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Magnetic properties of highly anisotropic perovskites based on copper oxide planes have commonly
been interpreted in terms of the free-spin-wave approximation to a Heisenberg model. For this model,
we calculate the Neel temperature, the magnetic moment, the spin-wave velocity, and the first-nearest-
neighbor instantaneous spin correlator by varying the anisotropy ratio e =J, /J)~ between the intraplane
and interplane effective exchange couplings at three different levels of approximation: the ordinary free-
spin-wave, the Tyablikov random-phase approximation (RPA), and a modified RPA obtained by adapt-
ing Callen original decoupling procedure. In all cases, we find that the crossover from three to two di-
mensions occurs at t. =10 . By interpreting the available experimental data for La2Cu04 with our cal-
culations, we also find that the value of e verges on the two-dimensional side, although it can vary by a
factor 10 depending on the approximation. Our results call for more accurate experimental determina-
tion and theoretical interpretation of the temperature-dependent magnetic excitations in the perovskite
compounds. Their two-dimensional character favors, in fact, the existence of local magnetic excitations
that outlive the disappearance of long-range order, as shown by the calculated behavior of the first-
nearest-neighbor instantaneous spin correlator.

I. INTRODUCTION

There has been lately considerable interest in highly
anisotropic magnetic compounds which are parent sys-
tems of high-T, superconducting perovskites. In particu-
lar, La2Cu04 and YBa2Cu306 show fairly large Neel tem-
peratures Tz and strongly anisotropic antiferromagnetic
correlations, indicating that the effective exchange cou-
pling J~~ within the CuOi planes is unusually large ( =0. 1

eV) while the anisotropy ratio 6=Ji/Jll is quite small. '-'
The ratio e controls the dimensional crossover from three
to two dimensions, and accordingly determines the ther-
modynamic behavior of the anisotropic antiferromagnet.
A reliable estimate of e is thus required to make contact
between the experimental data and the results of the
two-dimensional (T =0) calculations which are common-
ly used to study the magnetic properties of these systems.

Interpretation of the magnetic properties of La2Cu04
and YBa2Cu306 has been done with the assumption that
the magnetic moments reside in the spin- —,

' Cu atoms, al-

though a detailed three-dimensional spin arrangement
has not been unambiguously determined on the basis of
NMR, NQR, and neutron diffraction experiments. For
this reason, it has been common practice to model the
three-dimensional magnetic arrangement by a simple
tetragonal bipartite (A and 8) lattice with two distinct
antiferromagnetic couplings, the intraplane J~~ and the in-

terplane J~. In this paper we shall follow this common
practice.

Within such geometry, the magnetic dynamics has usu-
ally been described via an anisotropic quantum Heisen-

berg model. Neutron and light scattering data have been
fitted by resorting to a free-spin-wave approximation to
this model. ' Typical fits for e have given values in the
range 10 —10 for La2Cu04, thereby supporting the
strongly two-dimensional character for this magnetic sys-
tem. ' The value e-=10 has been obtained by relying
on a purely two-dimensional description of the magnetic
excitations and on a general scaling relation for TN in
terms of e. The value of e=—10 has been obtained in-
stead by treating the full three-dimensional coupling
within the free-spin-wave approximation which is known
to be valid when T && T~.

In this context, it appears worthwhile to undertake a
more systematic study of the dependence of accessible
physical quantities (such as the magnetic inoment p, the
spin-wave velocity U, and the first-nearest-neighbor in-
stantaneous spin correlator F) in terms of e and T, by re-
lying on theoretical treatments which can extend the va-
lidity of the ordinary free-spin-wave approximation up to
temperatures below, but comparable with, T~. One of
the purposes of this paper is then to compare theoretical
results obtained for the anisotropic Heisenberg model at
different levels of approximation and to clarify to what
extent the estimates of e from measured quantities de-
pend on the underlying theoretical approximation. We
shall, in particular, compare results of the ordinary free-
spin-wave approximation with two more elaborate ap-
proximations, namely, (i) the Tyablikov random-phase
approximation (RPA) which takes into account the self-
consistent temperature-dependent renormalization of the
magnetic moment p due to large transverse spin Auctua-
tions, and (ii) the Callen modified RPA approximation
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(MRPA) which includes also the self-consistent renormal-
ization of the first-nearest-neighbor instantaneous spin
correlator F. For our purposes, we have adapted both
approximations to the case of an anisotropic antifer-
romagnet.

We shall find that, apart from the Neel temperature
that has to scale to zero with ln1/e when e~O, the quan-
tities p, v, and F saturate at their two-dimensional value
when e =10, a value that thus corresponds to the actu-
al crossover from three (e—= 1) to two (e=O) dimensions.
[We consistently assume that the system is in an ordered
state at T=O even for e=O (cf. Ref. 8, and references
therein). ] We shall also find that T~ and U depend con-
siderably on the chosen approximation while p does not.
In particular, the dependence of Tz on e obtained within
the RPA approximation is scaled by a factor 2/3 from
that obtained by both free-spin-wave and MRPA approx-
imations. Similarly, the values of v near T=O almost
coincide in the free-spin-wave and the MRPA approxi-
mations while the RPA gives a smaller value (typically,
by a factor 2/3 when e=O). However, the free-spin-wave
and MRPA values for p and v differ markedly in their
temperature dependence owing to the self-consistent re-
normalizations required by the MRPA approximation.
Our analysis thus warns against a simple-minded use of
the free-spin-wave approximation and indicates that a
cautious interpretation of the experimental data on
La2Cu04 and YBa2Cu306 is required in order to extract
reliable information on the macroscopic parameters of
these anisotropic antiferromagnets.

We mention finally that we have successfully tested our
calculation for the first-nearest-neighbor instantaneous
spin correlator F at Tz with the available experimental
data on the isotropic (@=1) GdA103 doped with Cr +

from fluorescence measurements, ' and found very good
agreement with experiment to within our estimated 15%
error.

The plan of the paper is the following. In Sec. II we set
up the relevant finite-temperature formalism via the
Matsubara Green's functions technique and discuss the

I

three alternative approximations (free spin waves, RPA,
and MRPA) to calculate the physical quantities of in-
terest. Details of the calculations are given in the Appen-
dix. In Sec. III we describe the numerical procedure and
the results. Section IV contains our conclusions.

II. DECOUPLING PROCEDURES FOR THE DYNAMIC
TRANSVERSE SPIN CORRELATION FUNCTION

IN AN ANISOTROPIC ANTIFERROMAGNET

In this section we calculate the wave vector and
frequency-dependent finite-temperature transverse spin
correlation function in the broken symmetry phase for an
anisotropic antiferromagnet. We assign a spin- —, operator
S to each site of a tetragonal lattice with lattice constants

A~~ in the basal p1ane and A~ along the tetragonal symme-

try axis. The Hamiltonian we consider is the Heisenberg
model

H=QJ; S;.S.
17J

(2.1)

(r) = ( T,[S;+( )rS, (0)]), (2.3)

where w is the Matsubara imaginary time, T, denotes the
time-ordering operator, ( . ) stands for the thermal
average, and (t'ai= 1)

S;+—(r) =exp(Hr)S; exp( Hr)— (2.4)

evolve in the modified Heisenberg picture. The equation
of motion for y,

+ (r) can b"e readily derived from the r
evolution of S;+(r) One obtain. s

with spatial anisotropy defined by the first-nearest-
neighbor effective exchange coupling

J~~, for (i,j ) on the basal plane,
J, =

J~, for (i,j) on adjacent planes.

Dynamic properties of this system can be character-
ized by the transverse spin temperature correlation func-
tion

('T)= —2Jlg[ ( T,[S;+a (r)Sf(r)SJ (0)]) —( T,[S ~a (r)S;+(r)SJ (0)]) ]
II

—2Jjg[(T,[S(+a (r)S (r)SJ (0)])—(T,[S ~a (r)S;+(r)SJ (0)])]+25J5(r)(S ) . (2.5)

Here and below the sums over A~~ and h~ are restricted to
the "star" of first-nearest-neighbor atoms on the basal
plane and on the tetragonal symmetry axis, respectively.

The appearance of a three-spin correlation function in
Eq. (2.5) and the difficulties in implementing an
equivalent to Wick theorem for spin operators suggest, as
usual, that one resorts to ad hoc decoupling procedures in
order to solve Eq. (2.5) for y,.~ (r) in a closed form. In
the following, we adapt to the present context two decou-
pling procedures which have been originally developed
for isotropic ferromagnets. For completeness, some ma-
terial other than ours will be reported.

A. Free-spin-wave and Tyablikov RPA approximations

The conventional free-spin-wave approximation"
(FSWA) and the Tyablikov RPA approximation for the
spin correlation function result form Eq. (2.5) by replac-
ing the operator S (r) whenever it occurs by +—,

' (depend-
ing on the sublattice) and by (S,'), respectively. In what
follows we thus sketch the calculation for the RPA ap-
proximation only. '

It is convenient to exploit at the outset the periodicity
in ~ and the translational symmetry of the lattice by in-
troducing the Fourier decomposition
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(q, q';Qi)= —g f dre' 'e '
'y; (r)e'

E,J

(2.6)

where N is the number of atomic unit cells, P=(kz T)
is the inverse temperature, Q&=2m. A, jP(A, integer) is a
Matsubara frequency, and R; is a lattice vector. The
(Neel) antiferromagnetic ansatz can be imposed at this
point by setting

where we have set

coo=2&S'„)(Jiiz) +Ji i),
II)'ll'q}+Ji vari(q)] .

(2.10)

In these expressions, z~~ and z~ are the coordination num-
bers in the basal plane and along the tetragonal symmetry
axis, respectively, and

& S ) =
& S'„)exp( —iQ R, ),

where the wave vector Q is such that

exp( —iQ 6 }=exp( iQ—h)=. —1

(2.7)

(2.8)

and & S'„) is associated with any site of the A (up) sublat-
tice. Equation (2.5) thus becomes in Fourier space:

iqa
y„(q)=—ge

II ~
II

yi(q) = ge
ZJ

(2.11)

iQ—~+ (q, q';Qi)+[coo —co, (q)]g+ (q+Q, q';Qi)

= 2& S'„)5(q+ Q —q'), (2.9)

are the normalized structure factors. Equation (2.9) can
be readily solved, to yield the desired transverse spin
correlation function

iQ„5(q+Q —q')+ [a)o—a), (q) ]5(q—q')
X' (q q'Qx)= —2&SA&

(iQi ) [coo——co, (q) ]
(2.12}

Analytic continuation to real frequencies can be per-
formed at this point by letting iA&~co+i5 with 5=0+.

Notice that the correlation function (2.12) has poles for
co=+Q(q) with

Q(q) =+coo—co, (q) (2.13)

Notice also that the residue of the second term in the
numerator of Eq. (2.12) only survives when co~0, provid-
ed we take q=q'=Q+5q (reflecting the fact that only
the staggered transverse correlation function diverges in
the static limit for an antiferromagnet. ) For this function
we obtain

X'-(Q+5q Q+5q', ~)

(2. 15)

which holds for spin —, at any given lattice site. We ob-

tain:

Sz 1 2

1+21(
(2. 16)

seems more appropriate to consider the renormalized
value of & S'„) even at T=0, as in the RPA, instead of its
nominal saturated value 1/2, as in the FSWA.

To evaluate &S'„) within the RPA from the staggered
correlation function (2.14) we exploit, as usual, the opera-
tor identity

[coo+co, (5q) ]

[co—Q(5q) ][co+Q(5q) ]

(2.14}

with the notation

coth —Q(q) —1
1, ~0 p
X Q(q) 2

(2. 17)

where coo+co,(5q) ~2coo for 5q~O.
The spin-wave spectrum for the ordinary FS%'A is ob-

tained by replacing &Sz ) with —,
' in Eq. (2.10). Within

the RPA, however, & Sz ) (—,
' for any value of the anisot-

ropy ratio e and even at T=O owing to quantum fluctua-
tions; the effect of thermal fluctuations at finite tempera-
ture is to further reduce & S„),making it vanish at a crit-
ical temperature which is identified with the Neel temper-
ature TN. In this context, we recall that the low-

temperature series expansion by the Dyson method for
an isotropic ferromagnet yields a spin-wave spectrum re-
normalization with temperature that can be reasonably
reproduced by the RPA effective interpolation pro-
cedure. ' For an antiferromagnet, on the other hand, it

&S'„)= —,
—y',1 (2.18}

where f' results from g given by Eq. (2.17) by replacing
& S„' ) with 1/2 in the expressions (2.10) and (2.13}for coo

and Q(q). Notice that, with this provision, Eq. (2.18) is
obtained formally by expanding the denominator in Eq.
(2.16) to first order in g. Notice also that, at zero temper-
ature, P=P' because the prefactor of the spin-wave spec-
trum cancels out: the integral (2.17) is of geometric char-

and the understanding that the primed sum extends over
the antiferromagnetic Brillouin zone. In the ordinary
FSWA, "' one would obtain instead
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k T[RPA] z +ezB

JII 2W,

with the notation

(2.19)

(2.20)

aeter and depends on the dynamics only through the an-
isotropy ratio e.

The Neel temperature TN is obtained, by definition,
within the RPA by taking (S„' ) given by Eq. (2.16) to
vanish. One obtains

B. Callen Modified RPA

The Tyablikov RPA approximation discussed above
neglects the correlation between longitudinal and trans-
verse fluctuations, by replacing the operator S,' in Eq.
(2.5} with its average value (S ). It is thus expected that
an improved approximation would retain the operator
character of S, at least through its connection with the
transverse operators S;+ and S; . In this spirit, Callen
has proposed to take a weighted average between the
operator identity (2.15) and the alternative one

(2.21}

S ——= —S S.1
I 2 l

for spin- —,
' operators, in the form

(2.24)

The dominant contribution to the sum in Eq. (2.20) origi-
nates from the neighborhood of q=O where y,(q) tends
to unity. Quite generally, a inc term can be isolated from
8; to yield

Sz—
I

1 —a
2

——+S. S1
l

T(RPA)
B N A

B,+lnl/e ' (2.22)
1++

2
(2.25)

where A is a numerical constant and B, is a smooth func-
tion of e. The singular ln term in Eq. (2.22), which
represents the contribution of the neighborhood of q =0,
restores in the two-dimensional limit (e=O) the correct
thermodynamic behavior which is violated at the mean-
fie1d level, where

7[M"]
B N

2 II

=—(z +ez ) (2.23)

has a finite value for a=0. Our numerical results, to be
presented in the next section, confirm the behavior (2.22)
for 8'„with B,= constant within numerical error over a
wide range of e Notice th.at the ratio B/A controls the
crossover from the three-dimensional to the two-
dimensional case.

An expression similar to (2.22) is also obtained within
the FSWA with, in general, different coefficients A and B.

I

The value of the parameter a can be suitabley chosen to
fulfill some conditions. Callen has shown that the choice

a=2(S,') (2.26)

improves the agreement with Dyson's low-temperature
expansion over the RPA approximation for an isotropic
ferromagnet, provided one suitably decouples the
higher-order correlators among transverse spin operators
which result from Eq. (2.25).' Lacking a corresponding
comparison for an (anisotropic) antiferromagnet, we take
over Callen's procedure to the present case in the same
spirit as what has been done above for the RPA approxi-
mation.

Callen's procedure for the anisotropic antiferromagnet
replaces the equation of motion (2.5) by the following
one:

X~i (r) 2J)l i S(') g [g(~) (r)(1—2(S +a S; ) )+g(~+a J(r)(1—2(S +a))S;+ ) )]

—2J~(S ) g[y,+ (r)(1—2(S;+a S; ) )+y,++a (r)(1—2(S;+a S;+ ) )]+25;.5(r)(S(') . (2.27)

(S+ S—
) F(1)+ '~ iF(2)'

i +b,
II

i II II
(2.28)

Notice that Eq. (2.27} contains, besides the local average
(S ), also the first nearest neighbor -instant-aneous corre
lator (S;+S. ) which must be determined self-
consistently.

For symmetry reasons, there are only two such in-
dependent correlators when 0 & e & 1 (but only one when
either e = 1 or 0.) We set in general

(S+ S ) =F(' + q a'F(~) (2.29)

where the dependence on e is understood. It can be
readily shown that FII" and F~" are real while F[II

' and
F~ ' are purely imaginary whenever the lattice has an in-
version symmetry such as in the present case. Accord-
ingly, it can further be shown that FII

' and F~ ' must
vanish (cf. the Appendix). In the following we shall thus
drop the labels 1 and 2 on the F.

Equation (2.9) in Fourier space is now replaced by
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—iQu' (q q'Q~)+ [[~0—~&(q)]—[10—1(q)]j

(q+Q, q';Q~}

where

I (q) =4(S„' ) [J()z))F(()'(((q)+J~z~F&)'I(q)] (2.31)

=2(S& )5(q+Q —q'}, (2.30) and I O=I (q=0). The solution of Eq. (2.30) is

iQ~@q+Q —q'}+ [(~0—10)—[~i(q) —1(q) l]@q—q'}
(q, q', Qz) = —2 (S'„)

(iQ&) —Q(q)
(2.32)

with the modified dispersion relation for spin waves

Q(q) =Q(~0—I 0)' —[~&(q)—I (q)]' . (2.33)

The complete solution of the problem has thus been re-
duced to solving (for given e and T) a system of three
coupled nonlinear integral equations for (S'„), F~~, and
Fj which are obtained in the Appendix. Numerical solu-
tions to these equations will be discussed in the next sec-
tion.

It is worthwhile to comment at this point on the
analytical results one obtains for the spin-wave velocity
in the linear dispersion region near the center of the Bril-
louin zone. For simplicity, we report only the results for
the isotropic limits (a= 1 or 0), since the general trends
are preserved between these two limits. For the three ap-
proximations, we obtain

1 (FSWA),
U =v 2z Jh . 2(Sq ) (RPA),

2(SA )( I —2F) (MRPA),

(2.34)

with the understanding that the values of z, J,E, (S„'),
and F correspond properly to either one of the two limits.
At zero temperature, (S'„) and F are readily obtained in
both limits in terms of known integrals from the ordinary
spin-wave theory of antiferromagnets. " One obtains for
2(S'„) the values 0.865 and 0.718 when e= 1 and 0, re-
spectively; and for 2(S„' ) (1—2F) the values 1.054 and
1.002 when e'= 1 and 0, respectively.

The occurrence of three different renormalization fac-
tors on the right-hand side of Eq. (2.34) can intuitively be
understood as follows. Within the RPA one allows the
transverse fluctuations to develop without being dynami-
cally correlated to the longitudinal ones, the only effect
retained being the average reduction of (S„* ) from its sa-
turated value —,'. The eff'ective stiffness of the transverse
fluctuations is self-consistently weakened in this way.
Within the MRPA, on the other hand, the dynamical
coupling between transverse and longitudinal fluctuations
is retained at the lowest level, thereby yielding an
effective hardening of the transverse fluctuations through
the factor (1—2F). ' As it turns out, at zero temperature
there results an almost complete compensation of the two
effects associated with the two factors 2 (S'„) and
(1—2F). Notice finally that, contrary to the FSWA re-
sult which is appropriate to the zero-temperature limit,
both the RPA and the MRPA expressions for v vanish at
the critical temperature.

III. NUMERICAL RESULTS AND DISCUSSION

4.0

3.0 ',,

2.0

1.0

0.0~
p.p 1.0 2.0

)~g, 1/6
3.0 4.0

FIG. 1. Neel temperature in units of J~~/k vs. log&01/e for
the three approximations adopted in the text: dotted line
(FSWA); broken line (RPA); solid line (MRPA).

Our numerical task consists in evaluating, at various T
and e, the quantities f and W, given by Eqs. (2.17}and
(2.20), respectively, within the RPA (and similar quanti-
ties with the FSWA), and in evaluating F~~, Fj, and (S'„)
given in the Appendix within the MRPA. Both P for the
RPA and the coupled Fl,F~, and (Sz ) for the MRPA
have been determined self-consistently by a multidimen-
sional Newton-Raphson method. The convergence of the
integrals over the wave vector in the magnetic Brillouin
zone has been checked a posteriori by refining the integra-
tion mesh.

Figure 1 shows the dependence of the Neel tempera-
ture on the anisotropy parameter e for the three approxi-
mations we have considered. In all cases, T~ can be ex-
pressed in the form (2.22} with coefficients A and 8
different for the three cases, as shown in Table I. From
the comparison given in Fig. 1 between Tz in the RPA
and in the MRPA, we see that there is a general tendency
of the renormalization of (S'„) and of the F's to com-
pensate each other. This feature has also been derived
analytically in the Appendix for the isotropic (e= 1) and
the two-dimensional (a=0) cases, and a rees with
Callen's findings for the isotropic ferromagnet. One may
again argue that the indirect coupling of transverse to
longitudinal spin fiuctuations, which is effectively intro-
duced by the MRPA procedure, makes the transverse
fiuctuations stiffer, thereby increasing the critical temper-
ature and bringing it closer to the FSWA result. Because
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TABLE I. Coefficients of Eq. (2.22) of the text for the three
approximations considered. In the e range of Fig. 1, B,—= con-
stant to within a 5% fitting of those curves.

0.8

0.6

FSWA
RPA

MRPA

7.7
6.0
9.7

2.3
3.0
3.6

2(S„)o 4-:

0.2

of the two compensating effects, within the MRPA the
end result is closer to what is obtained by naively extra-
polating the FSWA to high temperatures. The same
compensating effects show up in the spin-wave velocity,
to be discussed below.

In Fig. 2 the ( T =0) local moment @=2(S& ) is shown
vs e for the three approximations. This figure clearly in-
dicates that the crossover from the three- to the two-
dimensional behavior has already been exhausted at
E' 10 with a negligible variation for smaller e. Notice
that the values of (S„' ) within the RPA and MRPA
coincide (at T =0) in the two extreme limits e= 1 and 0,
while there is an appreciable (up to 10%) difference with
the FSWA value. As already discussed in Sec. II, the
coincidence between the RPA and the MRPA results in
this case stems from the canceling out of the dynamical
prefactor in the spin-wave spectrum, while the difference
with the FSWA is due to the lack of self-consistency in
the latter approach.

As the temperature increases, or when 0(e(1, the
dynamical differences in the RPA or MRPA show up in
the magnitude of the local moment (S'„). This can be
seen in Fig. 3 where @=2(S'„)vs T is reported for the
three approximations at the crossover anisotropy value
e= 10

Dynamical differences among the three approximations
are most evident in the behavior of the spin-wave velocity
(at q=O) as a function of e and/or T. In Fig. 4 we report
the two independent components (ul, uj ) vs e at T=O.
We notice that

U~~
saturates to its two-dimensional value

when e 10, showing that the dimensional crossover
occurs simultaneously for all relevant physical quantities.

0.0
0.0 9.2 0.4 0.6 0.8 1.0

u~, on the other hand, vanishes like &e when e~O, for
the three approximations.

The behavior of vI~ and U~ vs T for two significant
values of e is shown in Fig. 5. These quantities are nor-
malized to the corresponding values within the FSWA
which do not depend on T. The vanishing of u~ and u~ at
TN is controlled by the order parameter (S'„and is a
consequence of the self-consistent renormalization of the

I 40
'i

& 3.5
I

~ W

& 30-
I

2.5

2.0 . . . , . . . ,

0.0 1.0 2.0 3.0 4.0
lug, .li C

FIG. 3. Local magnetic moment 2(S„') vs ksT/Jl at
6=10 ' for the three approximations (conventions are as in
Fig. 1).

2(S„&

0.9

0.7

I 4.0.
(b)

C

3 5

l5
f 3 0

2.5—

2.0

0.6
0.0

I

10 20 30 40
I DQ„

1.5
1 I 'I I I I I I ( I I f [ I I I I I I

0.0 1.0 2.0 3-0 4.0
) gyral„1i K

FICx. 2. Local magnetic moment 2($'„) vs. log, ol /E at T=O
for the three approximations (conventions are as in Fig. 1).

FIG. 4. (a) vI~ /J~~ h~~ and (b) v& /J~~ h~&e vs log&O1/e at T=0
for the three approximations (conventions are as in Fig. 1).
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spectrum in the presence of thermal fluctuations. This
feature might effectively be avoided by spin excitations
which are sustained over a finite region of the system and
have a finite lifetime. A full theory for these excitations
in two dimensions remains to be developed.

Finally, Fig. 6 shows the absolute value of the two
characteristic first-nearest-neighbor instantaneous corre-
lators of the MRPA, IF t I and

I
Fj I, vs e at zero tempera-

ture as well as the behavior of IFt I
and IFj I vs T for two

characteristic values of e. Notice once more that the
value @=10 determines the crossover from three to

—3

two dimensions, consistent with what has already been
found for (S„' ) and v. It is interesting to remark that F

II

is a slowly varying function of T, reaching a finite value at
TN. (We expect this behavior to hold for the other ap-
proximations as well. ) It is thus evident that F~~ will ex-
trapolate continuously above T~, persisting to be finite in
the paramagnetic phase. The short-range correlators F

12.

will presumably be relevant to describe the localized exci-
tations mentioned above. Notice also from Fig. 6 that

IF~~ I gets enhanced while approaching the two d-imensional
limit, thereby suggesting that the physical relevance of
the localized excitations increases in two dimensions, in
agreement with experimental observations. ' [Worth not-
icing, in particular, is the remarkable resemblance be-
tween the top part of Fig. 2 from Ref. 1 with the behavior
of

IF ~~
I

vs T given in our Fig. 6(c).j
In this context, it is relevant to mention that measure-

ments aiming at the determination of the instantaneous
first-nearest-neighbor correlator via magneto-optical
effects have already been performed on GdA103 doped
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with Cr +, ' a system which corresponds to the isotropic
three-dimensional case (e= 1). These measurements pro-
vide us with a value for the parameter p defined by

&(s, —&s, &) ~ (s, —&s, &)&

&(s, —&s, &)'& 3/4 —&s'„&'
' (3 1)

where (i,j ) are first-nearest neighbors and the last ap-
proximate equality holds within the MRPA by disregard-
ing terms of order F . ' It is evident that —1 &p & 0 cor-
responds to the antiferromagnetic situation. The data are
taken just above the Neel temperature ( Tz =3.89 K) and
give p= —0.22+0.03. We find F= —

—,
' at TN, yielding

p = ——', (within an estimated 15%%uo error) which is undou-

btedly in very good agreement with the experimental
value. It is also worthwhile to stress that the fitting to
the data, which has led to the above experimental value,
was performed by assuming p independent of tempera-
ture from about T&/3 up to Tz. We find that this as-
sumption is approximately compatible with the MRPA
results, which give p -=—0.2 at T=O.

IV. CONCLUDING REMARKS

Our original motivation to undertake the present study
of the magnetic properties of an anisotropic antifer-
romagnet has been to determine whether they can be
characterized by a well-defined crossover region when the
anisotropy parameter @=Ji/Jl varies form 1 to 0. We
have succeeded in finding that all relevant physical quan-
tities (except, of course, the Neel temperature) cross over
for all practical purposes to their two-dimensional values
when a=10, in all three different theoretical decou-
pling procedures we have adopted.

The behavior of T~ vs e in the whole range 0 ~ e 1

has been established by the parametrization (2.22). In
this respect, a warning should be made about the deter-
mination of the anisotropy ratio e from the values of T~
and J~~, owing to the in@ dependence therein.

As already mentioned, we find an ambiguity in deter-
mining the appropriate value of e when considering
several physical properties, depending on the chosen ap-
proximation. We find, for instance, the same value of Tz
in the FSWA or the MRPA, on the one hand, and in the
RPA, on the other hand, for values of e which differ by
up to 10 (cf. Fig. 1). Moreover, we may notice from Fig.
2 that the sublattice magnetic moment 2&S„' ) converges
to its two-dimensional value for @=10 in both the
RPA and the MRPA, while that same value of 2& S'„) is
obtained in the FSWA for e= 10

It should be further mentioned that for e «1 the Neel

temperature could be stabilized by other effects not con-
sidered in the present treatment, such as the occurrence
of an anisotropy of the effective exchange integral in spin
space and/or the presence of long-range dipolar interac-
tions. Both efFects yield a finite T& when e=O without
violating the thermodynamic behavior.

We have also compared the behavior of the local mag-
netic moment and of the spin-wave spectrum as functions
of e and T for the three decoupling procedures we have
adopted, and found significant differences whose con-
sideration should be relevant for a detailed fitting to ex-
periments.

We emphasize, finally, that our calculation is valid for
T~ Tz since a long-range symmetry breaking has been
assumed throughout. By this very assumption we have
unavoidably left out other (paramagnonlike) excitations
which extrapolate smoothly across TN since they extend
over a finite length scale and are thus not affected by the
disappearance of long-range order. A few experiments
already point unambiguously in this direction. Our
finding of a smooth variation with temperature of the
first-nearest-neighbor instantaneous spin correlator that
reaches its maximum value at TN seems also to reinforce
the relevance of the localized excitations at least close to
Tz. Furthermore, the sizable enhancement of the above
correlator which we have found by approaching the two-
dimensional limit is an additional clue in favor of the in-
creased weight from localized excitations in layered
structures.

APPENDIX; INTEGRAL EQUATIONS
FOR CALLEN MODIFIED RPA

We begin by showing that the quantities F
~~

' and F~ '

introduced in Eqs. (2.28) and (2.29) of the text vanish
when the lattice has an inversion symmetry. Although
the proof can be carried out for arbitrary e, we sketch it
only for the two extreme cases, namely, the isotropic
three-dimensional case (e = 1) and the purely two-
dimensional case (a=0).

If one retains also the purely imaginary F' ', the equa-
tion of motion for y+ (q, q', Qi ) becomes

I
—iQ.—2F'"[~o—~i(q) l]X' (q, q';Q. )

+(1—2F"')[~o—~i(q)]X' (q+9 q'Qi. )

=2&S„&Wq+q-q )

in the place of the isotropic limit of Eq. (2.30) of the text
for either e= 1 or 0. Equation (Al) can be solved in the
usual way, to get

I iQ„+2F' '[aio+ai, (q) ] ]5(q+ Q —q')+(I —2F"')[bio —coi(q) )&(q—q')
(q, q'; Qi ) = —2& S'„)

(iQ„+2F'2'aio) —
I [2F'2'co, (q)] +(1—2F' ') [bio —aii(q) ]]

(A2)

From this expression one can calculate the instantaneous correlator &S, S. ) for any pair (i,j ), not necessarily first-
nearest neighbors. One obtains
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J p

1 iq (R —R. ) (1—2F'")[coo—co,(q)]+2co,(q)F' 'e= —2(S'„&—ye'
N 2Q'(q)

X [b[2~+"'—Q'(q)] —b[2~~"'+Q (q)]}

+ ze '[b[2cooF' ' —0'(q)]+ b[2co+(2'+Q'(q)]} (A3)

where

Q'(q)=Q[2F( 'co, (q)] +(1—2F"') [coo—co, (q) ]

(A4)

factor (1—2F) of the spin-wave spectrum drops out.
More generally, in the anisotropic case (0 & 6 & 1) one

obtains two distinct self-consistent integral equations for

F}~ and F~ at any temperature below T~:

is a modified spin-wave spectrum and
F~~

= —2& S'„)—g'y~~(q)
1, co(q) f3-

( q ) 2
(A9)

b(g)=
e~&—1

(A5)

Xcoth —Q(q)
2

(A6)

where Q(q) is obtained by setting F' '=0 in Eq. (A4).
When @=1 or 0 the zero-temperature value of F can be
readily calculated in terms of standard Watson integrals
JD and ID of the spin-wave theory:"

—(JD —ID )

2JD

—0. 1094 (6= 1),
—0. 1978 (6=0) (A7)

A close system of equations results at finite tempera-
ture by expressing (S„' ) in terins of (S„+S„)calculated
with Eq. (A3) via the identity (2.15). One gets

&S'„)= (A8)
1+2/

where g is obtained from g given by Eq. (2.17) of the text
by replacing Q(q) with the modified spin-wave sperctrum
Q(q) in the argument of the hyperbolic cotangent. For
this reason, the MRPA and RPA values of (S'„) coin-
cide in the zero-temperature limit as the renormalization

is the Bose factor with complex argument g. In particu-
lar, when i =j the right-hand side of Eq. (A3) must yield
a real quantity. This can only occur when F' '=0.

Equation (A3) can also be used to determine F"'(=F)
self-consistently, by choosing (i,j) to be first-nearest
neighbors. One obtains

F= —2(S„')—y1, 1 —&1—y(q)'
&I —y(q)'

Fi = —2(S'„)—g'yi(q) coth —Q(q)A ~ J.
Q( )

(A10)
q

where Q(q) is now given by Eq. (2.33) of the text and

co(q) —=coi(q) —I (q)

[ llzll ll)yll q + ized i)yi q ]

(Al 1)

1 —8',
28',

This yields

1 1= (1—2F)
c MRPA c RPA

R Jz

2— 1

8;

(A12)

(A13)

where P, =(kz Tz) ', resulting in an increase of T~ from
the RPA to the MRPA by factor 2 at most. '

[cf. Eqs. (2.10) and (2.31) of the text]. The equation for
(S'„) is finally obtained in the anisotropy case from Eq.
(A8) by considering the appropriate replacements
coo~co(q=0) and Q(q)~Q(q) in the integral P given by
Eq. (2.17) of the text.

Near the critical temperature, the quantities to be
determined self-consistently are F~~, F~, and T~ itself. In
particular, in the isotropic case (6=1)Fcan be expressed
near T~ in terms of the integral W, defined by Eq. (2.20)
of the text as follows:
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