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We study the effect of four-spin cyclic-exchange interactions on the magnetic properties of the spin- —,

Heisenberg antiferromagnetic on a two-dimensional square lattice with the two-spin interactions be-

tween nearest and next-nearest neighbors. We found that the four-spin exchange competes with the
effects of frustration and this competition leads to a very rich phase diagram. We use the standard spin-

wave formalism, the perturbative expansions around various dimerized states and finite-cluster calcula-
tions to study the 1ocations of different phases of the mode1. The phase diagram in the frustration-cyclic
exchange plane involves two collinear phases [(a,m) and (O, m. )], three canted states, and two different

dimerized configurations.

I. INTRODUCTION

A large number of experiments have shown that the
proximity to a magnetic transition plays an important
role in the normal and superconducting properties of the
high-T, cuprate oxide materials. ' The electronic struc-
ture of the insulating phase of these compounds has been
investigated and found to have a charge-transfer gap
1.4—2.0 eV depending on the material, which varies
linearly with the Madelung potential. Although the in-
sulating gap is not of the Mott-Hubbard type, it has been
shown recently, by identifying the valence (mainly Oz~)
and the Cu3d conduction bands of the CuO planes as the
lower and upper Hubbard bands, respectively, that the
one-band Hubbard model with the intermediate coupling
Ult =8—10 can mimic well the electronic structure of
the oxides at the low-energy scales.

The one-band Hubbard model has been applied to in-
terpret photoemission, optical conductivity, and x-ray
absorption experiments. It reproduces qualitatively such
experimentally measured properties of the high-T, com-
pounds as the presence of the mid-infrared peak in the
spectral weight, a slow variation of the total spectral
weight with the hole doping concentration, and the pres-
ence of the Drude peak whose intensity grows with the
doping.

At half-filling and at large U/t, the magnetic proper-
ties of the Hubbard model can be described by the
effective spin Hamiltonian whose leading term is known
to be the antiferromagnetic Heisenberg interaction be-
tween nearest neighbors. However, other exchange in-
teractions, namely, the Heisenberg exchange with further
neighbors and the four-spin cyclic exchange, are also
known to be present in the effective spin Hamiltonian
and for intermediate U/t =8—10 are by no means negli-
gible in comparison with the leading term. On the other
hand, for the more realistic multiband Hamiltonians and

J„S;S,+s
i n =1,2, 3

with one hole per Cu atom and large Ud /t d, a perturba-
tive expansion in t~d/V~d and ted lb, where V~d is the
Coulomb repulsion between neighboring Cu and 0
atoms, A=Ez —Ed is the charge-transfer energy, and tpd
is the hopping parameter, produces an effective spin
Hamiltonian with the dominant contribution coming
from four-spin cyclic-exchange interactions. ' Small-
cluster calculations for multiband models show that away
from the perturbative region the four-spin exchange
probably does not survive as the leading term but still
gives a significant contribution to the effective spin mod-
el." Thus, for Ez —Ed=1.2 eV, the effective exchange
parameters have been estimated as J, =0.69 eV,
J2=0. 17 eV, and K=0.52 eV, where J1, J2, and K mea-
sure the strength of the nearest, next-nearest, and four-
spin couplings, respectively. ' Even though the nurneri-
cal results may be influenced by finite-size effects, their
predictions are important for the real materials. In fact,
a second peak recently observed in the Raman spectrum
in the insulating phase of the high-T, cuprates has been
identified as due to large four-spins cyclic-exchange in-
teraction between the Cu spins. '

In this paper we study the influence of the four-spin ex-
change interaction on the magnetic properties of the 2D
square lattice Heisenberg antiferromagnet. The Hamil-
tonian we consider involves the exchange interaction be-
tween first, second, and third nearest neighbors and also
four-spin exchange interaction between spin operators
along the elementary square plaquette. In the explicit
form,
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&~=2K g (S; S,.+„)(S,.+ .S,.+ + )

+(S; S,.+ )(S,.+
.S,.+ + )

—(S;.S,+-„+-„)(S,.+-„.S,+-„) .

Here 5=(x,y) denotes unit vectors in both directions of a
square lattice, 52 and 53 measure the distance between a
given spin and his second and third near neighbors, re-
spectively, and S; are spin- —,

' operators.
In the strong-coupling limit of the Hubbard model, the

exchange parameters are given by J, =4t /U 24t—/U,
J2=J3=4t /U, and K=40t /U . For arbitrary t/U
as well as for a finite doping, the constraint on the values
of the couplings is relaxed and both E and J„must be
considered as independent parameters. '

Since the discovery of high-T, superconductivity, the
so-called J,-J2-J3 model with S=B& has been at the
heart of the discussion of the magnetic properties of the
cuprates. ' ' The pure Heisenberg limit is well under-
stood. Perturbative (spin waves), numerical, and self-
consistent (for example, Schwinger boson) approaches all
agree that (1) the ground state has long-range order and
(2) quantum fluctuations are strong enough to reduce the
staggered magnetization M, from its classical value to
0.31

The J
&

—J2 model has also been analyzed using
different techniques. A11 these studies agree that the
phase diagram should involve three phases. ' ' Two of
them are ordered with the ordering momenta (m., vr) at
small Jz and (O, m) at large J2, while the third phase is

magnetically disordered and emerges around the classical
transition point Jz=J, /2 due to quantum fluctuations.
There have been several suggestions about the type of the
ground state in this phase but recent studies strongly
favor the columnar dimer state as the most plausible can-
didate for the ground state in the intermediate re-
gion. ' ' With nonzero J3, the phase diagram involves
also two incommensurate phases with the momenta
(m. , Q ) and ( Q, Q ) and a disordered intermediate phase
near the boundary between any of these phases and the
(m, m. ) ordered state. '

Little is known about the magnetic phases induced by
the four-spin interactions. Some time ago, multiple-spin
interactions have been considered as the possible candi-
date to account for ferromagnetism in solid He, and the
theoretical predictions for the 2D triangular lattice
turned out to be consistent with the experiments on the
layers of solid He absorbed on Grafoil.

In this work, we study the influence of the four-spin ex-
change on the magnetic phase diagram of the 2D square
lattice frustrated Heisenberg antiferromagnet. For sim-

plicity, we restrict our calculations to the case J3 0.
The remainder of the paper is organized as follows. In
Sec. II, we discuss the phase diagram of Eq. (1) first in the
quasiclassical (large-S) approximation and then by using
a special bosonization technique for S=

—,'. In Sec. III we

present the results of finite-cluster calculations. Finally,
Sec. IV is devoted to the summary and conclusions.

II. PHASE DIAGRAM

In this section we describe the phase diagram of Eq. (1)
in the parametric space (Jz/J&, K/J& ). We start with the
discussion of a quasiclassical (large-S) phase diagram
which follows from the standard spin-wave calculations
and then discuss how it should be modified in case of
S=—'.

2

A„=J, —4K+2K(1 —v„vy),

V~+V@
Bq =(J,—4K)

(2')

and v; = cosk;. It immediately follows from Eq. (2) that
the Neel phase is at least locally stable for all E less than
the critical value K=J, /4. At K=J, /4, the spin-wave

velocity softens to zero and the spin-wave excitations
have quadratic dispersion both near k =0 and k =(m,n).
The fact that the softening involves only the special
points in the Brilloin zone clearly indicates that the de-
struction of the Neel order at K =J, /4 occurs via a con-
tinuous second-order phase transition. This transition is

a rather peculiar one since naively one might expect that
the softening of the spin-wave excitations in the vicinity
of the quasiclassical transition line E=J, /4 will result in

the logarithmical divergence of quantum fluctuations
which, in turn, will lead to a finite strip of the paramag-
netic phase around K=J, /4 no matter how large the
spin S is. This scenario is known to be valid for the

J] Jp J3 model. ' However, in the present case, the
analogous softening of the spin-wave excitations is ac-
companied by the decrease in the strength of the zero-
point fluctuations measured by the anomalous coupling

Bq As follows from. Eq. (2'), this coupling tends to zero
as L approaches the critical point and quantum fluctua-
tions do not diverge.

The absence of the zero-point motion at E=J, /4
means that at this point, the fluctuations of the spins
from two different ferromagnetically ordered sublattices
in the Neel phase decouple from each other (the spectrum
at K =J, /4 is exactly the same as in the Heisenberg fer

A. Quasiclassical phase diagram

Let us start with a standard spin-wave formalism
which allows one to determine the boundaries of different
phases in the large-S limit. Since the four-spin term con-
tains additional overall factor of S, it is convenient to
redefine the corresponding coupling and measure the
strength of the four-spin interactions in terms of
I( =KS . Let us first discuss what happens when J2 is

zero. For small enough E, the ground state obviously has
the long-range Neel order. Small deviations from the
Neel state are well described by the bosonic excitations
(spin waves). A standard procedure of linking spin opera-
tors with bosons via, say, Dyson-Maleev transformation
together with a diagonalization of the quadratic form in
Bose operators results in a usual spin-wave spectrum

sa =+Ha Bt, ~—
where
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romagnet with the interaction only along the diagonals).
As an obvious consequence, the ferromagnetic ordering
within each sublattice survives also for K )J, /4, but the
angle 0 between the two sublattices shifts from its value
in the Neel phase (8=0). The resulting canted
configuration is shown in Fig. 1. The value of 0 is deter-
mined by the minimization of the classical ground-state
energy per spin:

EN;,i=( —2J, +2K)NS

The minimization with respect to 0 yields

J)cos0=—
4E

(3')

In contrast to what is known about the Neel phase,
the canted configuration as in Fig. 1 has a nonzero
net magnetization Mz —( 1 —cos8) = 1 —J, /4E and

M„» —
~

sin8~ -(1—J, /4E)'», that is the canted spin or-
dering completely breaks down SO(3) spin symmetry.
Consequently, the low-energy theory for this phase
should contain three massless branches of bosonic excita-
tions. This is what one has in conventional helical spin
structures. A peculiarity of the present case is that the
system has a nonzero net magnetization and the bosonic
modes related to the fluctuations of the vector part of the
SO(3) order parameter (i.e., of the unit vector on the Sz
sphere) are mixed to produce a single gapless excitation
with quadratic dispersion.

The spin-wave dispersion relation can be easily ob-
(ained by using a bosonization procedure referenced to
the canted state. After making a transformation to a re-
duced zone scheme and diagonalizing the quadratic in
iosons part of the Harniltonian, we obtain

&k =J, ( 1 —v„v» )
' 2 cos 8 1—

—cos(28)(1 —v„)(1—v )

1/2

(4a)

E(8)=EN;,i+ [(4E cos8 —Ji ) (4E——Ji ) ], (3)
4E

where

In accordance with the general arguments, ek scales as k
at k =0 while ek is linear in k at low rnornenta. Also, the
excitations described by ek and ek are real for arbitrary
0, and so the canted phase with continuously varying 0
will survive at least as a local minimum for all E )J, /4.

Now we turn to nonzero J2. First, at K=O, the Neel
(m.,~) phase is known to be stable up to J2 =J, /2 when
the system undergoes a first-order transition into the
(n.,O) or (O, m) state. ' ' The width of the hysteresis re-

lnS
gion scales as for S ))1. The situation is most likelyS
to be different for S=—,

' when instead of the first-order
transition between two ordered phases, the system passes
through the intermediate magnetically disordered dimer-
ized state with a spontaneously broken symmetry of
translations by one site. We will discuss the S=

—,
' case in

more detail below and now will continue with the quasi-
classical phase diagram. For J2) Ji/2, the (n, O) phase
is known to exhibit the "order from disorder" phenome-
na, i.e., the excitations above this state contain extra
zero modes which are not related to any kind of broken
symmetry, but signal that the classical ground state is
infinitely degenerate. For a particular case of J, -J2 mod-
el, this degeneracy manifests itself in that for arbitrary
J2 & J, /2, a homogeneous rotation of the spins from one
of the magnetic sublattices formed by the second neigh-
bors about the direction of the spins from the other sub-
lattice does not cost energy provided one preserves the
antiferromagnetic ordering within each sublattice. This
"accidental degeneracy" is known to be lifted by quan-
tum fluctuations which produce a correction to the
ground-state energy

(5)

which depends on the angle 0 between the antiferromag-
netic sublattices and, according to Eq. (5), stabilizes the
configurations with 8=0 or m., i.e., (~,0) or (0, m. ) phases.

Four-spin exchange interaction also removes the ac-
cidental degeneracy J2 )J, /2, already for classical spins.
However, the corresponding 0-dependent correction to
the ground-state energy has a different sign with respect
to that in Eq. (5),

V&+Vy
Ek =Ji(1—v„v )'» 2cos28 1+

—cos(28)( 1+v„)(1+v» )

1/2

(4b)

(a)

FIG. 1. Canted spin configurations. (a) With ferromagnetic
ordering along diagonals. (b) With antiferromagnetic ordering
along diagonals. (c) Orthogonal configuration.

5E=4EXS cos~0,

and thus the four-spin exchange interactions compete
with the quantum effects and favor the ( vr/2, m/2).
configuration where the spins from different sublattices
are arranged orthogonal to each other. It immediately
follows from this simple analysis that for E J&/S the
system will undergo a transition from (0, m ) to (vr/2, vr/2)
phase. In the leading order in 1/S, this transition is of
first order. However, with the next-order corrections in
1/S it may become a continuous one via an intermediate
phase when the angle between the sublattices continuous-
ly varies from 0 to ~/2.

All the other transitions occur at Jz &J&/2 Fir'st the
calculations of the spin-wave spectrum above the Neel
state generalized to a finite J2 show that the canting of
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I/2
(c)

FIG. 3. Various dimerized configurations. (a) columnar, (b)
staggered, (c) diagonal.

FIG. 2. Quasiclassical phase diagram of the J,-J,-J model.

the spin structure starts at K =J, /4 independently of the
value of Jz. Second, the simple analysis based on the
comparison of the classical ground-state energies shows
that when the Jz coupling increases along K & J, /4 and
reaches the value of

the system undergoes a first-order transition into the
(n/2, ~/2) . state. The same happens for IC) J&/4, but
now the critical value of Jz is inverse proportional to the
four-spin coupling:

J)J~=
16E

The resulting quasiclassical phase diagram is presented in
Fig. 2.

B. The phase diagram for S=
z

Obviously, the results obtained in the large-S limit do
not necessary correctly reproduce the phase diagram in
the more realistic case of S=

—,
' where the effects of quan-

tum fluctuations are by no means small. The most strik-
ing consequence of the large quantum fluctuations is the
possibility for new magnetically disordered phases to ap-
pear on the phase diagram, especially in the vicinity of
the quasiclassical phase boundaries where the softening
of the spin-wave excitations gives rise to an additional
enhancement of quantum fluctuations. For J&-Jz model
this is exactly the situation one has in the vicinity of the
classical transition point Jz =J& /2, where both numerical
and analytical calculations show that for S=

—,
' the transi-

tion between the two states with long-range magnetic or-
der [i.e., (rr, n ) and (O, m. ) states) occurs via the intermedi-
ate magnetically disordered dimerized phase. This is to
be contrasted with the first-order between the (vr, vr) and
(0, m ) states found for large S.

Among different dimer configurations, the most favor-
able candidates for the ground state are the so-called
columnar and staggered dimers [Figs 3(a) and 3(b)]. In
the mean-field approximation, when one neglects the in-

teraction between different dimers, both configurations
have the same energy, E= ——8NJ„at Jp =J~ /2. Howev-

er, quantum corrections were shown to break this degen-
eracy and to favor energetically the columnar dimer: in
the Hartree-Fock approximation, the gain in the energy
due to quantum fiuctuations is b.E =J, (3/m)(1 2/n —)

Also, the analysis based on the bosonization technique
developed to study the excitations above a dimerized
ground state' ' ' shows that while at the quadratic or-
der in bosons the columnar dimer is stable only at a sin-
gle particular ratio of the couplings Jz =J, /2, the in-
teraction between the bosonic excitations stabilizes the
dimerized phase in a finite region around Jp =J&/2. ' '
This is another peculiar example of the "order from dis-
order" phenomena since if the columnar dimer were
stable only at a single ratio of the couplings, its excitation
spectrum would have the entire lines of zero modes in the
Brillouin zone and quantum corrections would be loga-
rithmically divergent in two dimensions.

The nonzero four-spin exchange interaction changes
the situation. For the ground state made by the colum-
nar dimers, a half of the elementary plaquettes contains
two pairs of spins which are involved in the dimer
configurations. As a result, the cyclic exchange
influences the ground-state energy already in the mean-
field approximation and, for positive E, increases the en-

ergy by the amount 5E, = —,', )VX. On the other hand, the

staggered dimer configuration contains exactly one dimer
per elementary plaquette and its mean-field energy does
not depend on K. Hence, the four-spin cyclic interaction
favors energetically the staggered dimer and thus again
competes with the quantum effects in the system and in-
duces a first-order transition between the columnar and
staggered dirner configurations. If the Hartree-Fock ap-
proximation is used to account for the quantum fluctua-
tions, the transition occur at K =K, =0.61J&.

Our next aim is to find a stability region of the stag-
gered dimer in the presence of the cyclic exchange. To
do this, we calculate the excitations above the dirnerized
ground state and determine the region in the parametri-
cal space where they are real, i.e., where the staggered di-
mer is at least a local minimum. A way to perform these
calculations is to use the bosonization technique referred
to the dimerized state. Specifically, if S& and Sz are two
neighboring spins to be involved in a dimer, then we in-
troduce the ferro- and antiferromagnetic vectors:

M =Si +S~ and L =S& S

The dimer (singlet) state is defined by M =0
[M =M(M+ 1)]. We introduce now three bosons a, b, c
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with canonical commutation relations in the following
manner:

M'=a~a —b b,
M+=&2(a c c—b),
M =&2(cta b—tc),
L'= —(c U+Uc),
L+=&2( a U+Ub),

L =V2(b U+ Ua ),

(10)

where U=(1 —ata —btb —ctc)'~ . The physical sub-
space is obtained by considering states with at most one
boson. The bosonic vacuum a l0) =b l0 }=0 is the singlet
M=O state and the triplet states M=1 are the states with
one excited boson a, b, or c. In this physical subspace, we
have the correct commutation relations:

[M;,MJ ]= t e,JI,MI, ,

[L;,LJ ]=i e;p, Mg,

[M, ,L ]=is; I,L„,
(12)

together with the constraint S =
—,'. Moreover, the ma-

trix elements of transitions between physical and non-
physical states are zero. The bosonization scheme given
by (11) and (12) may thus be regarded as an exact at zero
temperature. It is completely analogous to the Holstein-
Primakoff expression for the spin operators in the case of
S=—,'; the only difference is in the form of the vacuum
state. The transformation (11) and (12) can be general-
ized to spin S leading to (2S+ 1) —1 coupled bosons, al-
lowing one to study the systems with higher spin.

Equations (11) and (12) can be applied to each pair of
spins which form a separate dimer and this maps the
original S=—,

' problem onto the Bose gas. Since both
Heisenberg and four-spin cyclic exchange interactions in-
volve the spins which may belong to different dimers, the
bosons are allowed to hop. The hopping leads to a
dispersion of the excitations and also to zero-point Quc-
tuations, which give rise to the interactions between bo-
sons and destroy the perfect dimer ordering.

In the present study we will calculate the spectrum in
the "spin-wave" approximation, i.e., by restricting with
only the terms which are quadratic in bosons. Strictly
speaking, this approximation is uncontrolled since the
problem has no small parameter which could play the
role of 1/S and ensure the smallness of the anharmonic
effects. However, for nonzero K, the staggered dimer
turns out to be stable in aconite region in the parametrical
space. In view of this, it seems very unlikely that anhar-
monic terms can produce any qualitative rather than
quantitative change to our results.

The calculations are quite straightforward and after
the transformation to bosons obviously require Fourier
transformation to a momentum space and the diagonali-
zation of the quadratic form in bosons. Working along
these lines, we obtain three degenerate branches of the
quasiparticles excitations as it should be since the ground

state is a spin singlet. The energies of the quasiparticles
are given by

(13)

In writing Eq. (13}, we supposed that the dimers are
directed along the x axis.

For K=O, the excitations given by Eq. (13) are real
only at the single particular ratio of the couplings,
J2=J, /2. However, for nonzero K, el, is real in a finite
region of the J2 coupling. A simple analysis of Eq. (13)
shows that the stability region first increases with E,
reaches a maximum at E=8J, /9, and then falls down
and disappears at E=4J, /3. The explicit boundaries of
the staggered dimer are given by

(14)
lJ) —2J2l=+( ,'K —J, )—(4J, 3K), ——8J) &K &~4J) .

As follows from Eq. (14), for K & 8J, /9, the instability of
the dimer configuration occurs at k„=0 and k =0 or m

depending on whether J, —2J2 is positive or negative,
correspondingly. Noticing that the expressions for the
two neighboring spins which form a separate dimer read

Si = ,'(M+L ), —S2= —,'(M —L ), (15)

and that only I. has the contributions which are linear in
Bose operators, we conclude that below the instability the
system should condense into the (m, m) Neel state for
2J2 &J, and into the (m, O) state for 2Jz) J, . This agrees
with the results of the quasiclassical description which as
most of the investigations now agree should be valid not
very close to J2 =J, /2 even if the spin S=

—,'.
On the other hand, for 8J, /9&K &4J&/3, the jnsta

bility of the dimerized state leads to the condensation of
the single-particle excitations with some intermediate
k„=+k0, where k0= cos '[(4J, —3K)/(6K —4J, )]
varies with K from k0=0 at K=8J, /9 to ka=n/2 at
E=4J, /3. This clearly indicates that the transition
occurs into the intermediate phase of the type already
found in the quasiclassical description. We did not per-
form the calculations below the instability and thus can-
not prove that the k0 dependence of the condensate wave
function ensures the transition into exactly the same
intermediate state as was found for small Jz in the
quasiclassical approach [this would require
ImAI, /ReAI, = tank0, where A„=((cz +c q )}],
but this is what one can expect on the general grounds
since there are no reasons to believe that the quasiclassi-
cal theory fails far from J2=J, /2 even if S=—,'. Note
that the critical value of K where the canting begins,
K, =8J& /9, is very close to that found in the quasiclassi-
cal description and continued to S=—,': K, =4E =J&. It
is also remarkable that in the present description the in-
termediate phases exist on both sides from J2 =J, /2 and
hence not only the (vr, m } but also the (m, O) state trans-
forms into the (vr/2, m /2) configuration at large K via the
intermediate phase, where the now-antiferromagnetic or-
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dering along each of the diagonals survives, but the angle
between the antiferromagnetically ordered sublattices
formed by the second neighbors shifts from 0 and varies
continuously with K until it reaches the values of m/2 at
K =4J) /3.

In order to find the actual ground state for large values
of K, we have compared the energy of the magnetically
ordered (m /2, m/2) configuration which meets the
ground state in the quasiclassical approximation

N KE = ——J +-(a/2, n/2) 2 2 4
(16)

with the mean-field energies of various dimerized
configurations. Though the results obtained by this
method are less conclusive than those based on the spin-
wave approach, they unambiguously indicate that the
(m/2, m/2) state survives the competition with dimerized
configurations for all values of K )4J, /3. For example,
one of the most plausible dimer configurations one might
assume to exist at large K is that of Fig. 3(c) with the di-
mers directed along the diagonals of the square lattice.
However, the mean-field energy of this state,

r

3 KE = ——N J +-xx 8 2 4
(17)

is larger than E~ &2 &z~ for all values of K.
The resulting phase diagram for the S=—,

' model is

presented in Fig. 4. In analyzing this figure, we would
like to make several comments. First, the tetracritical
point (J2 =J, /2, K =4J& /3) found in the spin-wave ap-
proach is most likely to be unstable against higher-order
corrections and we expect it to decouple into the two tri-
critical points as is actually shown in Fig. 4. Second, the
region near the phase boundaries between the dimerized
and various magnetically ordered phases should be con-
sidered more carefully since the symmetries which are
broken in these phases are completely different from each

~ ~ ~ ~

~ ~ ~ ~

K/JI

FIG. 4. The schematical phase diagram of the J&-Jz-K model
for S= 2. The dimerized and canted spin configurations are the

same as in Figs. 1 and 3.

other. In the present approach, we found that the dimer-
ized phase is separated from the phases with long-range
magnetic order by the "disorder lines" where neither the
continuous spin-rotation symmetry nor the discrete sym-
metry of translations by one side are broken. Since this is
not what one can expect from the general arguments, we
expect that either the transition will remain of the first
order but will acquire a finite hysteresis width, or there
will be a paramagnetic phase separating the staggered di-
mer from the states with the broken continuous symme-
try.

It is also worth mentioning that the large-Jz region of
the phase diagram is only tentative since the only indica-
tion to the existence of the intermediate canted phase for
J2 & J& comes from the calculation of the momenta of the
instability in the staggered dimer phase. The direct cal-
culations are different to perform because of the acciden-
tal degeneracy which violates the standard perturbative
expansion about the (n., O) state.

III. FINITE-CLUSTER CALCULATIONS

In this section we report the results of the exact diago-
nalization of the J]-Jp K model. We use a modified
Lanczos algorithm and calculate the low-energy levels
as well as the mean values of the selected operators. Our
purpose here is to do an ab initio searching of the phases
found in Sec. II.

One key aspect of the study of magnetic properties on
finite clusters is an appropriate choice of their size and
geometry. For example, to allow the Neel (m, n ) antifer-
romagnetic ordering, tilted square clusters must be con-
structed with the number of sites N given by N = n +m,
where n and m are integer numbers satisfying the con-
straint n+m =even. This requirement is satisfied for
clusters with N =4, 8, 10, 16, 18, . . . .

The numerical study of the frustrated J,-J2 model im-

posed further restrictions on the cluster size. The point is
that only the systems with N/4 even allow to avoid a
frustration within a sublattice and to obtain a smooth
scaling with the size of the system. These considerations
reduce the sequence to clusters with N=4, 8, 16, . . . sites.
Finally, the four-spin interaction involves square pla-
quettes, and we thus restricted to N=4, i.e., (2X2) and
N=16, i.e., (4X4) systems with periodic boundary con-
ditions.

The four-sites cluster can be solved analytically. The
results are presented in Fig. 5. Three different phases can
be detected in the parametrical space. Two of them ( A

and B) are spin singlets, while the large-K phase corre-
sponds to S=1. The thermodynamic analogs of the
spin-singlet phases can be found immediately since the
first excited states in the A and B phases are the (m, ~) or
(O, vr) triplets, respectively. Obviously, in the thermo-
dynamic limit these phases should coincide with the
(m, m) and (O, m) ordered states. On the other hand, at
this level of consideration, it is hard to draw definite con-
clusions about the thermodynamic limit of the S=1
phase. For larger clusters, we expect to find a better
agreement with the theoretical phase diagram of Sec. II.
However, the simple calculation for the 2 X 2 cluster al-
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ready teaches us several things. First, for K =0, the level
crossing between two singlet states occurs at the same ra-
tio of the couplings, Jz/J& =

—,', as in the classical descrip-
tion. This clearly points out that for larger clusters it
should be possible to detect the intermediate disordered
phase around this point. Second, for Jz=0, the 2X2
analog of the Neel phase loses its stability at 2K, /J& =—'„
which is noticeably smaller than the corresponding value
found in Sec. II. Finally, the third point to mention is
that for large Jz, the region of the (O, m. ) phase stretches
up to large values of K (IC, =4Jz —J, ) in complete con-
tradiction with the quasiclassica1 results which make the
(0,n. ) phase unfavorable already for very small E. Hence,
even for larger clusters, we should expect the (~,n ) Neel
phase to lose stability at smaller K and the (O, n. ) phase to
survive up to higher values of K than those predicted in
Sec. II.

A convenient way to study different phases as function
of K and Jz is to consider the static structure factor,

FIG. 6. Plots of (a) the structure factors S(~,m) and S(0,n. )

and (b) the twist (~) and chiral (c) ) susceptibilities as functions
of E/J] for Jp/J& =0.20.

value typical for a Neel phase. Between
0.50 & 2IC /J, & 2.0, S(n., m ) monotonically decreases
while S(O, m. ) remains unchanged. The strong reduction
of the Neel order above the critical value of K, with
S(0,n ) practically unchanged, signals that at these values
of K the Neel phase is substituted by the intermediate
canted spin configuration. At least, for larger values of
the cyclic exchange, 2E/J, & 2, both structure factors do
not depend on E. Consequently, for all 2E/J& &2, the
system is in a unique phase which is most likely to be an
orthogonal one. The calculated difference between the
values of $(n., n ) and S(O, n. ) is presumably attributed to
the effects of quantum fluctuations. An additional proof
that the phase diagram for small Jz involves three
different phases comes from the calculations of the uni-
form twisted susceptibility ( 8,„)where

Pq ( I m) ($ .S )—
I, m

1 g (g.
1

(18)

at q=(m. , n. ) and q=(O, m). A simple insight why these
momenta are important can be given by the quasiclassical
calculations of S(q) for a single plaquette. Indeed, for
the Neel phase, $(~,m) is larger than S(0,m ). When the
angle between the two ferromagnetically ordered sublat-
tices shifts from zero, S(n, m) diminishes while $(O, m)
remains unchanged. In the orthogonal phase, both struc-
ture factors have classically the same value. In the (0,~)
phase the situation is reversible: The static structure fac-
tor $(0,m ) dominates over $(n., m ). Upon cantening,
S(0,m. ) diminishes while S(m., m }remains unchanged.

%e have studied different phases by making scans over
K /J

&
for different values of Jz /J, . The results for

Jz/J, =0.20 are presented in Figs. 6(a) and 6(b). Our re-
sults for the structure factors [Fig. 6(a)] clearly show that
for 2'/J& &0.5, $(m., m. ) is nearly a constant and has a

and

8;=—,'(S;XS,.+„+S,. „XS;+S;XS,.+-„+S,. XS;) .

Strictly speaking, for classical planar arrangement, this
susceptibility should be equal to zero. However, out-of-
plane fiuctuations given rise to nonzero (8,„) which
indeed measures the cantening of the spin structure.
Since the ground state is a spin singlet, without loss of
generality, we can restrict our study to (8, ). From Fig.
6(b), we see that the uniform twist susceptibility is nearly
linearly enhanced between 2E/J, =0.6 and 2K/Jj =2
and saturates for larger values of K. This is exactly what
one should expect from the analysis given above. For
completeness, in Fig. 6(b), we have also presented the
data for the uniform chiral susceptibility, (G,h}, defined
by
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for the columnar dimer and

and 6,„=—g (
—1) " '6';1 i +E

I

and (20)

6;" =
—,'[( —1) "S; S., „—(

—1)"S; S,.

+i( —1) 'S; S,.+
—i( —1) 'S;.S,. ],

As in the pure J, -Jz model, ' ' the chiral susceptibility
shows no enhancement for any value of K.

For 1arge values of J2/J&, we expect that the scanning
over E/J& wi11 allow us to detect also the dimerized
states on the phase diagram. Figure 7 shows our results
for Jz/J, =0.40. For small and large values of the cyclic
exchange, we recovered the same behavior as was ob-
served for smaller values of Jz, namely (~,n. ) antiferro-
magnetic ordering for 2K /J, & 0.40 and orthogonal
phase for 2E/J, &2.0. However, the behavior at inter-
mediate K is completely different. First, near
2K/J, =0.5, both structure factors quickly move to-
wards each other, presumably indicating the existence of
a tiny region of the intermediate disordered phase close
to the antiferromagnetic instability. Starting from
2K /J

~
=0.60, both structure factors have practically the

same values up to 2K /J
&

—1.6. A previous experience in

studying different phases in the pure J, -J2 model teaches
us that the phase where both structure factors have equal
values is most likely to be a dimerized one. ' Keeping this
in mind, we have also calculated the spin-spin correlation
functions and indeed found that for intermediate E, the
correlations are mostly restricted to the nearest neighbors
as it should be for the dimerized configurations.

Our next aim is to investigate whether the system actu-
ally undergoes a transition between different dimer
configurations as is predicted by the phase diagram of
Fig. 4. To study this possibility, we calculated the sus-
ceptibilities for the two most plausible candidates for the
ground state close to Jz /J

&
-0.5, namely, columnar and

staggered dimers. These susceptibilities are defined by
(6„d ) and (6,d ), where'

16 = y6yd
1

where

for the staggered dimer. In Fig. 8(b), we show both sus-
ceptibilities at J2/J& =0.5. From the corresponding cal-
culations of the static structure factors, we expect the
dimerized phase to be the ground state for 0 (2E/J, & 2.
As it is clearly seen from Fig. 8, at small 2E/J& the
columnar dimer is definitely a preferable candidate for
the ground state, while near the other boundary (as well
as for larger K) the susceptibility of the staggered dimer
is larger than that for the columnar one. This can be
considered as the evidence in favor of the transition be-
tween different dimerized configurations at some inter-
mediate 2K/J, . Well inside the dimerized phase both
susceptibilities are nearly equal and it is hard to distin-
guish which dimerized state is preferable. The existence
of the "hysteresis" behavior is partly attributed to the
finite size of the system but also is the obvious conse-
quence of the fact that in the real strongly fluctuating sys-
tem, neither of the pure dimerized configurations from
Sec. II actually answer to the ground state. The true
ground state is always a mixture of different dimers and
we can only point which configuration is preferable for a
particular value of 2K/J, . Note, however, that the sus-
ceptibility of the staggered dimer continues to grow also
in the region where the calculations of the static structure
factors favor the orthogonal spin configuration. Presum-
ably, this indicates that the actual transition between the
staggered dimer and the orthogonal phase is rather
smooth and the staggered correlations actually survive up
to relatively large K.

At Jz/J, =0.60, the scanning over E/J, (Fig. 9) al-

lows us to detect one more phase on the phase diagram
but also reveals some differences between analytical and
numerical calculations. Namely, for very small K, the
structure factors have nearly equal values, which again
indicates that the system is in the dimer phase. ' The cal-
culation of the dimer susceptibilities clearly shows that

0.5

Q. l

0

Q.4

0.100:—0.075—

M 0.050

E 0.025
Cl

0
2K/Ji

Jz/J~ =0.5

FIG. 7. Static structure factors S(~,~) (~ ) and S(0,~) (0 }
as functions of K/J, for J., /J, =-0.40.

FIG. 8. The susceptibilities of the columnar (0) and stag-

gered (~ ) dimers as functions of K/J, for J2/J, =0.50.
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FIG. 9. The same as in Fig. 7, except that J2/J ~
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FIG. 10. Static structure factors S(m, m. ) (~ ) and S(0,~) (o )
as functions of K/J, for J2/J, =0.80.

for E=0 the columnar susceptibility dominates over the
staggered one, but quickly diminishes as E increases.
This is consistent with the fact that the structure factors
at (n, m) and (O, n) also move apart with the increase in
K. Starting from 2K/Ji =0.25, S(O, n ) continuously de-
creases and nearly saturates at 2E/J, larger than 4.5.
This strongly suggests that above 2E/Ji =0.25 the sys-
tem is in the intermediate canted phase which transforms
into the orthogonal one somewhere near 2E/J, =4.5.
The fact that the intermediate phase stretches up to
much larger E than one would expect from the analytical
consideration is not surprising in view of the exact solu-
tion of the 2 X2 cluster where this feature was already ob-
served. What is, however, more unexpected, is the gradu-
al increase of S(m, m ) between 2E /J, =0.25 and
2E/J& =4.5. We recall that, from the classical analysis,
S(n., n. } should be a constant if the intermediate phase
preserves the antiferromagnetic ordering along diagonals.
It is hard to judge whether this difference is attributed to
quantum fluctuations or the intermediate phase for
Jq/Ji & 0.50 has a more complicated structure than the
simple canted configuration formed by two antiferromag-
netically ordered sublattices [Fig. 1(b)].

The last scan was taken for J2/Ji =0.80 (Fig. 10). Be-
sides the broad intermediate phase already found in the
previous figure, one can also determine the region of the
ordered (O, n ) phase with nearly constant S(O, n ). Note
that this phase stretches up to 2E/J, =0.75, i.e., to near-
ly the same value of the cyclic exchange as the (n, m. )

phase for smal. J2/Ji. Also, with the chosen upper limit
for K, namely 2E/J, =5, we cannot detect the transition
to the orthogonal state, but the tendency towards this
transition is clearly seen in Fig 10.

IV. SUMMARY AND CONCLUSIONS

In this paper, we presented the results of the analytical
and numerical investigations of the phase diagram of the
2D square lattice Heisenberg antiferromagnet in the pres-
ence of next-nearest-neighbor coupling and the four-spin
cyclic-exchange interactions. Several investigations of
the strong-coupling limit of the Hubbard model as well as
of the more realistic multiband Hamiltonians strongly
suggest that both the further-neighbors Heisenberg ex-
change and the four-spin cyclic interaction between Cu
spins should be taken into account in order to understand
the nature of the magnetic ordering in the copper oxide
superconductor s.

We found that four-spin cyclic exchange competes
with the frustration effects imposed by the further-
neighbor exchange and this competition leads to a very
rich phase diagram. For simplicity, we restricted our cal-
culations to the case where Heisenberg interactions act
only between nearest and next-nearest neighbors (Ji-J2
model). We found that when the four-cycling exchange
increases, both magnetically ordered phases of the J&-J2
model [the ( m, n)for. .Jz /J i (—,

' and the (0,n ) for
Jz /J i ) —,

' ] first transform into intermediate canted
phases and then to the unique configuration which we
refer to as the orthogonal one, where the spins are
aligned antiferromagnetically along diagonals and form
the ~/2 twist along both x and y directions.

Close to J2/J& =
—,', the ground state at E=0 is known

to be a columnar dimer. We found that the four-spin cy-
clic exchange competes with the quantum fluctuations
which favor the columnar dimer over the other dimer
configurations. As a result, a nonzero E gives rise to a
phase transition between the columnar dimer and the
staggered one favored by the cyclic exchange.

The general phase diagram for the J&-J2-E model was
found analytically in Sec. II and is presented in Fig. 4.
Altogether, it contains seven phases. All these phases
were found also in the numerical calculations of Sec. III.
We focused on the static structure factors at (n, m) and
(O, m) and performed the numerical scans over E/J, for
various values of J2/J&. In agreement with the analytical
predictions, the scans performed for small Jz/J& have
shown that the antiferromagnetic (m., m. ) phase transforms
into the canted spin configurations of Fig. 1(a), and the
latter, in turn, undergoes a first-order transition into the
orthogonal configuration of Fig. 1(c) under the further in-
crease of E.

For J2/J, close to —,', the calculations of S(q) and the
susceptibilities of the columnar and staggered dimers al-
lowed us to find, first, a transition from the (n., ~} Neel
phase to the dimerized phase presumably via a intermedi-
ate disordered state and, second, a transition between the
two different dimerized states at some intermediate K.
For large Jz/J„ the numerical calculations detected that
when E increases, the magnetically ordered (0, m ) phase
transforms into the intermediate canted configuration,
which, in turn, is substituted by the orthogonal one under
the further increase of E.

While the general structure of the phase diagram em-
erging from the analytical and numerical approaches
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turns out to be practically the same, the locations of vari-
ous phase boundaries may differ significantly. Thus, the
instability of the (m. , n ) phase occurs at lower values of K
than predicted analytically. On the other hand, the re-
gion of the intermediate canted phase for large Jz
stretches up to much larger values of K than one might
expect from the analysis of Sec. II. Also, the scan over K
at J2 /J& =0.60 did not find a broad region of the dimer-
ized state in apparent contradiction with the phase dia-
gram of Fig. 4. At least, the intermediate phase found for
J2/J, )—,

' presumably has a more complicated structure
than the simple canted configuration of Fig. 1(b), since
the structure factor S(n.,n. ) increases with K instead of
being almost a constant as would be the case if the canted
phase would preserve the pure antiferromagnetic order-
ing along diagonals.

While some of the discrepancies seem to be attributed
to the finite size of the clusters, we do not exclude that
the actual phase diagram is asymmetric with respect to

J2/J, =
—,'. Specifically, one should require the upper

boundary of the dimerized phase to move towards lower
values of J2/J& as E increases to reestablish the agree-
ment with the numerical data. The required change in
the location of the boundary line is most likely to be attri-
buted to quantum fluctuations, not included in this ap-
proach, which was intended to search for the different
magnetic phases but not for the precise location of the
phase boundaries.
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