By now this fusion rule hypothesis has been rather

convincingly verified. In the simple exactly screened case
(k = 2s) the fusion rules imply" the standard local Fermi-
liquid theory for the excitation spectrum associated with
the low-temperature fixed point. In the simplest over-
screened case k = 2, s = 1/2 they agree excellently with
the approximate spectrum determined by Wilson's NRG
metliod, as discussed in Ref. 5 and as we shall demon-
strate more extensively later in this paper. Furthermore,
the universal ground-state entropy AS' = lng inferred
with the use of the fusion rule agrees exactly with the
Bethe-ansatz result for all values of k and s. This is a
nontrivial result given the generally noninteger value of
g

6

C. Symmetry-breaking perturbations

While the spectrum, entropy, and asymptotic corre-
lation functions are determined completely by this ex-
act description of the low-temperature fixed point, many
other properties, such as the specific heat, susceptibil-

ity and temperature-dependent scattering rate, are de-
termined by the leading irrelevant operator. In this case,
the effective Hamiltonian has the form of the free one
(with impurity absorbed) plus an irrelevant term of the
form

o'H = AO(0), (3.12)

where 0 is a local operator in the Kac-Moody theory
evaluated at the origin. Such operators are referred to
as boundary operators. Note that the impurity spin has
disapp eared from our descrip tion of the low- temperature
fixed point, being absorbed in the redefined spin cur-
rent. Hence, the irrelevant boundary operators are sim-

ply those of the appropriate Kac-Moody theory.
The boundary operators that exist in the theory can be

made to correspond to the various states in the confor-
mal towers for a, particular set of boundary conditions,
and their scaling dimensions are thus completely deter-
mined by the Sugawara. Hamiltonian. An elegant, way
of determining these boundary conditions is by making
a conformal mapping. For the present problem we can
map the Kondo problem on the semi-infinite plane (i.e. ,

—oo ( r ( oo, z & 0) to a problem on a semi-infinite
strip. The allowed operators in the first geometry are in
one-to-one correspondence with the allowed states in

the second. The strip problem has "Kondo" boundary
conditions at each end of a finite line segment, corre-
sponding to an impurity spin of size s at each end of
the line. This spectrum is obtained by applying the
fusion rules twice, once for each impurity spin. This pro-
cedure determines the complete spectrum of boundary
operators ("the boundary operator content") at the low-
temperature fixed point.

The set of boundary operators consists of primary
fields and descendants, being in one-to-one correspon-
dence with the lowest-energy states of the conformal tow-
ers and the higher-energy ones, respectively, Labeling the
dimension of a primary field by A, the nth-order descen-
dants have dimension 4+ n. The primary fields of the
spin sector are uniquely labeled by their spin, j. Their
dimensions are Az —j (j + 1)/(k + 2). Likewise we have
charge and flavor primary fields (and their descendants).
Which combinations of spin, charge, and /I avor fields can
occur, is determined by the free-fermion selection rules
together with the modification corresponding to the dou-
ble fusion process outlined above.

Let us determine, as a first example, the leading ir-
relevant operator, which describes corrections to scaling
at the low-temperature fixed point (Ref. 5). It cannot
be a primary field, since these all have nonzero spin, fla-
vor, or charge quantum numbers. Rather it is a spin
descendant of the primary field of spin j = 1 denoted by

A singlet first-order descendant of P is obtained by
"raising" the primary field with the spin-current opera-
tor j, i.e. , 0 = J i P. The operator 0 has dimension
A = 1+Ai ——1+2/(k+ 2). This is the lowest-dimension
singlet operator in the theory (apart from the identity
operator). It exists for all k & '2. It is irrelevant, since
4 ) 1. Of course we must check that, this operator is

actually in the spectrum, as determined by the above fu-
sion rules. This is shown as follows: The free-fermion
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The spin-rotation by cr2 is neccessary so that

(3.13)

@iat Pq gist( 2)p ~6( 2)Py qiat Py

(3.14)

In general, T changes the sign of (Hermitian) operators of
odd-integer spin but leaves invariant Hermitian operators
of even-integer spin.

We now discuss the interesting symmetry-breaking
perturbations in turn: flavor symmetry breaking,
anisotropic Kondo interaction and external field .

Flavor symmetry breaking (by flavor anisotropi c-
d ondo interaction or flavor field): To take a simple -ex-

ample, consider k = 2 channels and a s = 1/2 impurity;
the flavor symmetry group then is also SU(k = 2). Thus
we add a symmetry-breaking perturbation to the Kondo
interaction of the form

6'M = A'Sl [@'L t(0)-'„(o )~o~g, pl. (0)]. (3.15)

spectrum always contains the identity operator. Label-
ing arbitrary primary fields by spin (j), charge (Q), and
flavor (p) quantum numbers (j, p, Q), the identity oper-
ator is (0, 0, 0). The first application of the fusion rules
for an impurity of size s, maps this operator into (s, 0, 0).
The second application of fusion gives the set of operators
(j, 0, 0) with j = 0, 1, 2, . . . , min(2s, k —2s}. Thus, in all

overscreened cases, k ) 2s, the (1,0, 0) operator is in the
spectrum, and so its singlet descendant can appear as an
irrelevant operator in the Hamiltonian. [Notice that in
the Fermi-liquid situation, k = 2s (complete screening),
only the identity occurs, and the leading irrelevant op-
erator is in fact the second-order descendant g J (see
Refs. 3 and 5).]

We now wish to determine the eA'ect of various types
of anisotropy on the low-temperature fixed point, using
the knowledge about the complete spectrum of bound-
ary operators, which are possible at the Kondo bound-
ary (as obtained from the double fusion rule, just de-
scribed). Our strategy is simple. Breaking some symme-
try in the underlying microscopic Hamiltonian may allow
some other operator to appear at the fixed point. The
set of possible operators is determined by the Kac-Moody
structure and the double fusion rule, together with sym-
metry conditions. An example of the application of sym-
metry conditions occurred above. Even though the j = 1

spin-primary field exists, it could not itself appear in the
Hamiltonian, since it is not rotationally invariant, and
thus only its singlet descendants appeared. In general,
if an operator of dimension 4 ( 1 is permitted, when
the symmetry is broken, then this symmetry breaking is
relevant. If all operators that are allowed when the sym-
metry is brokea have 4 ) 1, then symmetry breaking is
irrele van, t.

Apart from the spin-SU(2) and flavor-SU(k) symme-
tries it is time reversal, T, which is important for this
discussion, T is the anti-unitary operator, which maps
the impurity spin operator into minus itself. It acts on
the fermion fields at the origin as

This anisotropy breaks the flavor-SU(2) symmetry down
to a U(1) subgroup. No primary fields (other than the
identity) from the spin sector are possible, since the
SU(2)-spin symmetry remains unbroken; however, it is
now possible to have a primary field from the flavor sec-
tor. For k = 2 the set of flavor primary fields is the
same as for spin, except that the selection rules are dif-
ferent. The flavor quantum number label, p becomes a
"flavor-spin" label, jy. The relevant operator, which may
be allowed in the presence of the flavor anisotropy in

Eq. (3.15) is the three-component of (j, jl, Q) =(0, 1, 0),
of dimension 1/2. (Note that such a term arises in prac-
tice for quadrupolar Kondo systems because of the vir-
tual polarization of excited magnetic configurations by an
applied magnetic field —the exchange integral splitting is

proportional to the field strength. )
We must check that this operator is indeed in the spec-

trum predicted by the double fusion rule. The free-
fermion theory for k = 2 contains the (1, 1, 0) field,

't(cr')t (o+)~gp &. The first fusion (with impurity spin
s = 1/2) maps the j = 1 operator into j = 1/2. The sec-
ond fusion maps j = 1/2 into j = 0 and j = 1. Thus the
(1, 1, 0) operator gets mapped into (0, 1,0) and (1, 1, 0).
The first of these is the pure flavor primary field men-
tioned above. Of course, it is not permitted by the SU(2)
flavor symmetry in the flavor-symmetric case [i.e. , when
A' = 0 in Eq. (3.15)]; however, the flavor-anisotropic in-
teraction breaks the SU(2)-flavor symmetry and the third
component of the flavor triplet, operator P is allowed tof
appear. Moreover, this is not forbidden by time-reversal
symmetry T [see Eq. (3.13)],since it transforms the same

way as the fermionic bilinear: QL (o );@I, &, namely, it
goes into itself, since o is real. In conclusion, flavor
anisotropy is relevant in this case.

Nozieres and Blandin pointed out the above result long
ago. The physical picture is that if one channel cou-
ples more strongly to the impurity, then the screening is
fully accomplished by that channel. This leads to a one-
channel, Fermi-liquid fixed point, with the second chan-
nel un''ected by the impurity in the low-temperature
limit. The strongly coupled channel has a phase shift of
ir/2, while the weakly coupled one is not phase shifted in
the low-temperature spectrum. We shall discuss this fur-
ther when we explicitly compare energy levels with the
numerical renormalization-group results. It is interest-
ing to observe that the "ground-state degeneracy, " i.e. ,

limT Olimi eslT'l, decreases from +2 to 1 upon ad-
dition of flavor symmetry breaking; this is an illustration
of the "g theorem. "

As another example, we consider flavor anisotropy in
the case k = 2, s = 1. Beginning again with the

(j,jl, Q) = (1, I, 0) operator, the first fusion gives 1 ~ 0
only, for an s = 1 impurity and the second 0 ~ 1. Thus
we do not obtain (0, 1, 0) in this case. We do, however,
obtain the identity operator, (0, 0, 0) as always. The
most relevant field is then a level-one descendant of the
identity, the flavor-current operator J& (0), of dimension
A = 1. This operator is marginal. Furthermore, it does
not renormalize, since there are no connected n-point
Green's functions with n ) 3 involving only J&. This
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corresponds to a potential scattering term with opposite
signs for the two channels. It corresponds to the phys-
ical picture of the "two-stage" Kondo effect. The more
strongly coupled channel first screens the impurity spin
from s = 1 down to s = 1/2. At a lower temperature
scale, the second channel screens the remaining s = 1/2.
The phase shift in t, he two chaiinels is 7t/2 6 A'/Tyg. In
this case the ground-state degeneracy remains unchanged
at 1.

As another example we consider for k = 2 channels
an external channel field applied directly at the impurity
site, i.e. ,

(3.17)

This perturbation breaks the spin-SU(2) symmetry down
to U(1) (rotations about the 3 direction in spin space).
It might appear that the j = 1 spin-primary field, Ps, is
then allowed by symmetry. However, this is not the case
because anisotropic exchange is even under time-reversal

T, whereas P is odd. The lowest dimension T-even pri-
mary field is the j = 2 primary field, which transforms
like a quadrupolar tensor of the spin variable. The cor-
responding j = 2, mi ——0 component operator Ps is

allowed in the Hamiltonian by all remaining symmetries
and appears as a. likely candidate for the fixed-point per-
turbation corresponding to Eq. (3.17).

However, we must check to see if this primary bound-
ary operator exists according to the double fusion rule.
We first note that this operator is only present as a
primary field in the Kac-Moody theory for k & 4. In
this case we must check if the (2, 0, 0) operator occurs
from double fusion. It can be shown that the only
primary operator in the free-fermion spectrum of the
form (j, 0, 0) is the singlet, j = 0. At the first stage
of the double fusion state 0 ~ s. At the next stage
s ~ 1, 2, . . . , min(2s, k —'2s). The (2, 0, 0) primary field
occurs if and only if

2(2s, 2(k —2s. (3.18)

These two inequalities can be written as s ) 1/2 and
s & k/2 —1/2. Thus the (2, 0, 0) primary field oc-
curs in all overscreened multichannel cases, except in
the two cases of minimal and maximal spin, s = 1/2
and s = k /2 —1/2. It is a. relevant field for all cases
k ) 5, 1/2 & s & k/2 —1/2, and is marginal for k = 4,

(3.16)

This breaks the symmetry in precisely the same way as
the flavor-symmetry-breaking exchange term discussed
above, so it has the same consequences. The physical
picture is similar. Giving one channel a lower potential
energy at the impurity site causes that channel to screen
the impurity. We expect the resulting stable fixed point
to be the same as for flavor-symmetry-breaking exchange.
For s = 1/2, one channel suffers a n/2 phase shift and
the other is unaffected by the interaction.

Anisotropic exchange in spin space. Now, we consider
anisotropic exchange in spin space, for general values of
k a»d s, expressed through the perturbation

s = 1. When s = 1/2 or s = k/2 —1/2, the lowest-
dimension operator generated by exchange anisotropy is
the irrelevant boundary operator, PsiPs. This is part of
J i P, which occurs in the absence of anisotropy. It has
dimension 6 = 1 + 2/(k + 2) .

Local magnetic field. As our next example, we consider
a local magnetic field (acting on the impurity only), i.e. ,

(3.19)

This perturbation is similar to the case of ex-
change anisotropy [Eq. (3.17)j except that now time-
reversal symmetry, T, is broken. In this case the

(j, jy, Q) =(1,0, 0) primary field, of dimension

2/(k+ 2), is allowed by symmetry. As discussed above,
this is always allowed by the double fusion rule in over-
screened cases. Indeed, its descendant is the dominant
irrelevant operator even without anisotropy. Therefore,
h is a relevant perturbation, having scaling dimension
h oc (length) "/t" +'I

We can make a natural conjecture about the fixed point
to which the system flows in this case, by considering the
limit of very strong magnetic field h ~ oo: By Eq. (3.19),
the impurity spin then becomes polarized in the z direc-
tion (i.e. , its Hilbert space reduces to one state, spin up).
The Kondo interaction with a polarized impurity then
reduces to a simple potential scattering problem with a
potential of opposite sign for spin up and spin down:

(3.20)

Note that the Kondo interaction A~ is finit at the zero
field (non-Fermi-liquid) fixed points, so that the effective
local field off which the conduction electrons scatter has a
finite magnitude. For very strong fields h the value of A~
occurring in the effective field should be the bare value.
There is thus a phase shift 6+ = + tan i(7rsA~/2) for up-
and down-conduction electrons, respectively. For some-
what weaker fields, we must include renormalization of
the Kondo interaction, A~, in order to determine the ef-
fective local field sile, tr(h) occurring in Eq. (3.20). This
can be determined as follows: The infrared divergence of
perturbation theory in A~ is cut oA' at the energy scale
~h~

'lt"+ ~. Thus, reducing the cutoff' further does not
change A~ any more as opposed to the zero-field case,
6 = 0, where A~ approaches the fixed-point value upon
further reduction of the cutoff'. So Aa, tt(h) is essentially
just the effective (i.e. , renormalized) Kondo coupling at
scale (h("lt"+ &, as determined from the renormalization
group in the absence of the field h. Essentially, the cou-
pling continues to renormalize as in the zero-field theory
as we lower the ultraviolet cutoff until the latter reaches
a. value of order ~h~

lt"+z~. At this point further renor-
malization stops, and furthermore, spin-flip processes be-
come unimportant because all states with the impurity
spin polarized have large energies on the cutoff scale.
Thus we may simply drop the spin-flip part of the I&ondo
int, eraction and replace Ap~ by A~,g in the potential scat-
tering part (. component, ). Act, ually, if h is too large,
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Ii —J, the renormalized AJr(h) appearing in the phase
shift becomes somewhat different than the one defined at
zero field; see the discussion in Sec. V. It is very imnor-
tant that A~ ff(0) is not infinite, as in the Fermi-liquid
Kondo fixed points, but takes on a finite value. Thus we

expect some intermediate phase shift (i.e. , neither zero
nor ir/2) in the limit h ~ 0 taken at zero temperature
Adding an infinitesimal field provides a way of measur-
ing A~

„

the value of A~ at the nontrivial critical point.
What value should we expect it to have? In general this
is unclear, since this value is, in general, not universal. In
particular, note that defining A~, from completing the
square in the Sugawara Hamiltonian gives a finite value
at the Fermi-liquid fixed points unlike the infinite value
obtained from the phase shift definition. There are, how-

ever, two special cases where something can be said. In
the large-k limit, the critical coupling can be calculated
perturbatively, and has the value: 2/k, so we obtain a
small phase shift, 7rs/k. (The calculation of Alr, in this
case was first performed by Nozieres and Blandin. ' For
a review of the calculation, correcting a factor of 2 error,
see Ref. 5.) The other special case is s = k/4, which hap-
pens to include the case k = 2, s = 1/2 describing the
quadrupolar Kondo effect. The unstable infinite-coupling
fixed point, A~ ——oo, has a decoupled spin of magni-
tude k —s/2 = s just as at the unstable zero-coupling
fixed point. Indeed there appears to be a type of sym-
metry between zero and infinite coupling, when s = k/4,
as was observed in Ref. 7. Thus it seems reasonable that
the fixed-point value of A~ should be exactly half way be-
tween zero and infinity. This corresponds to an effective
field, which produces a phase shift of Sir/4, of opposite
sign for spin up and down. This is half way between the
zero phase shift occurring at zero coupling and the z'/2
phase shift at infinite coupling. (We note that a phase
shift of ir/2k has been predicted in the context of the
theory of electron assisted tunneling in two-level systems
models, which map onto the k-channel 3 = 1/2 problem
for conduction electrons with spin k/2. 27 The above argu-
ments confirm this value for the two special cases: k = 2
and k ~ oo.) As we increase h, we expect AIr, ri(h) to
flow according to the renormalization group. At small
h this initial flow is determined by the dimension of the
coupling constant (A~, —AJr) of the leading irrelevant
operator, which, as discussed in the beginning of this sec-
tion, is —2/(k+2). Thus we predict [b(0) —b(h)] oc [h~

~"

(or [h)ln(h[ for k = 2) as h ~ 0.
Explicitly, in the case k = 2, s = 1/2, for very weak

field, we predict a spectrum, which corresponds to a
Fermi liquid with a phase shift of +7r/4 for spin up and
down, i.e. , an energy shift of +(v~x/I)j; /2, together with
a shift of the total j' quantum number reflecting the pres-
ence of the polarized impurity spin: j' = j;+ 1/2, in the
limit of zero applied field. Upon increasing the field, the
magnitude of the phase shift changes, initially as (h~ln(h(,
saturating at a value of + tan (irAli-/4), where AIr is the
bare Kondo coupling. This is precisely what is observed
numerically. (See Sec. V.)

The zero-temperature entropy is zero, since the impu-
rity spin has a unique ground state, and a Fermi liquid
has zero residual entropy regardless of the phase shift.

IV. NUMERICAL RENORMALIZATION-GROUP
(NRG) APPROACH

In this section we briefly discuss the NRG inethod for
treating the two-channel Kondo model with and without
perturbation terms of the form discussed in the previous
section. We also discuss how the effective single-particle
levels in the applied magnetic field can be derived and
how this information may be utilized to extract the field-

dependent phase shifts discussed in the preceding section.

A. Overview of the NRG approach

In the NRG approach, Eq. (1.1) is first logarithmically
discretized. For a more detailed discussion, see Sec. II of
Ref. 28. Here is a brief outline of the discretization pro-
cedure: (i) Divide the conduction band into logarithmic
intervals, e.g. , A" D to A"+ D, with D the bandwidth
and A & 1; (ii) keep only the average states in each in-

terval (those are the ones that couple to the impurity);
(iii) for numerical convenience convert to a tridiagonal
basis via the Lanczos algorithm with the initial state be-
ing the Wannier orbital about the impurity site. The
Lanczos states correspond to electron annihilation opera-
tors fp, , fi, , . . . and have radial extent A'~2, A ~, . . .
times k&, ; about the impurity. The final Hamiltonian
has the form

&Na.G/D= ) & (f "f+i,a, +H )
a=0

+(1/2)AJr fp 'toP fp p; Sl,

where

A-"~'(I+ A ')(1 —A ("+'))
2 [(I A —(2%+1)) ( I A —(2A+3) )]1/2

'

(4.1)

(4.2)

Note that (a) one may view the t„maseasuring the
hopping strength in the "onion-skin basis" of radial states
between the state at radial position n and at n+ 1, (b)
in a.rather different way than discussed in the previous
section one arrives at an effective (1 + 1)-dimensional
problem, (c) in the limit of A ~ 1, the approximation
of (ii) in the above paragraph becomes exact —the full
continuum of levels is recovered, and (d) at finite A there
may be A-dependent renormalizations of various quanti-
ties, which one must attempt to determine for compar-
ison with exact results from other methods. This point
will be made clearer in the next section where the current
algebra results are compared with those of the NRG.

The next step in the NRG is iterative diagonalization.
Wilson has shown that one realizes a renormalization-
group transformation of Eq. (4.1) by truncating the sum
in that equation at a finite number of onion-skin shells,
say N, and adding the hopping term to the next shell.
More precisely, the addition of two hopping terms takes
one from a system of radial extent R~ A~ + &t k&„
to one of size AR~. It is necessary to distinguish
between the spectra for even and odd N, since the fixed
points are generically different, as we shall discuss further
in the next section of the paper. Increasing N by iter-
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atively diagonalizing the sequence of Hamiltonians spec-
ified by the transformation corresponds to lowering the
temperature of the system. A Axed point of the trans-
formation is obtained if the resulting spectrum of energy
levels remains unchanged upon successive iterations of
even or odd N. A well-defined procedure exists for con-
structing basis states of the enlarged Hamiltonian from
those at the current iteration number, as discussed ex-
tensively in Refs. 28 and 20.

Qf course, even with the approximation of the loga-
rithmic discretization and tridiagonalization procedure
discussed above taken together with maximal block di-

agonalizing of A'NBG, the sequence of Hamiltonians gen-
erates matrices far too large to diagonalize completely. A
practical way of implementing this transformation, while

keeping manageable numerics is to retain only the low-

est few hundred states at each iteration. While there is
no direct proof that this approximation is reliable, a

posteriori confirmation by comparison with other ex-
act methods has confirmed the overall reliability of the
method. In numerical calculations discussed here run
on a Sun-4 workstation, we have retained the lowest 250
states at each N value. (Data obtained with the low-

est 1000 levels at each N value from runs on a Gray Y-
MP48 supercomputer show no significant diA'erence from
the runs with fewer states. )

We have calculated our energy levels out to 14 signifi-
cant figures, and when different syrrirnetry labeled states
are reported degenerate, that is typically to an accuracy
of 12 decimal places.

We label our states in the NRG approach with the
separate axial charges of the two channels and the total
azimuthal spin quantum number j'. There is a useful
feature of the choice of the U(1) x U(1) axial charge sub-

group of SO(5) with quantum labels (Zt, Z2, j'): applica-
tion of impurity site spin fields, flavor fields, or exchange
anisotropy will not lift, the separate U(1) axial-charge
symmetries of the two channels or break the total U(1)
symmetry of j', so that the same classification scheme
may be used in the presence of these perturbations. In
contrast, either the full SU(2) spin or flavor symmetries
will be broken by application of these perturbing fields.
Thus, no modification of the basic code is required to
treat these perturbations.

mensionless coupling strength Arc, tr(h)/4 (for s = 1/2).
For even number of onion-skin shells arising from odd
iteration number N in the renormalization group, it is

found that the energy for adding a single particle or hole
in the mth excited level when 1 « m && N is given by

(+)(b )
Am-tysA/~ (4-3)

where the upper (lower) sign obtains for particles (holes),
and g is a rescaled dimensionless quantity proportional
to the energy, e:

2A(lv t) j2e(+-)(b

D(1+ A-') (4 4)

The phase shift that appears in the exponent is de-

termined by the strength of the potential scattering
Arr, tr(h)/4 through the formula

, (xA ~,tr (h) (4.5)

where

(1+ A ') ln(A)
2(1 —A-') (4.6)

which holds with comparable accuracy to the odd-N case.
In addition to this manifestation of the phase shift in

the exponent of rather highly excited levels, we find nu-

merically that the following relation holds for the first
excited particle-hole levels when N is odd (even number
of onion-skin shells)

Note that AA tends rapidly to unity as A ~ 1 so
that the above equation simply reproduces the phase
shift formula derived from the T matrix of a potential
with strength Alr, tr/4. Experience shows that this form

for g(, typically holds at better than 1% accuracy for
3 ( m ( (N —3)/2. Notice that an attractive phase
shift pulls particle excitation energies down and pushes
hole excitation energies up as one would expect. For
odd number of onion-skin shells and even N, one has for1« m« N

B. Free-particle levels in the NRG
in the presence of potential scattering

(g) (1 bg l
g, (bA) = 2t)o I

—w —
I

2 7r)
(4.8)

As discussed in the preceding section, we anticipate
that the finite-size spect, ra in the presence of an applied
spin field corresponds to a phase-shifted free-par ticle
spect, ra, with the phase shifts of up- and down-spin elec-
trons being equal and opposite. The NRG results for
phase-shifted single-particle spectra have been well stud-
ied in the context, of the x-ray edge problem. We sum-
naarize the results here.

Consider electrons with down spin in an applied local
field along the +z direction. As discussed in Sec. III C, we

expect this to map onto the problem of spinless fermions
in the presence of a potential scattering center with dI-

( ) (1 + sgn[AIr, tr(h)/4]) bA 'l

g, (bA) = 2qo +— (4.9)

and the first particle excitation occurs at

provided bA is sufficiently smaller than 7r/2 in magni-

tude. Here go is the first scaled excitation energy for odd
% in the absence of potential scattering. For odd num-

ber of shells and even N, one st, ate sits precisely at the
Fermi energy for vanishing A~. We find from studying
the spectra as a function of coupling strength, that for

Ayg, g su%ciently large, the first hole excitation occurs
approximately at
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(+) ( {1—sgn[AIc, ff(h)/4]) bA
E

(4.10)

Note that in each case the lowest particle and hole ex-
citations sum to 2go, which identifies this scaled energy
with v~n/I in the conformal theory. Thus any excita-
tion processes involving the first excited particle or hole
levels within conformal theory and NRG in the presence
of finite potential scattering should agree within an over-
all scale factor, while any involving the second excited
particle or hole levels will explicitly disagree.

The above relations (4.8)—(4.10) for the lowest excita-
tions break down whenever there is a zero mode, i.e. , for
A~ = 0 and even N, and for A+of(h) = oo and odd N.
On the other hand, 'the formulas (4.4)—(4.7) relating in-
termediate level particle and hole excitation energies to
the phase shifts through exponentiation are accurate for
all AIc ff(h). Unfortunately, due to the matrix truncation
process, it is practically di%cult to reliably estimate the
intermediate energies where the formulas of Eqs. (4.4)—
(4.7) hold. Thus, the procedure we have settled on is to
match our go values to those for a single-particle spec-
trum possessing the same overall phase shift and then
apply Eqs. (4.8)—(4.10).

V. COMPARISON OF CFT AND NRG
APPROACHES

In this section we compare finite-size spectra and scal-
ing indices derived from the CFT approach discussed in
Sec. III and the NRG method discussed in Sec. IV. The
explicit comparisons are all for the model with k = 2,
s = 1/2.

Free fermion spectrum The low-energy .excitations of a
Fermi gas on a line of length / with some choice of bound-
ary conditions and Fermi energy, can, of course, be ob-
tained by elementary methods as we now show for k = 2
channels. The total energy E is the sum of the energies
of the four species of fermions with quantum numbers
(j', j&) = (cr, i) = (+1/2, +1/2). There are two different
particle-hole symmetric spectra, depending on our choice
of boundary conditions. When the free fermions are put
on a lattice, a nondegenerate ground state arises for an
even number of sites and the same boundary conditions
on both ends: i.e. , a vanishing wave function or a vanish-
ing derivative of the wave function (Fig. 1). When dif-
ferent boundary conditions are chosen on the two ends,
a vanishing wave function at one end and a vanishing
derivative at the other, we obtain the other spectrum
with a 16-fold degenerate ground state (Fig. 2), corre-
sponding to a 7r/2 phase shift of the single-particle wave
functions. The situation is reversed for an odd number
of lat tice sites, where the non degene rat e ground state ap-
pears for different boundary conditions on the two ends.
Note that on a lattice there is an even-odd alternation
of the free spectrum, when the boundary conditions are
held fixed. Finally, we observe that a free boundary con-
dition is equivalent to a vanishing boundary condition
with one additional "phantom" site added. The coupling

E„

)&
v vt/1

FIG. 1. Nondegenerate free-fermion ground state.

to this site has no effect because the fermion operator
vanishes there. The NRG Hamiltonian corresponds to
essentially this system, with free boundary conditions at
both ends, at A ~ 1. At the N th iteration we have
N + 1 sites so the degenerate ground state occurs for
even iteration number. First focus on the spectrum with
nondegenerate ground state (Fig. 1). The fermion levels
near the Fermi energy have equal spacing, viz'/I, and
the zero of energy (Fermi level) lies symmetrically be-
tween two levels. The lowest excitations are one particle
(or hole) excitations, having charge Q = +1 and energy
lE/v~7r = 1/2; there are four states (Fig. 3) forming
a (j, jg) = (1/2, 1/2) multiplet of the direct product of
spin and flavor SU(2) groups. (Note that we measure
charge relative to that of the ground state. ) The next
excitations with lE/v~n = 1 are two particle (or hole)
excitations, having charge Q = +2; by the Pauli principle
there are (z) = 6 states (Fig. 4), forming a (j,Zf ) = (1,0)
and a (0, 1) multiplet. At 1E/v~~ = 1 there are in addi-
tion 16 particle-hole excitations, having Q = 0 (Fig. 5);
they form (j, jy) = (0, 0), (1, 1), (0, 1), (1,0) multiplets.
Next, at lE/v~vr = 3/2 there are four three-particle (or
hole) excitations, having charge Q = k3 (Fig. 6), form-

E

E
F

ii
v N/1

F

FIG. 2. Degenerate free-fermion ground states.
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FIG. 3. One-electron excitation. FIG. 6. Three-electron excitation.
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FIG. 4. T~o-electron excitation,

ing a (1/2, 1/2) multiplet. In addition there four single-
particle (or hole) states (Fig. 7), having Q = kl, which
form a (1/2, 1/'2) multiplet. Furthermore, at lE/vy n =
3/2, there are, 24 = 4(~~) two-particle —one-hole states
(Fig. 8) (or two-hole-one-particle), having Q = +I,
which form two (j, jy) = (1/'2, 1/2) and a (3/2, 1/2)
as well as a (1/2, 3/2) multiplet. All other states have
energy lE/vFm & 2. All states of free fermions with
lE/vFx ( 3/2 are listed in Table I for the case of non-
degenerate ground state. As discussed in Sec. II these
theories have an SU(2) x SO(5) symmetry. [Actually, in
the free fermion case the full symmetry is SO(8), but
only the SU(2) xSO(5) subgroup survives the Kondo in-
teraction. ] Thus we may reclassify levels according to
SO(5) representations. The decomposition of SO(5) reps
into SU(2)y x U(l) reps is given in Table II labeling SO(5)
representations by their dimensions. [4 is the spinor, 5
the vector, 10 the antisymmetric tensor, etc.] In Table
III we give the free fermion spectrum using SO(5) reps.

This free fermion excitation spectrum can also be
labeled using the CFT classification. In this case
states come in conformal towers with energy spacing

E
ii

E

- E E
F

v zt/l

FIG. 5. One-electron, one-hole excitation. FIG. 7. Higher-energy one-electron excitation.
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TABLE I. Spectrum of free fermions (nondegenerate
ground-state case) for El/vox ( 3/2 (descendant states de-

noted by ').

E

E//vF x

1/2 1/2 1/2
----- E

F

0
0I

0

0

y1/
+1
+1
+1
+1

1

0
1

0

1/2

1/2
1/2

(3/2)'
1/2

(1/2)'

1

0
0

1/2

1/2
(1/2)'

1/2
(3/2)'

1/2

1

1

1

1

3/2

3/2
3/2
3/2
3/2
3/2

8
8
16
16
8

AlE/vFx = 1. The lowest state in each tower is known
as a "primary" (or "highest weight") state and the rest as
"descendants. " Furthermore, the states are represented
as products of charge, spin, and flavor states, with addi-
tive energies. Each of the three factors can be a primary
or descendant. In Tables I and III we have denoted de-
scendants by a '. These results, together with the double
fusion rule discussed in Sec. III C, provide the basis for
understanding the energy levels of t, he strongly coupled
system.

Now consider the free fermions with the other spec-
trum having a degenerate ground state. The low-lying
spectrum, depicted in Table IV, can be obtained simi-
larly to Table III. The ground state consists (Fig. 2) of

1k
v m/t

F

FIG. 8. Two-electron, one-hole excitation.

particle hole symmetric (j, jg) = (0, 1), (1,0) multiplets
of charge Q = 0, a Q = +2 singlet (j, j~) = (0, 0) and
a Q = +1 multiplet (1/2, 1/2). [All charges are rede-
fined by Q ~ (Q —2), i.e., we take the zero of charge
to be the symmetric choice where two of the four zero-
energy fermion states are occupied. ] All states with en-

ergy tE/vF n ( 2 are listed in Table IV using SO(5) reps
and distinguishing primaries and descendants.

Non-Fermi liquid spectrum. The finite size results at
the non-Fermi-liquid fixed point are presented in Table
V. The first two columns give the spin j and SO(5) state
labels. The third column lists the energy predicted by
conformal theory in units of vFx/t, and the fourth col-
umn lists the numerically derived NRG levels, scaled so
the first excited splitting matches that of the conformal
theory. The CFT predicts the same spectrum at the non-
Fermi-liquid fixed point beginning with either a degener-
ate or a nondegenerate free-fermion spectrum, in agree-
ment with the NRG observation.

TABLE II. Branching rules of SO(5) representations into representations of SU(2) x U(1)
(flavorxcharge) and SU(2)xSU(2) (isospin of each separate channel). As discussed in the text,
SO(5) is an exact symmetry of the lattice Hamiltonian, which is preserved in the numerical renor-
malization-group calculations. We find that the lowest states to be compared between the conformal
theory finite-size scaling and the NRG belong to the lowest-dimensionality SO(5) representations
(excluding the 14-fold degenerate representation, which is absent from the lowest-energy spectra).
We index the SO(5) representations by their dimensionality. For the SU(2)xU(1) labeled states,
the first number in parentheses represents the flavor spin jf and the second the charge q. For the
SU(2) xSU(2) isospin labeled states, the first number is the isospin Ti of channel 1 and the second
is the isospin X2 of channel 2.

SO(5)=Sp(2)
(Dimension)

1

4
5

10
14
16

SU(2) x U(1)

(jf q)
(0,0)

(1/2, +1)
(1,0) @ (0, +2)

(0, 0) g (I, 0) t'ai (1, +2)
(2 0) @(1 0) [2(0 0)l(0 +2) (0 +4)

(3/2, jl) 8 (1/2, +3) EB (1/2, .tl)

SU(2) xSU(2)

(Zi, X2)
(0,0)

(1/2 o) (o 1/2)
(0, 0) ~Ii (1/2, 1/2)

(0, 1) (33 (1, 0) (1/2, 1/2)
(0, 0) @ (1/2, 1/:.) @ (1, 1)

(1/2, 0) EB (0, 1/2) S (1, 1/2) EB (1/2, 1)
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SO(5) El/vF rr

1/2

1

0
(1)'

1/2
I/2

(1/2)'
(3/2)'

5
(1o)'

1

(16)'
(4)'

4
4

3/2
3/2
3/2
3/2

TABLE III. Spectrum of free fermions (nondegenerate
ground-state case) using SO(5) reps for E//v~m( . 3/2 (de-
scendant states denoted by ').

1/2

SO(5) rep

1

El/vF 7r Enu m

TABLE V. Comparison of (firs 76 states of) confor-
mal field theory finite-size spectra with NRG spectra at the
non-Fermi-liquid fixed point. For convenience we label states
with the SO(5) designations (in terms of their degeneracies
only) and total spin j. For the labeling in terms of flavor spin
and charge or isospin see Table II. Numerical levels have been
reported for A=3.0 and are multiplied by a constant factor of
1.60 to make the first splitting agree with the finite-size scaling
value. Note that the same SU(2),~;„and SO(5) representa-
tions arise for the NRG states as for the conformal theory.
The discrepancies between NRG and conformal theory levels
grow with the energy and are attributed to the combined fac-
tors of logarithmic discretization plus matrix truncation. See
the text and Figs. 9 and 10 for further discussion.

1/8 0.125

TABLE IV. Spectrum of free fermions (degenerate
ground-state case) using SO(5) reps for El/vFrr ( 1 (descen-
dant states denoted by ').

0

1/2
1

(o)'
0
0

(1/2)'
1/2

(1)'
(1)'

1

(3/2)'

SO(5)

1
(5)'
(1o)'

4
(4)'
(16)'

1

(10)'
4

El/vF ir

Clearly the overall agreement is excellent. We note
t, he following features: (i) Agreement with the confor-
mal theory is better at lower energy scales. There are
two contributing factors here —first, the logarithmic dis-
cretization provides an approximate uniform spacing of
free-fermion levels at low-energy scales, but becomes less
uniform the higher the energy. The second is the state
truncation mentioned in Sec. IV A. This removes states
of the same symmetry at high energies, which can mix
with some of the low states. This problem is expected
to be most severe as the discretization parameter tends
to unity, which point we shall discuss further below. (ii)
The NRG preserves degeneracies of SO(5) multiplets to
12 decimal places of numerical precision. This is to be
expected because none of the approximations inherent in
the NRG break SO(5). In particular, the truncation of
the spectrum is always done at a gap between levels so it
never breaks up SO(5) multiplets. On the other hand, it
is particularly clear looking at the 1+1/8 levels that the
splitting between different SO(5) representations can be
more substantial (10% precision). We note that the over-

1/2

(1/2)'
1/2

(3/2)'

0
0

(1)'

1

(1o)'
1

(4)'
(16)'

4

1/2

5/8

1+1/8
1+1/8
1+1/8

0.505

0.637

1.053
1.035
1.013

1.232
1 ~ 147
1.179

all symmetry of the asymptotic low-energy spectrum in
the continuum limit is much larger than SO(5)xSU(2);
it is the infinite-dimensional Kac-Moody symmetry. This
additional symmetry fully accounts for the degeneracies
of states derived from the conformal approach.

We have attempted to isolate the origin of the break-
ing of conformal symmetry by the NRG approach by ex-
trapolating the discretization parameter towards 1. As a
particular measure, we check to see if the splittings be-
tween the 1 + 1/8 levels tend to zero with some power
of A —1. These results are summarized in Figs. 9 and
10. For A & 2, the extrapolation procedure appears to
work. However, the splitting takes a sudden upturn as
A is reduced below 2. We suspect that this is due to the
truncation of states required within the NRG. Because
large A spreads the states out more in energy, corrections
from mixing with excited states of the same symmetry is

likely to be less severe when A is sufFiciently large. How-

ever, the problem becomes more acute as one approaches
the continuum limit.

Exchange anisotropy. The NRG approach allows a
somewhat diA'erent picture of the irrelevance of exchange
anisotropy for s = 1/2, s = k/2 —1/2 than the conformal
theory. The basic argument is illustrated in Fig. 11. For
these particular spin choices, at least one of the odd-even
iterations will possess a j' = +I/2 ground state. Time
reversal ensures the degeneracy of the doublet ground
state. For a given iteration with the j' = +I/2 ground
state, one finds the first few states to also be j' = +1/2
or j' = 0, which smoothly connect to j = 1/2, 0 as the
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1.6

1.2

0,0,1/2

1,O, 1/2
1/2, 1/2, 1/2

0,0,3/2

m 0.8
C2
C:
4J

0.4

1/2, 0, 1

1/2. 1/2. 1/2
0,0,1/2

0.0
1.0 3.0 5.0

A

7.0 9.0

1/2, 0,O
0,0,1/2

FIG. 9. A dependence of NRG levels at the isotropic non-

Fermi-liquid fixed point of the k = 2, s = 1/2 model. The
lowest level is scaled to 0.125, with the scale factor attain-

ing a nearly A independent value of 1.58—1.62 for the range
of A shown. In the absence of systematic error due to the
truncation of states in the NRG, the levels should tend to the
continuum limit as A ~ 1. g1

0
Q 1

0

numerically by examining the splitting of the +1 and 0
levels in the lowest j = 1 multiplet as well as the +3/2
and +I/O levels in the lowest j = 3/2 multiplet. In each
case, we attempt to see when the splitting falls below
a fixed small value and And what number of iterations
we need to go to reach the same small splitting as we

double the anisotropy AA~. We find that AA~ scales
linearly with the inverse system size rather than as a
square root in each instance. For the j = 1 manifold,
this is readily explained on the basis of the fusion rules.
The argument is as follows: The splitting, to linear order
in the irrelevant coupling, is proportional to the matrix
element of Js&Ps in the j = 1 primary states T. his
matrix element is also governed by the fusion rules. Since
the product of two j = 1's does not contain j = 1 in the
case k = 2, according to Eq. (3.11), this matrix element
vanishes. Therefore the splitting is of second order in
the irrelevant coupling constant and hence scales linearly
with the system size. For the j = 3/2 manifold, more

anisotropy is removed. Since j = 0 states do not couple
linearly to the anisotropy, and since the first few states
at one iteration produce the lowest states at the next it-
eration, the anisotropy should damp out. On the other
hand, for k & 4 and s g 1/2, k/2 —1/2, the lowest state
at any iteration will have at least j = 1 in the absence of
anisotropy. Turning on the anisotropy will always split
the j = 1 manifold and thus must be relevant or at least
marginal.

When exchange anisotropy is introduced, as discussed
in Sec. II, we anticipate that it is irrelevant in this case
of k = 2, s = 1/2 with a scaling dimension of —1/2
for the coupling constant. We have checked this idea

g1/2

g 1/2

a) s=1/2 or k/2-1/2, kQ

N+2

g 1/2

g 1/2

O
O

g 1/? g 1/2

O
C4

I

LLI

C
O

I

b) s=1 or k/'2-1, ko 4

N+2

O
g)

I -0.4 0.4 1.2
In(h —1.0)

2.0

FIG. 10. Extrapolation of discretization induced splitting
to the A ~ 1 limit. Plotted is the magnitude of the splitting
between the j = 3/2 SO(5) singlet and the j = 1/2 SO(5)
decaplet at nominal unit energy for AR = 0.7 as a function
of (A —1). Clearly above A 2 the extrapolation appears to
be towards zero as vrould be expected. . We tentatively ascribe
the growth of the splitting magnitude below A = 2 to the
systematic error made in the truncation of states within the
NRG.

FIG. 11. Heuristic visualization of the irrelevance of
anisotropy for k ) 2s, s = 1/2, or k/2 —1/2 in the NRG
scheme. (a) For the overcompensated case with s = 1/2 (or
k/2 —1/2), odd (or even) iteration number ground states will

have j„i——1/2. Within the NRG, the lowest few levels will al-

ways be either singlets or doublets for that iteration. The sin-

glet is clearly insensitive to anisotropy, and the doublet is also,
since time reversal guarantees its degeneracy (and it possesses
no quadrupole moment to couple to the a,nisotropy). Since
the lowest states at the next iteration have significant parent-

age from these low-lying doublets and singlets, the anisotropy
must damp out with increasing iteration number irrespective
of the magnitude of k. In contrast, in (b) we see that for s = 1

(or k/2 —1) the ground state for odd (or even) iteration will

always be a triplet, which will be split by the anisotropy.
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work is needed to explain the linear scaling with system
size.

Relevance of applied spin and channel field B.y apply-
ing the same arguments to the application of exchange
integral splitting and spin field, we find each pertur-
bation is relevant with an exponent of I/2. The plot
of crossover temperature scale (at which a fixed energy
splitting of levels is exceeded) vs applied spin field is
shown in Fig. 12. A corresponding plot for the split ex-
change integral case appears in Fig, 11 of Ref. 11.

When a magnetic field 6 is applied at the the two-
channel (s = l/2) fixed point, the system crosses over
(on a scale T, oc h ) to a I'ermi liqui-d fixed point, cor-
responding to a polarized impurity and an efI'ective local
field acting on the conduction electrons at the origin of
magnitude A/r, rr(h)/2, I/2 the effective I(ondo coupling
at energy scale h . Such a local field produces an energy
shift of [2b(h)/ir] j' in the spectrum, where the phase shift
b is 0;iven by Eq. (4.5). The spectruiii at this fixed point
is obtained from Tables III and IV by shifting the ener-
gies of all states by [2b(h)/ii]j' and then redefining the
total z component of spin to be j'—:j;+ I/O, to include
the impurity spin. A suitable choice of b(h) reproduces
excellently the numerical spectrum (after a trivial redef-
inition of the energy scale). Tables VI and VII show

O
I

C)
C4

I

CV
I -5.0 —4.0

log lo(T,)

—3.0 —2.0

FIG. 12. Crossover scaling in the NRG spectrum as a
function of applied spin field. As described in Sec. III, the
fixed point for a Fermi liquid with a polarized impurity scat-
terer will develop below a crossover temperature scale propor-
tional to 6 . Here we identify the crossover scale by monitor-
ing the iteration number N, where a particular level splitting
[between the lowest SO(5) quintet and singlet with j' = —1/2
of Table VI] drops below a fixed magnitude of 0.001. in a.

given applied field. The crossover temperature is then given
by T, = (1+A ')A i ' '1/ /2. Our log-log plot of T,~;„vs.
h yields a slope of 2 as expected. For this figure, Az,- = 1 and
A = 4 were used.

TABLE VI. Comparison of finite-size spectra for continuum free fermions with a nondegenerate
ground state and a polarized impurity scatterer with NRG levels of the two-channel Kondo model
for odd N in an applied field at the impurity site. The ground-state spin reflects only the +1/2
polarization of the impurity. The energy is determined by shifting the zero-field spectra up or
down by 2j;b/ir, where a field-dependent phase shift b/ir parameterizes the scattering. Here the
logarithmic discretization parameter A=3, the dimensionless field strength h, = 0.08, Ay; ——0.5
and the fitted phase shift is b/ir=0. 206. For a comparison with the NRG levels, all dimensionless
continuum levels have been multiplied by a factor of 1.613, which is the spacing of the lowest two
scaled NRG single particle levels for A=3, as explained in the text, Sec. IV B. The anomalous
quartet level on the last line, expected to be degenerate with the other levels in its grouping,
corresponds to a second excited particle-hole state where the logarithmic discretization scheme
deviates from the linear spaced spectrum of the continuum theory substantially. Charge and flavor
quantum numbers are grouped under the single SO(5) representation label; refer to Table II to
convert to flavor-charge or isospin labels. j, is the total spin j; + 1/2 .

SO(5)

5
10
1

4
16

4

2c

—1/2

+1/2

-1/2
—1/2
—1/2
-1/2

+1/2

-1/2
-1/2

+1/2
+1/2
+1/2
—3/2

1/2

1/2

3/'

3/2
3/2
3/2
3/2

/E(b)

(1 —2b/ir)/2

1 —~b/x
1 —2b/ir

(1 + 2b/x)/2

(1 —2b/x)3/2

2(1 —2b/x)

(3 —2b/ir)/2
(3 —2b/ ir) /2
(3 —2b/n. )/2
(3 —2b/ir)/2

./E(b)

0

0.474

0.948
0.948

1.139

1.423

1.613
1.613
1.613

1.897

2.087
2.087
2.087
2.087

Enum

0.475

0.949
0.949

1.139

1.424

1.613
1.613
1.614

1.899

2.088
2.088
2.089
2.398
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the cases where the zero-coupling, zero-field spectra have
nondegenerate or degenerate ground states, respectively,
for a field of h = 0.08, and A~ ——0.5.

Figure 13(a) displays 6 vs h for a large field range and
two different bare A~ values, one weak coupling and one
strong coupling. As discussed in Sec. III, we expect the
renormalized Kondo coupling A+ eff(h), to approach the
bare coupling, A~, at large h. The agreement is quite
good, once we take into account the A-dependent correc-
tion of Eq. (4.5) as shown in Table VIII.

For weak bare coupling, A~, we find that b(h) sim-

ply decreases monotonically from the value of »/4 at
low field to the bare value, modulo a discretization-
dependent renormalization. For strong bare coupling,
b(h) displays a nonmonotonic rise above»/4, falling even-
tually to the bare phase shift at infinite fields. We inter-
pret this unusual result for strong coupling in the fol-
lowing way: As in the single-channel Kondo model, the
phase shift must grow as the field is diminished from
infinity due to second-order spin-flip processes —at sec-
ond order, since channel index is conserved, there can
be no difference between the single-channel and two-
channel models. We expect second-order perturbation
theory to be valid, even for strong bare coupling, pro-
vided that h is even larger (h )) Aff). In the single-
channel model the phase shift continues to increase to-
wards the zero-field value of »/2. However, in the two-
channel model, this growth cannot continue indefinitely

because the zero-field coupling strength corresponds to
a phase shift of »/4 as argued in Sec. III. Thus, the
growth must be arrested at some crossover field scale
and the phase shift must then decrease with further re-
duction of the field towards»/4. Clearly, the critical bare
A~ value, which divides the monotonic and nonmontonic
behavior is that which sits at the fixed point, A~, 0.7.
This is the point where the leading irrelevant operator,

P, has vanishing coupling constant. Note that for
the critical coupling A~ ——0.7 the infinite field phase shift
is 0.16», which is clearly smaller than»/4. It is interest-
ing that a similar situation arises in the leading frequency
and/or temperature dependence of the one-electron scat-
tering rate I/r(~, T) for scattering from the impurity.
At A~ ——A~

„

the sign of the leading ~'~, T'~ depen-
dence in I/r(u, T) 1/r(0—, 0) reverses, since this quantity
is linear in the leading irrelevant coupling constant. (The
situation is different at the Fermi-liquid point where the
scattering rate is quadratic in the leading irrelevant cou-
pling constant. ) Regardless of the sign of b(h) —»/4, as
illustrated in Fig. 13(b) the low-field deviations of b(h)
from»/4 are proportional to ~h(ln[h[ as anticipated in
Sec. III.

VI. CONCLUSIONS AND SUMMARY

This paper has reached the significant conclusion that
exchange anisotropy is irrelevant for overcompensated

TABLE VII. Comparison of the continuum field theory spectrum of free fermions with degen-
erate ground state and a polarized impurity scatterer with NRG calculations for the two-channel
a=1/2 Kondo model for even 1V and a field at the impurity site. Here, as in Table VI, h = 0.08,
AJ; = 0.5, and again a single choice for the phase shift 6/» = 0.198 provides an excellent fit to
the NRG levels through the first several SO(5) multiplets. Note, however, a slight difference for
the phase shift between even and odd spectra. (For comparison of continuum and NRG levels, the
ground-state energy has been set to zero. ) The anomalous splitting of the last quartet in the NRG
relative to the continuum theory arises from the position of the second excited particle-hole level
in the logarithmic discretization scheme. Here A = 3 and all continuum levels have been rescaled
by the factor of r'=1.630 to agree with the NRG results, which represents the splitting of the
two lowest levels in the scaled, nondegenerate NRG free particle spectrum as discussed in the text
(Sec. IV 8).

SO(5)

5
10
1

4
16
4
4

Jc

—1/2

0
0

+1/2

-3/2

—1/2
—1/2
-1/2
-1/2

-1/2

+1/2
+1

+3/2

—1/2
—1/2
-1/2

lE(b)
Vy Pl26'/»—

0
0

+6/»

+26/»

1 —36/»

1 —26/»
1 —26/»
1 —26/»

1 —6'/»

1 —6/»
1 —6/»
1 —6/»

, 1EE(b)
VFX

0

0.322

0.644
0.644
0.966

1.288

1.308

1.630
1.630
1.630

1.952
1.952
1.952
1.952

Enum

0.322

0.644
0.644
0.966

1.288

1.308

1.630
1.630
1.631

1.952
1.952
1 ~ 953
2.152
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Kondo models when s = 1/2 or k/2 —1/2. Since it
is expected that the quadrupolar Kondo eff'ect (and two-
level systems Kondo analog models27), which is described
by the case k = 2, s = 1/2, will generically possess
anisotropic exchange couplings, the irrelevance of the
anisotropy is important in ensuring the local marginal
Fermi-liquid behavior of the model. This analytic re-
sult of the conformal theory is completely borne out
by the NRG analysis. Thus, the description of the ap-

0.6

0.5

2.0
1.0
0.7
0.5
0.3

0.339
0.219
0.163
0.116
0.074

14=100.0

0.312
0.204
0.153
0.11"
0.070

-' tan '(,„Aq;)
0.306
0 ~ 198
0.148
O. l 10
0.068

TABLE VIII. Phase shift b/x in high field limit for several
initial exchange Ai; va.lues. In the high field limit, the spin-flip
scattering is frozen out and the phase shift is described iii
terms of the simple r-matrix based relation of Eq. (4.5). The
factor of AA arises from the logarithmic discretization and is
described in Sec. IV B.

& 0.&
CV

0.3

0.2
—1 0

log�)o(h)

2.0

CV

I

0.0

Xk
——0.5

Xk=1.0

(b)

—2.0
—1 0

log)o(h)

FIG. 13. Phase shift at the polarized scatterer fixed point
as a function of field. (a) Using the phase shift measurement
described in Sec, IV. and Tables VI and VII, we have com-
puted the phase shift for down-spin electrons within the NRG
for Ag,- ——0.5, 1 and A = 3 as a function of applied spin field 6
coupling only to the impurity. As anticipated, for initial weak

coupling (Ay;=0. 5) the phase shift decreases from a low field
value of z/4 to a high field value given by tan (s Ai;/4@~),
where AA is a A-dependent renormalization factor of approx-
imately unit value explained in Sec. IV B. In contrast, for
initial strong coupling, the phase shift is nonmonotonic, first
rising from z/4 and then falling as transverse spin fluctua-
tions are frozen out to the high field value. (b) In the low

field limit, for both weak and strong coupling choices for Ay;,
the deviation of the phase shift from 7r/4 follows an ~h, ~ln~&~

form, as illustrated by this plot of (I/2 —2(b(h)(/7r[/)ii[ vs

ln [ii[. Note that the single-particle iso = 0.800 value for a x/4
phase shift sca.tterer has been used for the ana, lysis here in
conjunction with Eqs. (4.8)—(4.10).

parent non-Fermi-liquid properties of the alloy system
Y& U Pd3 by the two-channel Kondo model attributed
to the quadrupolar Kondo effect is supported by our anal-
ysis. This picture of the quadrupolar Kondo eHect may
extend to concentrated Kondo systems as well, such as
U Be(3.

In summary, we have used CFT and NRG methods
to demonstrate the irrelevance of exchange anisotropy
for overcompensated multichannel Kondo models with
s = 1/2, k/2 —1/2, and the relevance of channel asymme-
try and applied spin field (on site) in the same models.
Explicit comparison of NRG and CFT finite-size level
spectra for the k = 2, s = 1/2 model are in excellent
agreement at the non-Fermi-liquid fixed point, and the
applied field NRG spectrum agrees with that of a Fermi
liquid. Small discrepancies arise at higher energies, which
can be attributed to the logarithmic discretization and
numerical state truncation of the NRG method. At, all
stages, the NRG and CFT approaches retain the exact
SO(5) symmetry of the single impurity problem embed-
ded in a lattice.

Our result that the overall symmetry of k-channel
models is SU(2),»„xSp(2k) may be of significance to fu-
ture numerical studies. The reason is that the high sym-
metry of the Sp(2k) group could allow efficient block di-
agonalization of matrices reducing the storage overhead
in, e.g. , NRG calculations on multisite Kondo models.
Generally, the SU(2),&,„xSp(2k) symmetry is also en-
joyed by a full k-channel Kondo lattice so long as the
Hamiltonian and chemical potential respect part, icle-hole
symmetry.
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