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The forward scattering f functions of the exact one-dimensional Landau theory are evaluated for
the case of the Hubbard chain. The static charge and spin susceptibilities of the interacting system
at arbitrary magnetic fields are derived as in a Fermi liquid. The connection to conformal Geld

theory is studied in detail. All the critical exponents associated with the asymptotic behavior of the
correlation functions are fully determined by the pseudoparticle interactions.

I. INTRQDUCTIGN

The interest in strongly correlated electron models of
phenomena like high-temperature superconductivity or
the electronic properties of quasi-one-dimensional syn-
thetic metals, has not subsided. As even the "simpler"
one- and two-dimensional Hamiltonians are very dificult
to solve, there has recently been an upsurge of interest in
exact soluble models. The exact Bethe-ansatz solutions
of fermionic one-dimensional models, for example, even
if formally known for many years, have recently been
shown to describe the interactions between pseudoparti-
cles of a generalized Landau-liquid theory. 3 That allows
the extension of the concept of a Landau liquid45 to a
wider class of many-body fermionic systems and con-
tributes to a deeper understanding of the physical content
of these exact solutions. The possibility of expressing
the Bethe-ansatz solutions in terms of a Fermi-liquid-like
formalism was considered in Ref. 8.

In this paper we present a detailed evaluation of the
forward scattering f functions for the Hubbard chain,
which were discussed in a recent paper. Furthermore,
we derive the compressibility and spin susceptibility of
the model at arbitrary magnetic fields, and establish the
connection to conformal field theory.

Ten years ago Haldane showed that a wide class
of one-dimensional systems, which he called Luttinger
liquids, share features characteristic of the exact sol-
uble Luttinger-Tomonaga model. 4 All these exotic
one-dimensional liquids are characterized by nonclassi-
cal exponents. ' The key point in his approach is
to recognize that, to a first approximation, the low-
energy spectrum of these systems can be described in
terms of noninteracting bosons, similarly to the Lut-
tinger model (bosonization). He then adds correction
terms in order to describe the noniinear coupling be-
tween the bosonic collective modes. In the case of the
Hubbard model his method requires the use of two ef-
fective Hamiltonians, which correspond to two decoupled
harmonic (Gaussian) models, describing charge and spin-

density fluctuations. Haldane's description is, however,
not valid for finite magnetic fields because when H ) 0
the ground state is not spin-rotationally invariant, and
there is a change in the nature of the gapless excitations.
Therefore, the zero-magnetic-field ground state is not a
good starting point for the study of spin fluctuations in
the presence of magnetic fields.

In the case of fermionic Luttinger liquids solvable by
the Bethe ansatz, our approach shows that in spite of
the fully incoherent single particle spectral function char-
acteristic of these systems, the collective modes, which
describe these liquids, can be understood as pseudoparti-
cles of a generalized Landau-liquid theory. Although this
is only true at, finite magnetic fields, where all gapless
excitations can be described by particle-hole processes
in the bands of the pseudoparticles, 6 the limit 0 ~ 0
leads to the correct values for the zero-field static sus-
ceptibilities and critical exponents. Furthermore, the
generalized theory provides the exact couplings between
the collective modes that are derived in a simple man-
ner from the Landau energy functional. Although, as
in the case of the Fermi-liquid theory, we restrict
our study to the two-pseudoparticle forward scattering f
functions, the exact theory contains all the higher-order
interaction coefficients, which can be derived by taking
functional derivatives of the Landau energy with respect
to the pseudomomentum deviations. Based on the two-
particle spectral properties of the new liquids, we show
elsewhere that the Landau-liquid functional introduced
in this work is valid over a finite domain of excitation
energy where all states can be described by real Bethe-
ansatz rapidities.

The new generalized Landau liquids include the usual
Fermi liquids and the present one-dimensional
Landau-Luttinger liquids. Since other Landau liquids are
expected to exist in higher dimensions, our exact results
may provide valuable information on the generalized the-
ory in higher dimensions. The transitions between the
phases considered here can be produced by changes of the
electron-electron interaction. In the case of the (repul-
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sive) Hubbard chain at fixed values of density n = N/N,
and magnetic field H (and H & Hp, where Hp is the
critical field for the onset of ferromagnetisms at U = 0),
in addition to the Fermi-liquid —Landau-Luttinger-liquid
phase transition at V = 0 (Mott-Hubbard transition if
n = 1), there is a Landau-Luttinger —Fermi-liquid (ferro-
magnetic) transition at V = V„where U, = U, {n, H) is
the value at which H = H, .

Our four general criteria for a Landau liquid are (i) the
fact that in each phase the low-energy physics is fully con-
trolled by the departure of the pseudo-momentum distri-
bution(s) of pseudoparticles from its (their) value(s) in
the interacting ground state —in addition, all the gap-
less elementary excitations can be expressed in terms
of particle-hole processes in the bands of the latter; (ii)
the forward-scattering interactions of the pseudoparticles
have a predominant role in the low-energy physics, be-

ing regulated by the two-pseudoparticle f functions (sec-
ond functional derivatives of the energy with respect to
the deviations); (iii) in contrast to the energy, the total
charge, magnetization, and momentum of the many-body
system depend linearly on the deviations (i.e. , only the
first functional derivatives are nonzero); and (iv) the adi-
abatic continuity principle is valid within each phase, but
not necessarily across the phase transitions —the change
in symmetry induced by the particle-particle interactions
at the phase transitions may produce singular changes in

the structure of the eigenstate energy spectrum. Both
the usual Fermi liquids and the new one-dimensional
Landau liquids meet these four criteria.

The paper is organized as follows: In Sec. II we derive
the energy Landau functional for n & 1 and 0 & H &

H, . The scale-invariant regime is studied in Sec. III.
The evaluation of the charge and spin susceptibilities is
presented in Sec. IV. In Sec. V we consider the connection
to conformal field theory The h.alf-filled band case and
the ferromagnetic phase are studied in Sec. VI. Finally,
Sec. VII contains the concluding remarks,

II. THE LANDAU-ENERGY FUNCTIONAL

We consider the one-dimensional Hubbard model at
arbitrary magnetic field

tH = t g ( cicqjq+1 q+qci +jlqqc)+qqV ) c'1cj)c'gcjt

+(p —U/2) ) ct c,, —jd, pH ) (Tc~t c,
j,o j,o

where c. and cj~ are creation and annihilation opera-
tors for an electI~n with spin o. at site j, p, is the chem-
ical potential, H is an external magnetic field, and po is
the Bohr magneton. The shift in the chemical potential

makes explicit the particle-hole symmetry of the model.
The Hamiltonian (1) describes N interacting electrons on
a chain of N sites (n = N/N~, kF = z n/2). It consists of
N) down-spin electrons and N1 up-spin electrons (k~~—
xN /N, ). The spin density is m = (k~T —kFl) /2qr. We
restrict our study to the case p & 0 and H & 0 (n & 1

and Nt & N1) We note that, in the figures of the present
paper, units such that t = po

—1 are used.
In Ref. 6 we have shown that in the limit of a large

system (N, ~ oo, n fixed) the generalized Lieb and Wu
equations2 may be rewritten as

kFI
Ii{q) = q+ — dp'N)(p')tan '[S{p')

7l

—(1/u) sin I~ (q)],
(2)

dq'M, (q') tan '[S(p) —(1/u) sin I~ (q')]

kF)
dp'Nl(p')tan (2[S(p) —S(p')]}, (3)

7I QF

where u = U/4t, the form of the pseudomomentum dis-

tributions M, (q) and Nt(p) is determined by the choice
of the sets of numbers (Ij} and (J },~ and for U & 0
the pseudomomenta q and p describe the quantum num-

bers of the many-body system [in the discrete case qj =
(2n/N )Ij, p = (27r/N )J ] We emp. hasize that the
generalized equations (2) and (3) do not refer only to
the ground state —they describe a large number of ex-
cited states that correspond to diferent choices of the
functions M, (q), Nt(p), which are the pseudomomentum
distributions of the charge and spin pseudoparticles, re-

spectively. Furthermore, the restrictions on the numbers

Ij and J~ lead to a fermionic character for the charge and

spin pseudoparticles, i.e. , each pseudomomentum value in

M, (q) and Nt(p) cannot be occupied by more than one
pseudoparticle. The relation of the functions I~{q) and

S(p) with the Lieb and Wu distribution functions p(k)
and a(A) is presented in Ref. 6.

Although our approach can be extended to excited
states described by complex roots, we restrict the present,

study to excitations involving real rapidities because the
former are not the lowest-lying excitations for 0 & 0.
For eigenstates involving only real rapidities, we always
have Ii (kz') = +z, S(+kF1) = +oo. Then the limits of
the pseudo-Brillouin-zones of the charge and spin pseu-
doparticles are {q = +7r} and (p = +k~l}, respectively.

The energy of the many-body system can be written
as

p/' X X

E = dqM, (q)[—2t cos It (q)] —2ppH2r 2
dqM, (q)—

I(:FI

dpNI(q) ~
+ (p —U/q) f dqM (q).(4)
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The ground state at arbitrary magnetic fields is described
by distributions M, (q) = Mo(q) and Ng(p) = N&(p)
given by

Q(q) = q+ Qi(q) + Q2(q) +

7'(p) = p+&i(&)+»(p)+"

(10)

M;(q) = e(2k~ —~q~), N;(&) = e(k~, —& ),
where (q = +2k~, p = +k~t }constitute the charge and
spin pseudo-Fermi surfaces, respectively. As in a Fermi
liquid, 4 the ground-state pseudomomentum distri-
butions (5) do not depend on the (on-site) interaction.
We are particularly interested in the low-energy states
described by small deviations from the ground-state dis-
tributions

M. (q) = M.'(q) + b (q) Nt(p) = Nt'(p) + bt(p) (6)

where b, (q) and bt(p) are the pseudomomentum devia-
tions that measure the departure from M, (q) and N& (p).

The key point of the present Landau-liquid theory is to
consider IC(q), S(p) and the energy (4) as functionals of
the pseudoparticle deviations b, (q) and bt(p). Although
the deviations are arbitrary in the sense that the expres-
sions for the coefIicients of the Landau-energy functional
are independent of them, only suitable choices of these
deviations describe true eigenstates of the many-body
system.

In agreement with our criteria for a Landau liquid pre-
sented in Sec. I, a crucial feature of the present one-
dimensional Landau-liquid theory is that, unlike the en-
ergy and the functionals Ii(q), S(p) defined by Eqs. ('2)
and (3), the total charge, magnetization, and momen-
tum of the many-body system depend linearly on the
deviations. s Thus, as in a Fermi liquid, ~ is zP the back-
flow effect due to the pseudoparticle interaction renor-
malizes only the energies.

In a recent paper we have studied the first-order term
of the Landau-energy functional, which defines the bands
for charge and spin pseudoparticles. In the following we
evaluate in detail the Landau functional up to second
order in the deviations.

The solutions I&(q), S(p), which correspond to the gen-
eral distributions introduced in Eq. (6), may be evaluated
by inserting these distributions into the right-hand side
(rhs) of Eqs. (2) and (3) and expanding in the small de-
viations b, (q) and bt(p). That leads to

I& (q) = I&p(q) + I&i (q) + I~ q(q) +

S(p) = Sp(p) + S (p) + S2(p) + (8)

where A'z(q) and S~(p) are the jth-order terms. Equa-
tions (2) and (3) allow the systematic evaluation order
by order of all terms of the expansions (7) and (8). By
using a recursion procedure, we find that the solutions
(7) and (8) may be simply written as

which can be obtained by solving Eqs. (2) and (3). The
results (9) and (11) imply that the first- and second-order
terms of the rhs of Eqs. (7) and (8) may be written as

I~i(q) = Qi(q),
dq

(13)

( ) = ( )
dp

(14)

We note that, the functions dIio(q)/dq and dSO(p)/dp
obey the equations

dp'bt(p')~-(q p') (17)

d&'bt (&')C'"(» p') (18)

where the functions C)«(q, q'), C„(q,p'), I)„(»q'), and
4„(p,p') are the two-pseudoparticle phase shifts of for-
ward scattering introduced in Refs. 3 and 6. They are
defined by a set of four integral equations, which we con-
sider below. These phase shifts define the S matrix for
the gapless excitations at finite magnetic fields —at zero
field the S matrix for elementary excitations is different
because the spin-gapless excitations also acquire a differ-
ent character. 6

It is useful to define the functions Qi(k) and 7 i(v)
such that

de'p (q) 1 dSp (p) 1

dq 2z po(I&p(q))
'

dp 2xpo(SO(p))
'

(16)

where 2mpo(k) and 2z.po(v) [po(v) = ua. (uv), v = A/u)
are the usual ground-state distributions of Lieb and

u.2'6'7

Solving Eqs. (2) and (3) to first order leads to

Qi(e) = f ds'(. (v')~-(v, ~')

I'(q) = Ko(Q(q)), S(p) = So(V (p)), (9) Qi(Ixo(q)) —Ql(q) 7 1(So(p)) —Pl(p) . (19)

where Ilp(q) and Sp(p) are the ground-state solutions
that correspond to the choice of distributions (5), and
Q(q), P(p) are functionals of the form

The analysis of the higher-order terms of the rhs of ex-
pansions (10) and (11), which are generated by using
Eqs. (2) and (3), shows that all higher-order expressions
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1d
Q;(q) = Q.(q) —

—,
—„([Q (q)]'}, (20)

involve the two-pseudoparticle phase shifts. In the case
of the second-order terms it is useful to introduce the
functions Qz(q) and» (p) given by

yo

4„(z,z') =-
7r —yo

4„(y",z')
1+ (z —y")2 '

where Q and B are the usual cutoff parameters of the
ground-state Lieb-Wu equations, the universal func-
tions, which are common to other one-dimensional Lan-
dau liquids, obey the following integral equations:

ld»"(p) = »(p) ———„([&(p)]') (21)

as well as the related functions Q2(k) and»(v) such
that

@., (z, y') = ——tan '(z —y')+ — dy"

(33)

Q2(I'o(q)) = Q2(q)»'(So(p)) = &2 (p) . (22)

The two-pseudoparticle phase shifts C&„(q, q'),
4„(q,p'), C)„(p, q'), and C)„(p, p') can be written as

1
C)„(y,z') = --tan '(y —z')

ir

yo

dy"t"(y, y")C'. (y" z') (34)

C „(q,q') = C'„(I',(q), I', (q') ),

@„(q,p') = e„(I'o(q), Sp(p')),

C".(p q') = C".(So(p) I'o(q'))

(23)

(24)

(25)

yo

x o

sts O

„tan '(z" —y')
1+ (y —z")'

1,r'y —y'
C)„(y,y') = —tan

7r ( 2

~"(», p') = C".(So(p) Sp(p')) (26) yo

yo

dy"G(y, y")@- (y", y'),

~(sin k sin k i
tl Q

(27)

where the auxiliary functions C)„(k,k'), C'&& (k, v'),

g „(v,k'), and i3)„(v, v') were introduced in Refs. 3 and

6. It is useful to express them in terms of the uni-

versal functions iI)„(z,z'), 4„(z,y'), 4„(y,z'), and

iI)„(y, y'), which are related to the auxiliary functions
as

where the kernel G(y, y') reads

1 /' 1

2v i, i+ l(is
—is' )/~I')

ly ly
2 u u

and

4„(k,v') = C„ i

n, v' i,) (28) 1
t(y) = ) (&)ta" (y+& o)

7r

k'
4,.(v, k') = C„(v, (29) I(y) = —) .(~)»[I+ (y+~*o)'] (38)

C„(v,v') = C„(v,v') .

Introducing the parameters

Q = I~p(2k~), B/u = Sp(kFt),

We emphasize that in this paper the inverse of the
trigonometric and hyperbolic functions are denoted by
using the superscript —1.

Introducing the distributions (6) in the energy func-

tional (4) leads to the Landau energy expansion

sin
yp = B/u,

(31) E = EO+Eg+E2+
The use of Eqs. (7), (8), (12), (14), and (16) leads to

(39)

( U
Ei -— '

dqb, (q) ~ p —— —ppH —2t cos[I~p(q)] +
2~ ' ( 2

kF)
dpbt(p)2ppH + dk(2i siv k) Qv (k)) . (40)
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With the help of Eqs. (17) and (19) this expression may
be rewritten as

0.5

N
Ei —— '

dqb, (q) c,(q)+27' 7t- 270 I
dp bt(p)"( )

0.4

0.3

where 0.2

' (q) = "(q)+(tj —~/2) —pp» ~ (p) = ~,'(p)+2pp&

(42)

O.i

I

0.0 I

0.0 O.i 0.2 0.3

and the bare spectra e, (q) and e, (p) are given by

~', (q) = 2t cos —I~p(q)+2t dk4„(k, I~p(q)) sin k,

FIG. 1. The magnetization curve for U = 10 and various

densities.

(43)

~,'(p) = 2t dk@'„(k, Sp (p) ) sin k . (44)

The ground-state solutions Iip(q) and Sp(p) can be sim-
ply evaluated. The result is

The pseudoparticle velocities are defined by the usual
expression for the group velocity. They are given by

d~, (q) d~, (q) de, (p) de', (p)
vc q = =

& vs p
dq dq dp dp

(48)

I~'p(q) = q— dk4„(k, I~p(q)),

Q

p = dkC„(k, Sp(p)) .
-q

(46)

Two relevant parameters of the one-dimensional theory,
which play an important role in the scale-invariant regime
of Sec. III, are the pseudoparticle velocities at the pseudo-
Fermi points,

v, = v, (2kF), v, = v, (kF~) . (49)
We note that the pseudoparticle energy spectra e, (q) and
e, ( )pdefined by Eq. (42) vanish at the pseudo-Fermi-
points, i.e. ,

c,(+2k~) = ~, (+k~t) = 0. (46)

The combination of Eqs. (42) and (46) allows the deriva-
tion of the density and magnetization curves, which read

t (n) = ——~.'(2kI. ) I* —g&'(k~t) I*

)
8( t)
2po

(47'

where, depending on the constraints imposed to the sys-
tem, either z= H or x =mandeither y= p or y=n,
respectively. It is useful for the interpretation of the fig-
ures of Sec. IV, particularly in what concerns the behav-
ior of the charge and spin susceptibilities across the fer-
romagnetic transition, to study the magnetization curve
defined by the second equation of (47). It is represented
in Fig. 1, in the case y = n, for U = 10, 0 (0 ( H, and
various densities. The envelope curve defines the critical
field H, at the different densities. Note the overlap of
magnetization curves, which occurs for electronic densi-
ties close to n = 1.

In Ref. 6 it is shown that the low-energy gapless ex-
citations of the many-body system can b~ understood
in terms of particle-hole processes in the pseudoparticle
bands (42). Furthermore, that work presents a detailed
study of the dependence of the bands (42)—(44) on t, he
on-site repulsion, electronic density, and magnetic field.
In that paper we did not study the f functions associ-
ated with the second-order term of the energy expan-
sion (39) because these do not contribute to the spec-
tra of the single-pair elementary excitations, which in-
volve a single particle-hole process in the pseudoparti-
cle bands. In the case of multipair excitations involv-
ing a number of particle-hole processes N& h such that
N& g/N, ~ 0 as N, ~ oo, the excitation energy is
additive and the second-order terms of the expansion
(39) can also be neglected. These second-order contribu-
tions cannot be neglected in the case of multipair excita-
tions involving a small but finite density of pseudoparti-
cles. It follows that the f functions play a predominant
role in the low-energy physics of the many-body system
by regulating the forward-scattering interactions of the
pseudoparticles. As in a Fermi liquid, ' they are the
main ingredients for the derivation of the charge and spin
static susceptibilities, which we present in Sec. IV.

In order to derive the second-order term of expansion
(39), we use the results (7)—(22) in Eq. (4). After some
simple algebra we obtain
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E2 —— '
dqb, (q) [4xt sin I&0(q)]Qr(q) +

N, dK[)(q)
4x2 dq

dk(4n-t sin k) Q2(k) + ) [Q, (j 2k~)]
27rp, (Q)

(50)

The next step is the derivation of the function Q&(k). This requires the introduction in Eqs. (2) and (3) of the second-
order expansions (?) and (8), with first- and second-order terms of the form (12)—(15) and Qi(q) and 'Pr(p) given by
Eqs. (17) and (18). The explicit calculation is straightforward, but somewhat lengthy. Although the intermediate
steps involve a large number of terms, the final result leads to a simple expression for the energy (50), which reads

z, = N,
4z2 ( dqb, (q)v, (q)Qi(q) + 2

d pbbs (p)"(p) 7'r (p)

y2mv, —) [Q, (j2kp)] y2wv, —) [P, (jkpg)] ) .

j=+1 j=+1
(51)

The use of Eqs. (17) and (18) leads finally to the desired
result,

N,
4m 2

N,
+4

N,
+4

kF)

dq'b (q)b. (q')2f .(q, q')

—kFI
kF,

dp'bi(p)br(p') 2f" (p, p')

dp' b (q)br(p')f- (q, p') i

(53)

f"(p, p') = 2~v, (p)@„(p,p') + 2~v, (p')e„(p', p)

+2~v ).C" (&k~i p)~".Ukase, p')
j=+1

+27rv, ) 4 „(j2k~, p) rI)„(j2k&, p'),

(54)

f„(q,p') = 2+v, (q)C)„(q,p') + 27rv, (p')C„(p', q)

+2irv, ) 4«(j2kr;, q)4„(j2k&, p')
j=+1

+2~v, ) 4„(jk«, p')4 „(jk«, q) .

j=+1
(55)

We emphasize that although the starting energy expres-
sions (4), (40), and (50) are not symmetric in t,he charge
and spin contributions, the final expressions (41), and
(51) and (52) for the first- and second-order terms of the

(52)

where the f functions f„(q,q'), f„(p,p'), and f„(q,p'),
which are the second functional derivatives of the energy
with respect to the deviations, are given by

f«(q, q') = 2irv, (q)4«(q, q') + 2z v, (q')4„(q', q)

+2irv, ) 4„(j2kF, q)4„(j 2k~, q')
j=+1

+2~v, ) e„(gk&, , q)e„(gkF, , q'),

energy functional, respectively, have symmetric charge
and spin parts.

As in Fermi-liquid theory, ~ the higher-order terms
of the energy lead to corrections in the pseudoparticle
band expressions. Up to first order in the deviations the
corrected bare bands read

1
~.(q) = ~ (q) + dq'b (q') f-(q, q')

kF)+-
27K

dp'bt (p')f-(q, p'), (56)

c', (P) = ".(P) +
2

dq'b, (q') f„(q', p)

kFl1
+

kF 7

dp'bt(p') f„(p,p') . (57)

The spectra (56) and (57) are useful for the evaluatior)
of the charge and spin susceptibilities of Sec. IV.

The form of the rhs of Eqs. (43)—(45) and (53)—(55)
shows that the first- and second-order Landau coefFi-

cients are fully controlled by the forward-scattering phase
shifts. The same holds true for the remaining higher-

order energy functional derivatives —all the effects of the
on-site repulsion in the system are controlled exclusively

by the two-pseudoparticle phase shifts. 6 At T = 0 and

finite fields the many-body system (1) can be treated as
a two-fluid Landau liquid with only forward scattering.
The functions 4„(q', q) and 4„(p', q) [4„(p",p) and

4„(q",p)] are the phase shifts of the charge (spin) pseu-

doparticle of pseudomomentum q (p) due to a forward-

scattering interaction with the charge (spin) and spin

(charge) pseudoparticles of pseudomomenta q' (p") and
p' (q"), respectively.

In this section we have calculated the first- and second-
order coefficient of the Landau-energy functional (39).
As in Fermi-liquid theory, "' ' the first-order coeS-
cients (42) define t, he bands of the pseudoparticles and
the second-order coefficients (53)—(M) are the f functions
that regulate the interactions of the pseudoparticles.

Although the generalized Bethe-ansatz equations (2)
and (3) allow, in principle, the exact evaluation of all
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the coefficients, the calculations become very lengthy for
orders larger than two. Nonetheless, as in Fermi-liquid

theory, the second-order expansion controls the physics
of the low-energy regime.

We emphasize the universal character of the Landau
energy functional derived in this section, which provides
the energy and momentum associated with all possible
gapless excitations, provided that the corresponding de-

viations b, (q) and bl(p) are suitably chosen.
Finally, we note that the expressions for the pseudopar-

ticle bands (42)—(45), as well as the equations for the

phase shifts (32)—(38), may be written in an alternative
form in the limit H ~ 0. In Appendix A we introduce
this alternative representation.

4„(2k~,+2kF)
4 „(kFl,+2kF)

e„(2kF, +k~t)
4 „(kFl,+kFl )

(62)

F,', = —v, + v, [(,', ] + v, [(,',]', i = 0, 1, (64J

with elements given by the forward-scattering phase
shifts involving only pseudoparticles with momentum at
the pseudo-Fermi surfaces. These define the S matrix
for the elementary excitations of lowest energy. Based
on Eqs. (53)—(55), it is straightforward to show that the
Landau parameters (59)—(61) may be written as

(63)

III. THE SCALE-INVARIANT REGIME F,', = F,', = v, [(,',(,', ] + v, [(,',('„], i = 0, 1, (65)

F,',

with elements

F,', i=0, 1, (58)

F,', = —) (j)'f„(2k~,j2k~), i = 0, 1,

(60)

F,', = F,', = —) (j)'f„(2k~,jkFl)

1= —) (z)'f„(&2k~, k«), i = 0, 1. (61)

In order to derive simple expressions for the Landau pa-
rameters (59)—(61), it is useful to introduce the matrices
R~,

For U & 0, n & 1, and 0 ( H & H, the particle-hole
processes in the charge and spin pseudoparticle bands
(42) describe the low-lying gapless excitations of the in-

teracting system. The system becomes scale invariant in
the limit of very small excitation energy ~ and momen-
tum k, when u/k equals v, and v, for charge and spin
excitations, respectively. It also becomes scale invariant
for very small energies when the excitation momentum is
very close to +4k+ (+2k~i) in the case of charge (spin)
excitations. The scale-invariant regime is determined by
the behavior of the f functions (53)—(55) at the pseudo-
Fermi surfaces.

As in Fermi-liquid theory, it is useful to introduce
the Landau parameters. In one dimension the pseudo-
Fermi surfaces are comprised of two points, and thus
one has only the symmetric and antisymmetric combina-
tions of the f functions, which correspond to the first two
terms in the usual Legendre expansion of the Fermi-liquid
theory. The present one-dimensional Landau liq-
uid includes two types of fermionic pseudoparticles and
then two pseudo-Fermi surfaces with two points each. As
a result, the Landau parameters can be considered as the
elements of the two matrices F and F,

where the g"s are the elements of the matrices

Z' = (66)

defined as

z' = a + R+ + (-1)'R—, i = o, 1 . (67)

Here 1L is the 2 x 2 unit matrix. Except for the diagonal
contributions arising from IL, the elements of the matrices
Z and Z correspond to the symmetric and antisymmet-
ric combinations of the forward-scattering phase shifts of
pairs of pseudoparticles with momentum at the pseudo-
Fermi surfaces, respectively.

As in Fermi-liquid theory, while the symmetric
Landau parameters given by expressions (59)—(61) with
i = 0 regulate the compressibility and magnetic suscep-
tibility, the antisymmetric Landau parameters given by
expressions (59)—(61) with i = 1 control the charge and
spin currents and the stiffnesses. In this paper we limit
our considerations to the static properties, the expres-
sions for the compressibility and spin suscept;ibility in the
presence of a magnetic field being derived in Sec. IV. In
Figs. 2(a)—2(c) the symmetric functions v, +Fo„v,+Fo„
and Fo, , respectively, are plotted vs the magnetic field H
for 0 ( H & H„U = 10 and various densities. While
v, +F,, and v, +F,, are positive, the charge-spin Landau
parameter F,, is negative. Notice the different behavior
of the functions represented in Figs. 2(a) and 2(c) in the
case of a more dilute system (n = 0.3) and of interme-
diate and large densities close to n = 1 (n = 0.7 and
n = O.9).

In Appendix B it is shown that the matrix Z intro-
duced in Eq. (67) is nothing but the dressed charge ma-
trix previously obtained in conformal field theory (we use
here the same definition as Ref. 9, which is the transposi-
tion of that of Ref. 10). Within the present Landau-liquid
theory it follows naturally from the phase shift (S matrix)
dependence of the Landau parameters. These dominate
the physics in the limit of vanishing excitation energy,
where the theory becomes scale invariant. Further rela-
tions to conformal field theory results will be presented
in Sec. V.

The structure of the coupled integral equations (32)—
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=[[Z] (68)

(35) shows that the functions that determine the form of
the phase shifts are not independent. This dependence
assumes a simple and elegant form in the case of the
phase shifts at the pseudo-Fermi-points (62). It may be
expressed by the following relation:

i.e. , Z is the transposition of the inverse matrix of Z .
The dependence of the elements of the dressed charge

matrix on U, II, and n has been investigated previously
in the context of conformal field theory. Using the
Wiener-Hopf method, Frahm and Korepin have studied
the logarithmic singularities that occur as H ~ 0 when
U ~ oo. We find that for H ~ 0 the matrices (66) are
singular at P = 0. While for U ~ 0 they read

0
) Z

0
(69)

Oo
+

—.~' 0.3

n= 0.7 at U = 0 the result is

0 1
Z —

0
0

(7o)

I I I I I I I I I I I I I I I I I I I0
0.0 0.1 0.2 0.3 0.4

H

2.0
-(b)

This singular behavior is absent at finite fields, where
both as U ~ 0 and at U = 0 the matrices (66) are given
by (70). On the other hand, the above singular behavior
does not, show up in the static susceptibilities and criti-
cal exponents because the Landau parameters (59)—(61)
[(63)—(65)], which are the macroscopic parameters that
regulate these quantities, are always analytical. Their
expression at U = 0 (and for U ~ 0) is, for both H ~ 0
and finite fields, given by

1.5— 0
—v C

—v C

vc

vg vg

0 I (71)

Vl

u 10
where for U ~ 0 the velocities (49), which appear ill

these matrices, read

0.5
v, = 2t sin(kFI), v, = 2t sin(k~1) . (72)

0.0
0,0 0.1 0.3

Since the Landau parameters (59)—(61) regulate all the
low-energy physics, it is interesting to study their values
in other limiting cases. For example, for H ~ 0 the
matrices (58) may be written as

0.0

-0.2

vs 1
p

—' —v, i1 ——
F = 2 'q (' —v S

vs

Oo
U

-0.6

F 1

1 2
—,Vc(p

1
2 v, (p

-v ( —-v1 2 1

-0.8—

10 II» I «ii I I I I II

where (p is the function that regulates the thermody-
namic quantities and critical exponents in this limit.
It is given by (p —gp(zp), where the function (p(z) is

defined by the following integral equation:

0.0 O.l 0.2 0.3 0.4
H gp(z) = 1+ dz" A(z —z")(p (z"), (74)

FIG. 2. The functions (63)—(65) (a) vc+F „(b) v. + F.
and (c) Fp, vs the magnetic field H for U = 10 and various

densities. When the system is diluted v, + F,, (F,, ) Increases

(decreases) with increasing fields for H & H, For interme-.
diate and large densities ii. becomes a. decreasing (increasing)
function of the magnetic field. v. + F, , decreases with in-

creasing fields for H & H, In (b) and (c) the clo.se values of
the n = 0.7 and n = 0.9 curves at H = 0 is purely accident, al.

and the kernel A(z) reads

OO

A(z) =— cos 4)z
de 1+ e2

(75)

Equation (74) may be simply obtained from the equa-
tions for the phase shifts introduced in Appendix A. For
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F
Vc'gO

VcgO
2vcr

2
Fl V, QO

Vs 7/O

vs 'go
0

Q
)

(76)

where go and the velocities are simply given by

2 i sin(an) )
imp

———tan ' I, v, = 2k sin(z. n), v, = 0.
7r u )

(77)

Finally, in the limit U )) t and H « H, all the el-
ements of F show logarithmic dependence due to the
singular behavior as H ~ 0. Nonetheless, in F only the
Landau parameter F~, shows such dependence, which is
introduced through the function Pp defined below:

0 & n & 1, (p changes from (p ——~2 at U = 0 to (p
——1

for U ~ oo. On the other hand, for H ~ 0 the velocities

(49) change from v, = v, = 2t sin(7m/2) when U = 0, to
v, = 2t sin(7m) and v, = 0 for U ~ oo.

Another interesting limit is H ~ H, (or U —+ U, ).
The matrices (58) in this limit are given by

IV. THE STATIC CHARGE
AND SPIN SUSCEPTIBILITIES

In this section we derive exact expressions for the
compressibility and spin susceptibility of the model (1)
at arbitrary magnetic fields. Previous studies on this
subject were restricted to zero fields. We emphasize
that, contrary to the H = 0 case, the two compressibili-
ties

1 1

n' Bp(n)/Bn IH
'

1 1

n' Bp(n)/Bn I

(84)

(85)

which refer to the system at fixed magnetic field and
magnetization, respectively, are in general unequal for
0 & H & H, . The same holds true for the spin suscepti-
bilities

derived in Sec. II.
The limiting expressions (71)—(83) are very useful in

the study of the compressibility and spin susceptibility
of Sec. IV.

FO

v, (np'i'

0!O
Vs

p2

0!o
vs' p2

(2
v,

l

—
2

—1I'
Epp )

(78)

2po

BH(m)/Om I„'
2po

cIH(m)/Om I„'

(86)

(87)

0
1F

2 Vc&O

1
2 VcO;O

4 vg(np) —vg 1—P') . (79) x. I x. I

x IH x. lp' (88)

which refer to the grand canonical and canonical ensem-
bles, respectively. We find that the relation

Here the renormalized parameters read

4 H
np ——1 ——,Pp

——1+
4ln(gx /2eH, /H)

t' 2ln 2
v, = 2f sin(mn)

I
1 — cos(urn)

I

&~F ~I »n(2'arri) l . &»Ft ~
v, =2t 1——sin

u 4kF1 ( 2zn ) (2kF] )

(80)

(81)

holds for the whole parameter space.
We consider the case n & 1 and 0 & H & H, . The

cases n = 1 and (or) H ) H, are studied in Sec. VI.
In order to derive the thermodynamic quantities

(84)—(87), we use the expressions (47) with the bare
bands replaced by the spectra eP(q) and e~(p) introduced
in Eqs. (56) and (57). As in Fermi-liquid theory, 4' '
this allows taking into account the changes induced
by the momentum deviations in the bare pseudoparti-
cle spectra. The evaluation of the susceptibilities in-
volves small changes 62k' and bk~g in the pseudo-Fermi-
momenta 2k~ and k~g, respectively. The appropriate
pseudoparticle distributions are of the form

and the critical field H, (Ref. 6) may be written as
M, (q) = e(2kF + b2kF —lql),

&t(p) = e(eF, ~ szF, —
& ) .

(89)

t' t n ( sin(2zn) )
H, = ——

I

1—
(pp u ( 2zn

(83)

The logarithmic terms (80), which appear in the ex-
pressions for the static susceptibilities derived in Sec. IV,
cannot be obtained by the effective theory introduced by
Haldane, because the relevant spin fluctuations do not
exist at H = Q.

In this section we have introduced the Landau param-
eters which, as in Fermi-liquid theory, regulate the low-

energy physics of the many-body system. They are ob-
tained from the general expressions for the f functions

Expanding these distributions around the ground-state
functions (5) leads to distributions of the form (6) with
the deviations given by

b.(q) = ~(2I F —lql)~24. , hz(p) = ~(I Ft —Ipl)~&Fl,

(90)

where b(z) is the usual delta function. Inserting the devi-

ations (90) in the rhs of Eqs. (56) and (57) for the bands

e, (q) and KP(p), and replacing the obtained expressions
in Eqs. (47), which define the density and magnetization
curves, leads to



7908 J. M. P. CARMELO, P. HORSCH, AND A. A. OVCHINNIKOV 45

Bp(n) p 1 p& b2ky ( p 1 p
') bkyt.+ F,', + -F.',

I
+

I F,', + -(, + F.'.) I
z=H, rn, (91)

OH(m) 1 ( p b2kF p bkrtIF,, +(v +F),y=pn. (92)

As expected, the expressions for the derivatives (91) and
(92) are regulated by the Landau parameters (59)—(61).
On the other hand, the changes b2kF and bkFy in the
pseudo-Fermi momenta are related with the changes bn
in the density and bm in the spin density as follows:

b2kF —xbn, b2kF —2bkF g
—2xbrn . (93)

Equations (93) follow from the fact that both the number
of spin-up electrons N~ and of spin-down electrons Ny are
good quantum numbers of the system. 2

In order to calculate the compressibility at constant
magnetic field, Eq. (84), we make use both of the con-
dition bH = 0 and of Eq. (93) to derive the following
expressions for the derivatives of the rhs of Eq. (91)

y = p. We obtain

b2ky ( (v, + F,, )/2+ F,,
6m (2(v, +F~) +(v, +F, )/02+2(F, ,)) '

(100)

bkF) v, + F,', + (F,', )/2
bm „2(v,+ FP, ) + (v, + FP, )/2+ 2(FP, ) j

(101)

Combining Eqs. (92), (100), and (101) leads to the follow-

ing exact expression for the spin magnetic susceptibility
at constant chemical potential:

(102)
b2kF

bn
bkFt ( Fp,

(94) Finally, in the case of the canonical ensemble the condi-
tion bn = 0 leads to

Inserting these expressions in the rhs of Eq. (91) allows
the derivation of the following expressions for the com-
pressibility (84)

b2kF
bm

=0, bkFy

bm
(103)

.o
x IH

and the spin susceptibility at constant electronic density,
Eq. (87), may be evaluated. The result is

where the functions I o and L& are given by

2 1
x* I

= —"'-L (104)

1
Lp ———(v, + F,,),4

(96)

Equations (95), (98), (102), and (104) allow us to derive
the function (88), which reads

1
Li ———g(v, + FP, )(v, + FP, ) —(FP, )~.

Equation (95) provides the exact form for the charge sus-
ceptibility at constant magnetic field, which, as in Fermi-
liquid theory, is determined by the symmetric Lan-
dau parameters introduced in Sec. III.

Combining the condition b'm = 0 with Eq. (93), leads
to

b2kF
bn

bkF g vr
jr

bn 2 (97)

The compressibility at constant magnetization (85) is
readily obtained by inserting the derivatives (97) in the
rhs of Eq. (91). The result is

1 1
x I (98)xn2 L2

Here L2 is given by

I., = v, + F,', + (v, + F,', )/4+ F,', . (99)

On the other hand, the condition bp = 0 allows the eval-
uation of the derivatives of the rhs of Eq. (92) in the case

(105)
(Li)'
LoL

For all densities 0 & n & 1 and finite values of U & U„
iI) changes fromm=1at H =0 totl =Oat H =Hc
While, for H ~ 0, xc (H= xc I~ »d X. Ip= xc l~, when

0 & H & Hc, xclH g xclm and X.I) 8 x*1 .
xc IH= xc lp= oo and x I x(-)

nite. The study of the dynamical properties of the model
(1) shows that x, IH and x, I„are the most interest-
ing susceptibilities because they correspond to the limit
k —+ 0, cu ~ 0 of the Fourier transforms of the charge and
spin retarded correlation functions. Since these charge
and spin susceptibilities have qualitatively the same kind
of dependence on H, U, and n as the functions (98) and
(104), respectively, we concentrate our study mainly on
the functions (95) and (102). The relation of the latter
with the former is simply given by Eqs. (88) and (105).

The compressibility at constant magnetic field (95) and
the spin magnetic susceptibility at constant chemical po-
tential (102) can be rewritten as the sum of two terms
proportional to 1/v, and 1/v, . The use of Eqs. (63)—(65)
and (68) leads to
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(«')'+ (&' )'l
XA Sg Sg

v, v,

(106)
to n, and both going through minima located between
n = n, and n. = 1. Due to the metal-insulator transition
the compressibility diverges as n ~ 1, while the spin sus-
ceptibility has in general a finite value at n = 1. On
the other hand, we find in Sec. VI that the compress-
ibility vanishes at n = 1, i.e., it is singular across the

On the other hand, the functions (98) and (104) can be
rewritten as

:(a)
X

I

s n~ l, v, (( + g, , /2) 2 + v, ((,, + (,, /2) ~ )
(108)

x. I
= —'IPo l1

~ &"(&!./2)'+ "(&.', /2)') (109)

In the limit H ~ 0 the expressions (95), (98), (102),
and (104) reproduce the results of Refs. 22 and 23. Since
these papers contain a detailed study on the zero-field
compressibility and spin susceptibility, respectively, in
the figures below we concentrate our attention mainly
on the H ) 0 case. We emphasize that Eqs. (95), (98),
(102), and (104) are not valid in the ferromagnetic phase.
Following the results of Sec. VI, in the figures below the
compressibilities (84) and (85) and spin susceptibilities
(86) and (87) are in the non-half-filling ferromagnetic
phase simply given by y, IH ——y, I» —1/[2s'tn sin(m'n)]
and y, I„=y, ~„= 0, respectively.

In Figs. 3(a) and 3(b) the inverse of the functions y, IH
and y, ~„, respectively, is plotted vs U for n = 0.7 and
various values of the magnetic field. These functions di-
verge at the value U = U, at which the system becomes
ferromagnetic (U, ~ oo as H ~ 0). For small densities
and U ( U, the compressibility is always an increasing
function of the on-site repulsion. On the other hand, for
intermediate and large densities close to n = 1, as in

Fig. 3(a), the compressibility decreases for small values
of the on-site interaction, going through a minimum at
an intermediate value U = U', such that 0 & U' & U, .

For U' ( U ( U, it becomes an increasing function of U,
diverging as U ~ U, . The spin susceptibility of Fig. 3(b)
also diverges as U ~ U„ increasing with increasing U in
all the domain 0 ( U ( U, . In Fig. 3(c) we plot the spin
density vs the on-site repulsion for the same values of the
magnetic field and electronic density as in Figs. 3(a) and
3(b)

At constant values of the magnetic field H and of
the on-site repulsion U, the Hubbard chain is ferromag-
netic for densities between n = Q and the critical den-
sity n = n, at which H = H, (Ref. 6) (n, ~ 0 as
H —+ 0). In Figs. 4(a) and 4(b) the inverse of the com-
pressibility y, IH and of the spin magnetic susceptibility
y, I„, respectively, are plotted vs the electronic density
for U = 10 and three values of the magnetic field. Figure
4(c) presents the spin density as a function of n for the
same values of U and H as Figs. 4(a) and 4(b). As a re-
sult of the ferromagnetic transition, both the charge and
spin susceptibilities diverge at n = n~ ~, being decreas-
ing functions of n for electronic densities n & n, close

I

&~09

0-I I

0

l 0.6
H=0.3

I I I I I

10

U

Xsf+

0
0

0.4 :(c)

U

10

Q.3

0.2

0.1

I I I I I I I I I I I

0 5 10

U

FIG. 3. (a) The inverse of the compressibility X (~, (b)
the inverse of the spin susceptibility x, I„, and (c) the spin
density as a function of U at the electronic density n = 0.7
a,nd values of the magnetic field H = 0.3 (solid line), H =
0.6 (dashed line), and H = 0.9 (dashed-dotted line). The
discontinuities occur at U = U„where the system becomes a
ferromagnetic Fermi liquid. Contrary to the compressibility
curves, x, I„vanishes in the Fermi-liquid ferromagnetic phase.
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metal-insulator transition.
In order to study the eA'ect of correlations on the den-

sity dependence of the susceptibilities g, ~H and y, ~&, we

compare in Figs. 5(a) and 5(b) the values at V = 0 and
U = 1O of the inverse of these functions vs n for magnetic

field H = 0.1. In Fig. 5(c) we plot the spin density vs the
electronic density for the same values of magnetic field
and V as Figs. 5(a) and 5(b). While the dependence of
the compressibility on n is qualitatively diA'erent in the
cases of the noninteracting and interacting systems, the

-1
x

H

X
(
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H 3—

0
0.0 0.5

n
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I
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I
/

/ 0.3

0.20
c

0.15—

0.10—

0.1

0
1.00 0.5

n

FIG. 4. (a) The inverse of the compressibility g, ~H, (b)
the inverse of the spin susceptibility y. ~„, and (c) the spin
density as a function of the electronic density n for V = 10
and values of the magnetic field H = 0.1 (solid line), H =
0.2 (dashed line), and H = 0.3 (dashed-dotted line). The
discontinuities, which occur for n = n„correspond to the
transition to the Fermi-liquid ferromagnetic phase. Due to the
metal-insulator transition, the compressibility is also singular
at n = 1, where g, ~~~ oo for n ~ 1 yet y, ~H= 0 at n = 1.

/
/

0.05 — /
/

/
/

—/
l

0
0

U = 0

I I l I I I I

0.5
n

1.0

FIG. 5. (a) The inverse of the compressibility y~ ~H, (b)
the inverse of the spin susceptibility y«(„, and (c) the spin

density as a function of the electronic density n for II = 0.1

a,nd values of the on-site repulsion U = 0 (dashed line) and

U = 10 (solid line). Note the different behavior at U = 0 and

U = 10 of y~ )~ around n = 1 due to the Mott-Hubbard tran-

sition. Contrary to the spin susceptibility (b), in the presence
of the magnetic field the on-site repulsion changes qualita-
tively the dependence of y, ~H on the electronic density.
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on-site repulsion produces only a quantitative change in

the susceptibility curves of Fig. 5(b). We emphasize the
effect of the Mott-Hubbard transition in the type of the
dependence of the compressibility for densities close to
n = 1. The form of the compressibity at U = 0 and
U = 10 is also different in the neighborhood of n, .

In Figs. 6(a)—6(c) the inverse of the functions y,
and g, ~„, and the spin density, respectively, are plotted
vs the magnetic field for U = 10 and various densities.
Both the charge and spin susceptibilities are for H & H,
increasing functions of the magnetic field.

The dependence of the susceptibilities y, ~
and g, ~„

on the different parameters is qualitatively similar to the
dependence of the compressibility and spin susceptibili-
ties represented in Figs. 3(a), 3(b), 4(a), 4(b), 5(a), 5(b),
6(a), and 6(b). The main difference is that while the lat-
ter diverge at the ferromagnetic transition on the side of
the Landau-Luttinger phase, the former remain in gen-
eral finite as U ~ U„n ~ n, (n ( n, ), or H ~ H,
Thus, it is interesting to study the susceptibilities y, )

and y, ~„at H = H, . ln Figs. 7 and 8 the inverse(-)
of these two functions, respectively, is plotted as a func-
tion of the electronic density for various values of U and
H = H, . We note that as the value of H, depends on
n and U, the fixed quantity in Figs. 7 and 8 is not the
magnetic field H, but the spin density rn, which is such
that m ~ n/2. As in the case of the noninteracting sys-
tem, when m ~ n/2 both g, ~„, and g, ~„diverge at
n = 0 and n = 1. The effect of the electronic correlations
is merely to increase the spin susceptibility and supress
the compressibility.

Finally, in order to illustrate that the two kinds of com-
pressibilities (84) and (85) and spin susceptibilities (86)
and (87) have the same type of dependence on, for exam-
ple, the magnetic field, we consider fixed values of U and
n and plot the compressibilities and spin susceptibilities
vs H. Figs. 9, 10, and ll contain information about the
field dependence of the four susceptibilities (95), (98),
(102), and (104). While Figs. 9 and 10 represent g, ~

and g, ~„, respectively, for n = 0.7 and various values of
U, in Fig. 11 we plot the function (105) vs the magnetic
field for the same values of n and U as in the former
figures. This provides information about the functions
g, ~H and y, ~„, which have the same kind of dependence
on H as the susceptibilities of Figs. 9 and 10, respectively,
except that the former diverge as H —+ H, .

In order to better understand the behavior of the sus-
ceptibilities plotted in the figures discussed above, it is
convenient to study their expressions in the limits con-
sidered in Sec. III.

In the case U = 0, we obtain

1 t'1 11 4 1
x IH=, I

—+ —I, x. l
=

s'n2 (v, v, g xn2 v, + v,

(110)

p~~(1 1 I 4Iu2 1x. Iw= —
I

—+ —I,
7I' (Vg Vg j Ir Vq + Vg

These expressions reproduce the noninteracting values

correctly.
The H = 0 compressibility expression has previously

been obtained and the zero-field magnetic susceptibil-
ity was studied numerically by Shiba. Our general ex-
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FIG. 6. (a) The inverse of the compressibility x !H, (b)
the inverse of the spin susceptibility y, !„,and (c) the spIu
density as a function of H for U = 10 and values of the elec-
tronic density n = 0.3 (dashed-dotted line), n = 0.7 (dashed
line), and n = 0.9 (solid line). The discontinuities occur at
H = H„where the system becomes a ferromagnetic Fermi
iquid. For H ( H, the charge and spin susceptibilities are

increasing functions of the magnetic field.



7912 J. M. P. CARMELO, P. HORSCH, AND A. A. OVCHINNIKOV 45

X 'im
2.0—

1.5—

1.0—

0.5—

U =10

/
/

5
xs)„

4—

=19.82

Il
~

(

V=10

j I

g

I 0

0.0
0.0 0.5

n

0.0 0.5 1,0 1.5

FIG. 7. The inverse of the compressibility y, I
as a func-

tion of the electronic density n for H = HI l (m ~ n/2) and
various values of /J.

FIG. 10. The spin susceptibility y, I
as a function of H

for n = 0.7 and various values of U.

pressions fully agree with these results in the limit of zero
magnetic field, where the susceptibilities read

~ 4~\ ~+ ~~

U=O
o

(o 2&o
x IH = x. I =, , x. I p= x. I

=
%71 Vc vs

(112)

1.2— '~

Ail the functions (84) —(87) are singular at the ferromag-

netic transition. For H = H, we obtain

0.8 x IH=~ x
7m~v, (1 —rlo/2)2

'

0.4 4Ppx. Ip= oo, x. I
=

xvcgp

0.0
00 1.0

FIG. 8. The inverse of the spin susceptibility X

function of g, for H = H~ I (m ~ n/2) and the same values

Qf U as Fig. 7.

The results for H & H, are presented in Sec. VI.
Finally, for U )) t and H &( H, there arises loga-

rithmic magnetic-field dependence in the susceptibilities,
which follows from the singular nature of the H = 0
point —the change of symmetry induced by the mag-
netic field alters the "spinon" nature of the zero-field spin
excitations. In this regime we find the following results:

Xcf~

2.0

1
x. lH=, x I

7CA Vc

1.0

1 2Po2

xn2 v, 2Po2 + v, ( I —no) 2 '

(114)

05 — ., U=10

00 i i i i I

0.0 0.5

Q —m

I I I I I I I I I I I

1.0 1.5
H

0.5—

00 i

0.0 0.5 1.0
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FIG. 9. The compressibility y, I, as a function of H for
n = 0.7 and various values of V. The U = 10 line is at H = 0

slightly under the II ) II, line.
FIG. 11. The function 8 as a function of H for n = 0.7

and the same values of U as Fig. 10.
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((I —no) 2Po I 2poPox. I,= —
I + I, x. l-=

7r ( V, v, ) 1l 5~

(115)

The parameters and functions occurring in Eqs. (110)—
(115) were defined in Sec. III.

In this section we have shown that the compressibilities
and magnetic susceptibilities of the Hubbard chain can
be evaluated as in a Fermi liquid, their expressions being
determined by the symmetric Landau parameters. In the
presence of a magnetic field the charge compressibilities
at constant magnetic field and at constant magnetization
are unequal. The same holds true for the spin magnetic
susceptibilities at constant chemical potential or constant
number of electrons.

The main effect of the on-site correlations for mag-
netic fields 0 & H & H, is to increase the spin magnetic
susceptibilities and to supress the compressibilities. We
stress that our general exact expressions agree with all
previously known limiting values.

doparticle forward scattering interactions. The present
results are a generalization of those introduced in Ref. 3,
which did not consider changes bN and bNg in the num-

ber of electrons and down spins, respectively.
With starting point in the ground-state distributions

(5), let us consider small changes bN and bN1 in the num-

ber of electrons and down-spin electrons, respectively,
associated with small changes in the pseudo-Fermi mo-

menta as follows:

/PE — $2$F, $/) — bkF g .
7r jr

In addition, let us also consider particle-hole processes in
the pseudoparticle charge and spin bands of the following
two kinds:

(i) From pseudomomenta close to 2kF—( k~—1) to
pseudomomenta in the neighborhood of 2k@(k~1), or vice
versa. This originates small changes q, and q, in the
pseudo-Fermi momenta 2kF and kF~, respectively. The
numbers of charge and spin pseudoparticles transferred,
D, and D„respectively, are given by

V. CONNECTION TO CONFORMAL
FIELD THEORY

N,
D, = 'q, , D, = 'q, .2' 2'

The Landau energy functional defined by Eqs. (39),
(41), and (52) can describe all the low-energy physics
of model (1), provided that in each particular situation
adequate deviations b, (q) and bl(p) are chosen. It pro-
vides the universal and most general framework for the
description of the low-energy physics of the present one-
dimensional Landau liquid. For example, the choice of
suitable deviations allows the evaluation of the energy
spectra for the elementary single-pair charge and spin
excitations. These can be described in terms of a single
particle-hole process in the charge or spin-pseudoparticle
band (42). Also the low-temperature thermodynamics
can be described in the framework of this functional.
The corresponding deviations involve Fermi-Dirac dis-
tributions for the charge and spin pseudoparticles. s On
the other hand, we have shown in the preceding sec-
tion that the particular choice of deviations introduced in
Eqs. (90) allows the evaluation of the compressibility and
spin magnetic susceptibility at arbitrary magnetic fields.
We found that the pseudoparticle forward-scattering in-
teractions fully regulate these thermodynamic quantities.

In this section we show that the excitation energy spec-
trum of conformal field theory, which determines the
critical exponents of the model, may also be obtained by
inserting suitable deviations in the universal energy func-
tional of the Landau-liquid theory. Moreover, we show
that these exponents are also fully regulated by the pseu-

N. (
(118)

where the indices p and h refer to particle and hole sum-
mations. In addition to referring exclusively to pseu-
doparticles of momenta in the close neighborhood of the
pseudo-Fermi points, all the processes considered above
are assumed to involve a small finite density of pseu-
doparticles. This implies that lb2k~l, Iq, l, I2k~ p qual,

l2k~+q~ I «2k~ »d I~k~i I lp. I, IkFi+ p„+ I, lk~i+p~ I «
kF~. The appropriate distributions to describe these pro-
cesses are given by

(ii) The second kind of particle-hole process occurs
around the same pseudo-Fermi point +2kF or +kFg. Let
qp+ and q& denote the pseudomomenta of the "particles"
and "holes" around +2k~, respectively, and pP and pi+,

denote the pseudomomenta of the particles and holes
around +kFg, respectively. The number of particle-hole
processes around +2kF and +kF~, N, and N, , respec-
tively, are given by

M, (q) = O(2k~+ b2k~ + (sgn q)q, —lql) + ) &(q —q„+) + &(q —q„)] —) ~(q —qa ) + b(q —
qa )]

p h

(119)
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&&(p) = e(~~I+»~t+(sgnp)p. —Ipl)+ ~ ) [b(p p~+)+b(p p-„)-] -).[b(p -ph+)+b(p -p;)] (120)

Expanding around the ground-state distributions (5), leads to the following deviations:

b, (q) = b(2k~ —[q[) [b2kF + (sgn q)q, ]+ ) b(q —q+) + b(q —q„)] —) [b(q —qh+) + b(q —q„)]N,
h

(121)

bl(p) —b (k+I Ipl) [b&~t + (sg»)p. ] + ) . [b(p p;)—+ b(p p,—) —) . [b(p —
ph ) + b(p ph )1 (122)

It is a simple exercise to show that inserting the deviations (121) and (122) in the energy Landau functional
reproduces the excitation energy spectrum obtained in Refs. 9 and 10. To evaluate the integrals of the first-order
term (41), we expand e,(q) and e, (p) around the pseudo-Fermi points. To the two leading orders in the density
of pseudoparticles, only the terms Ei and Ez of the energy functional (39) contribute. This is why our second-
order truncated Landau expansion leads to the exact low-energy physics in the scale-invariant regime. After some
straightforward algebra, we obtain the excitation spectrum E(P) associated with the deviations (121) and (122). It
is given by

E = Ep+ (v, + F,', )(D, ) + (v, + F,', )(D, ) + 2F,', D,D,
N

2 2

E = E, + [ (vb. + + 4;) + v, (b.+ + 4, )],
a

where

(124)

(,', D, + (,', D,
2

) +(.'. ( ) ) + N, , (125)

which, following from the relations (63)—(65), may be
rewritten as

the finite-size energy correction, conformal field dimen-
sions 4+, 4+, and momentum obtained in Refs. 9 and
10. The leading term in the asymptotic expansion of the
correlation functions decays with critical exponents ob-
tained from (125) and (126) by minimizing with respect
to D„D, [i.e. , by minimizing with respect to the devia-
tions b, (q) (121) and bi(p) (122)].

It follows from the results obtained in this section
that all the critical exponents of the model are fully de-

termined by the forward scattering interactions of the
Landau-liquid pseudoparticles. These critical exponents
are studied in det, ail in Refs, 10.

1 f„D,+(,',D,
VI. THE HALF-FILLED BAND CASE

AND THE FERROMAGNETIC PHASE

(,, ( )+(„~ ) ) +N, . (126)

On the other hand, the excitation momentum reads

P = (b.,+ —4, +4,+ —4, )+2D,2k~+2D, IF' .

(127)

Finally, the use of the relation (68) allows us to express
the matrix elements (os appearing in the rhs of Eqs. (125)
and (126) in terms of the elements /is of the dressed
charge matrix. The obtained expressions are precisely

Both at half filling and in the ferromagnetic phase the
low-lying excitations are restricted to sub-Hilbert spaces
where the Landau theory becomes a one-Quid theory with

only one kind of pseudoparticle. On the one hand, at
half-filling, where the chemical potential p is such that

p ( A„and 4, is the Hubbard gap, 26 the only a.l-

lowed deviations are b~(p). On the other hand, in the
ferromagnetic phase, where H ) H„ the charge devia-

tions b, (q) are the only allowed deviations.
At half filling the many-body system (1) is a Landau

liquid only with spin pseudoparticles. The one-fluid the-

ory for half filling includes only the phase shift 4„(p,p').
The corresponding universal phase shift (30) obeys the

integral equation
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i &y —y'&
4„{y,y') = —tan

ir 2 )
pp 1 p

2

X. I
=i= X. l~=, L o = -(v. + F,.) .xl p

' 4
(135)

Po

+ dy"G(y, y")4» (y", y'), (128)
—Po

where the kernel G(y, y") reads

1 1

1+ [(y —yI)/2]') (129)

Equations (128) and (129) are the half-filling version of
Eqs. (35) and (36), which become much simpler in the
limit n ~ 1. The f function, which regulates the forward
scattering of the spin pseudoparticles, reads

f,.(p, p') = 2~v, (p) 4„(p,p') + 2irv, (p') 4„(p', p)

+2z'v, ) 4„(jk~&, p) 4 „(jk~&, p') . (130)

The half-filling Landau-liquid theory has only two Lan-
dau parameters, which correspond to the symmetric and
antisymmetric combinations of the f function (130) at
the pseudo-Fermi points. They can be written as

F'. = —) .(&)'&"(k~t &kFt) = —v*+ v. [C,)''j=~l

@-(» y') = &(So(p) —So(p'))

sin [~ss(p))
p = Jo u

0 4J cosh 4J

(133)

where

1 sin(uz)
z 0 ~(1+e'") ' (134)

and in the second equation of (133), which defines the
inverse function of So(p), Jo is the Bessel function of
zero order.

Since charge deviations are not allowed, at half fill-

ing the compressibilities vanish. The use of the method
applied in Sec. IV for n ( 1, leads for H ( H, to the
following expression for the spin susceptibilities:

i = 0, 1, (131)

where

f,', = 14-4„(k~t, kF1)+(—1)'4„(k~t, kFt), a =—0, 1.
(132)

As in the case n & 1 for the dressed charge matrix [see
Eq. (67) with i = 1], at half filling (i, is nothing but the
function also obtained in conformal field theory, which
controls the critical exponents.

In the limit H ~ 0 all the equations can be solved
in closed form. Following the results of Appendix A, as
n -+ 1 the universal phase shift (128) and the function
So(p) are defined by the following equations:

1
jYc ~H —Xc ~m — 2, vc —2t sui(7m),

7ln vc
(137)

which, as expected, equals the result for the ferromag-
netic phase of the noninteracting system.

The Figs. 3(a), 3(b), 4(a), 4(b), 5(a), 5(b), 6(a), 6(b),
9, and 10 show that for U finite all the susceptibilities
are singular across the ferromagnetic transition.

VII. CONCLUDING REMARKS

In this paper we have derived the forward-scattering
f functions for the one-dimensional generalized Landau-
liquid theory in the case of the Hubbard chain. As in a
Fermi liquid, ' the truncated second-order Landau-
energy functional regulates the low-energy physics. The
study of the difI'erent excitations requires the use of ade-
quate charge and spin deviations in the energy functional.
The truncated expansion leads to the exact physics in the
scale-invariant regime.

We have introduced the two types of deviations that
allow the exact evaluation of the static susceptibilities
at arbitrary magnetic fields and of the conformal field
dimensions, which regulate the critical exponents asso-
ciated with the asymptotics of correlation functions, re-
spectively. Our results show that the equilibrium prop-

On the other hand, at n = 1 and H ) H, both charge and
spin deviations are not allowed and all the susceptibilities
vanish.

In the ferromagnetic phase the double-occupancy re-
strictions imposed by the on-site repulsion do not play
any role because the ground state belongs to a sub-
Hilbert space where double occupancy is excluded. Con-
trary to the Landau-Luttinger phase where the single-
particle spectral function is fully incoherent, the ferro-
magnetic phase of the model (1) is again a Fermi liquid,
the spectral function of the spin-up electrons showing a b

peak. At fixed values of n and H & [2t sin (urn/2)]/po ——

H, , the transition to the ferromagnetic phase occurs at a
value U = U, = U, (n, H) at which H = H, (the expres-
sion for the critical field H, is given in Ref. 6). U, changes
from U, = 0 as H ~ H, , to U, = oo as H ~ 0. Since
in the ferromagnetic phase only charge deviations are al-
lowed, the relevant phase shift is 4„(q,q'). This vanishes

both at H, and H, (or U, and U, ) because the
cutoff yo

—8/u of the rhs of Eq. (32) vanishes smoothly
when kF~ ~ 0. Then, contrary to the singular Fermi-
liquid —Landau-Luttinger-liquid transition, which occurs
at U = 0, the transition to the Fermi-liquid phase at
U = U, is smooth.

The ferromagnetic phase is an one-fluid Fermi liquid
of noninteracting charge pseudoparticles (up-spin elec-
trons), such that

e, (q) = 2t [cos(q) —cos—(2k~)], fcc(q, q') = 0. (136)

Since spin deviations are not allowed, the spin suscepti-
bilities vanish. When n ( 1 the charge susceptibilities
are by given
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erties of a one-dimensional Landau liquid can be studied
as in a Fermi liquid, the thermodynamic quantities being
determined by the Landau parameters and pseudoparti-
cle velocities. They also confirm the Landau-liquid na-
ture of the Hubbard chain, and thus clarify the deep na-
ture of the one-dimensional fermionic Luttinger liquids
at finite magnetic fields. Furthermore, in the case of the
one-dimensional Hubbard model the generalized Landau
theory also clarifies the notion of charge and spin decou-
pling, which is an inherent property of this many-body
system.

In Ref. 21 we show that the pseudoparticles are the
transport carriers of the many-body system. Therefore,
their forward-scattering interactions control all the low-

energy physics. As in t, he ca.se of the one-dimensiona. l

Landau liquids and of Fermi-liquid theory, in the gener-
alized Landau liquids, which we expect to exist at D =2
forward scattering plays a relevant role. There is evidence
that forward scattering plays such a dominant role in
the two-dimensional Hubbard model. However, which
Landau-liquid theory is most appropriate to describe the
physics of this model still remains an open question.

where the functions Tp(u) and Ti(u) are solutions of the
following integral equations

dk cos

d~' I (~, ~')Tp (cu'),

sink)
dk(sin k) sin

d~'I'(~, ~')T i (~'),

respectively, and the kernel 1'(~, ~') is given by

f'sill Qsin

7f' 4J —4)

1

1 + ~2)ur'J (A7)

This kernel was already obtained in Ref. 7. Equations
(A5) and (A6) can be solved in close form for n = 1.
The result is
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C„(z,z') = B(z z')+— —dz" A(z —z")4„(z",z'),

where Jo and Jq are Bessel functions. This is consis-
tent with the half-filling expressions obtained by Lieb
and Wu. 2

On the other hand, Eqs. (32)—(35), which define the
phase shifts, are equivalent to

APPENDIX A: THE ZERO-MAGNETIC-FIELD
CASE

e, (q) = 2t cos I&p(q) —4t—sin Ko(q)

d~ Ti (~),

As H ~ 0 the cutoff 8 introduced in Eq. (31) tends
to B —oc~. That allows t, he introduction of an alterna-
tive representation, which is obtained from the general
representation of Sec. II by Fourier transform.

For example, Eqs. (43)—(45), which define the pseu-
doparticle bare bands, are for H ~ 0 equivalent to the
equations

1 -1 . r I
C „(z,y') = ——tan sinh —(z —y )

Xp

dz"A(z —z")4„(z",y'),

1 1 r I
@„(y,z') = ——tan sinh —(y —z )

4 ~ cosll [2(y —z )j

(A9)

(A10)

(A11)

e, (p) = 2t—
q = Iip(q)+ 2

cos[~Sp(p)]
d(d Ti~ cosh'

sin
d~ Tp(u)),

I + e2~

(A1)

(A2)

e„(z",y')

~Vo

(A12)

where the functions A(z) and B(z) are given by Eqs. (75)
and (134), respectively.

APPENDIX B: THE DRESSED CHARGE
MATRIX

sin [~Sp(p)]
d4) Tp~ i~ cosh ~ (A4) In order to show that the matrix Z (66) is the dressed

charge matrix of conformal field theory, it is useful to
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express it as following integral equations:

«'.(zo)
(,'.(yo)

«.(»)
t."., (vo)

(BI) 1
«', (z) =1+—

yo

&,'.(y")
1+ (*—v")' '

$,', (z) = 1+4„(z,zo) —4„(z,-zo), (B2)

where, following Eqs. (67), (62), and (23)—(30), the func-

tions f„(z), („(z),(„(y), and f„(y) are given by

yo

&.'.(y")
1+ (z —V")' ' (B7)

«.(z) = C' ~ (»yo) —~- (z -yo)

&'.(y) =@'"(y zo) —C" (y, -»),

(,', (y) = 1+@"(y, vo) —@"(y, -vo)

(B3)

(B4)

(B5)

1
~"(y) = t{y) + — dy" G(v, y")4.'.(y"),

-yo

yo

&"(y) = I+ — dy"G(y, y")4,', (y"),
—yo

(B8)

(B9)

On the other hand, based on Eqs. (32)—(35), it is straight-
forward to show that the functions (B2)—(B5) obey the

where in the rhs of Eq. (B8) t(y) is given by Eq. (37). Fi-
nally, we emphasize that the kernel (36) may be rewritten
in integral representation as

1 ( 1 2 1

2n (1+ [(y —y')/2]z s „[1+(y —z")z][1+(y' —z")z] p
(B10)

It follows from Eqs. (B6)—(B10) that Z~ is the dressed charge matrix of Refs. 9 and 10. We remember that we use

here the same definition as Ref. 9, which is the transposition of that of Ref. 10.
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