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A variety of two- and three-dimensional random frustrated systems with continuous and discrete sym-

metries are studied within the Migdal-Kadanoff renormalization-group scheme. The continuous-

symmetry XY models are approximated by discretized clock models with a large number of clock states.

In agreement with earlier studies of the random gauge XY model using a T=O scaling approach, a

nonzero transition temperature is observed in three-dimensional XYmodels with O(2) local gauge invari-

ance. Our analysis points to the possible importance of local gauge invariance in determining the lower

critical dimensionality of frustrated systems.

I. INTRODUCTION

Recently it has been conjectured' that the lower criti-
cal dimensionality (LCD) of spin glass models depends
not only on the spatial dimension (D) and spin dimen-
sionality (n) but also on whether the spin-spin interac-
tions have local gauge invariance. The conjecture was
based on detailed studies of two 3D models with n=2
(XY spins) described by the Hamiltonian

N

H = —g J,"cos(P, —(b,
—A,, ),()"

where (ij ) denotes a summation over neighboring grains
and J," is the exchange coupling. In one of the models
J;.=J and A; was chosen randomly to be 0 or m, so this
model is identical to the bimodal XY spin glass. In the
second model, J,. is still chosen to be J but the A;. 's are
chosen randomly from a uniform interval between 0 and
2m. . We shall henceforth refer to this latter model as the
random gauge XY model. This model has O(2) local
gauge invariance, which means that the ground-state en-

ergy of the system will not change if the spins are rotated
by arbitrary amounts as long as the random gauge factors
are also adjusted so that the probability distribution of
the adjusted factors remains the same as the original dis-
tribution. Numerical studies of the zero temperature
scaling behavior of the generalized stiffness in the two
models in three dimensions showed qualitatively different
behaviors: the bimodal XY spin glass had no nonzero
temperature spin glass phase (LCD) 3), whereas the ran-
dom gauge model did (LCD(3). These results and
therefore the relevance of the local gauge invariance are

still open to debate: Even though Monte Carlo simula-
tions by Huse and Seung were in accord with our results,
an c expansion to order c. and a zero temperature
Migdal-Kadanoff recursion scheme have suggested that
the random-gauge model has an LCD greater than 3.

In this paper we study a variety of models some of
which have local gauge invariance and others that do not.
The models are studied within the framework of the
Migdal-KadanoB renormalization group (MKRG)
scheme. We use a discretization scheme for the XYspins;
the scheme is self-consistent and allows us to extend our
studies to arbitrary temperatures. Within the approxima-
tions we use, our results show very clearly the importance
of local gauge invariance in determining the LCD of frus-
trated systems thus providing further support for our
conjecture. We also use our numerical scheme to deduce
values for the stiffness exponent y in D=2 and D= 3 and

provide estimates for the LCD of the random gauge XY
model.

The random gauge XY model has been invoked to ex-

plain the unusual magnetic properties of the mixed state
of the oxide superconductors. ' The basic idea is that de-

fects, which are ubiquitous even in single crystal samples
of the oxide superconductors, cause the magnetic Aux

lines in the mixed state to be frozen into a random array
called the vortex glass. " While the phase P of the com-

plex order parameter changes discontinuously across
structural defects, the Josephson effect promotes phase
coherence between the domains in the absence of a mag-
netic field. In the presence of a magnetic field, the line in-

tegral of the vector potential A between the domains also
contributes to the phase difference between them. This
may be modeled by a random array of points representing
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domains in the sample with the phase factor A;. deter-
mined by 2n/40 1/ A.dl (4o is the fiux quantum for a

Cooper pair). We expect that in the large field limit this
model is in the same universality class as the random
gauge model. It has been suggested' that the zero tern-
perature scaling exponent y in the D=2 random gauge
model may be estimated experimentally by measuring the
resistivity of disordered thin film superconductors in an
applied magnetic field. Specifically, the resistivity is pre-
dicted to be of the form exp[( —To /T ) ] with

p =1/(1+ ~y~ ) at low T with a crossover to a classical re-
gime at higher T of the form T'+' . The value of y was
estimated to be -0.5 in Ref. 12.

II. THE MIGDAL-KADANOFF
RENORMALIZATION GROUP

A. The harmonic approximation

The MKRG scheme has been used with varying de-
grees of success in the study of frustrated systems such as
spin glasses. ' ' In spite of the uncontrolled nature of
the approximation in dealing with real Euclidean sys-
tems, the scheme is nevertheless exact on a hierarchical
lattice. ' Indeed, the MKRG scheme has been successful
in predicting correctly the LCD of the familiar random
bond Ising, ' XY and Heisenberg'. spin glasses. The
MKRG scheme provides a framework for determining
the effective coupling on increasingly larger length scales.
The hier'archical lattice for which the scheme is exact is
shown in Fig. 1. For a scale factor b, (b+1) spins in
series are considered and a decimation carried out to
eliminate all the internal degrees of freedom. To obtain
the rescaled coupling b ' such decimated bonds are
added in parallel.

The MKRG scheme for hierarchical lattices is exact
when spin degrees of freedom are discrete. In this case
the form of the Hamiltonian is preserved under the trans-
formation. The study of systems with continuous sym-
metry, such as those given by Eq. (1), poses a problem
since the renormalized Harniltonian no longer has the
simple cosine form. Traditionally, this problem has been
circumvented in the study of scaling behavior of XY and
Heisenberg spin glasses by making a T=O approxima-
tion. This approximation, ' which is uncontrolled,
proceeds as follows: The Hamiltonian is expanded about
the equilibrium angle between neighboring spins up to
quadratic terms. The Gaussian form of the resulting par-
tition function is taken to be valid over the entire range
of angles. The virtue of such an approximation is that
the quadratic form is preserved in a decimation process

K, =J co"s( /1,"),
DJ=J sin(A~),

(3a)

(3b)

to the isotropic random gauge model. Gingras also stud-
ied the random Dzyaloshinsky-Moriya model when K;
and D; are chosen independently from Gaussian distri-
butions. He reported similar scaling behavior for the
effective couplings in the two cases.

We have rederived the recursion equations of Gingras
and have reproduced his results. The recursion equations
are based on a decimation procedure: when spin 2 is de-
cimated from a row containing spins 1, 2, and 3, one ob-
tains

K13 (K12K23 12 23 }/ 123

D13 = (K12D23 —K23D12 )/L123

where

(K2 +D2 )1/2+(K2 +D2 )1/2

(4a)

(4b)

(4c}

We have also extended his calculations to the case where
the rescaling factor b =3. The recursion relations now
arise from the decimation of two sites and read (when
spins 2 and 3 are decimated from a row containing spins
1, 2, 3, and 4)

K14 ~K12(K34 23 34 23

D12( 34K23+ 23K34 }]™1234 (5a)

D', 4
= ID12(K23 34 23 34)

+K12(D23K34+D34K23) ]/M1234, (5b)

where

with

1234 12 23 12 34 + 23~34 (Sc)

thereby facilitating the recursion scheme. We note again
that this scheme may work only for T=O and even then
it is somewhat ad hoc.

Such an approximation has been recently applied to
the random gauge XY model by Gingras. He finds, in
disagreement with our earlier scaling results, that the
random gauge XY model does not order in D=3.
Specifically, the Hamiltonian he studied was

N

H = —g K,"c os((t, PJ
—}—g D,"sin(P, —

P, ), (2)
(ij ) (ij )

which reduces in the special case of

—(K2+D2 )1/2
EJ 1J EJ (5d)

FIG. 1. Rescaling on a hierarchical lattice corresponding to
b=2 and D=3.

Our numerical studies of the two sets of recursion rela-
tions show, in agreement with Gingras, that the effective
couplings decrease on increasing length scales suggesting
that both the random gauge XY and the Gaussian
Dzyaloshinsky-Moriya models have an LCD & 3. Indeed,
there is even less of a tendency to order when b=3 com-
pared to the b=2 case.
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B. The discretization scheme

%'e now turn to a discretization scheme that enables us
to carry out the MKRG scheme at arbitrary tempera-
tures and go beyond the harmonic approximation. The
idea is simple and it is illustrated in Fig. 2: instead of al-
lowing P to be a continuous variable, we allow it to take
one of many discrete values uniformly distributed be-
tween 0 and 2m. . Due to limitation of computer storage,
most of our studies were for q=300 for random systems
and up to 900 for uniform models. The Hamiltonian is
now defined for values of P restricted to be 2mk lq, where
k =0, 1,2, . . . , (q —1). We define

The recursion scheme is completed by combining 2
bonds decimated according to Eq. (9) into one rescaled
bond which is a q-valued variable. For random systems,
the numerical procedure is based on creating first a pool
of Nz bonds, each decomposed into q components ac-
cording to Eq. (6). One then picks Xz random batches of
2 such bonds from the pool to generate a new pool of
the coupling variables and the whole procedure is iterat-
ed. We typically consider X& equal to 2000. Generally,
the error bars due to statistics of the finite number of
bonds in a pool are smaller than the size of the data
points shown in the figures which display the results.

In the Ising case we have q=2 and then

J,"(q,k) =J; cos(2~k/q —2," )

and find

(6) J',3(2,0) = —J',3(2, 1)

=
—,
' ks T[In cosh( J,2+J~3 )/ks T

and

Jj(q, q +m) =J,"(q,m), —ln cosh(Jiz —J23)/ks T)j,
which is a familiar result.

q
—1

g J; (q, k}=0 .
k=0

(8)

The recursion relation for the discretized clock model
can be derived straightforwardly. For the one-
dimensional decimation the recursion relation reads

q
—1

J'»(q, k)=ksT lnF(q, k, t) —(1/q) g lnF(q, l, T)
l=a

(9)

where

(10)

F(q, k, T)

q
—1= g exp[J»(q, I)+J23(q, mod(q+k I, q))]/ksT —.

I =0

III. UNIFORM FERROMAGNETIC XYMODEL

We have tested our discretization scheme on the fer-
romagnetic XF model with q varying between 2 and 900.
In this case the A; in Eq. (6) are 0 and the microscopic
and renormalized J(q, k) have a positive maximum at
k=0 and a negative minimum at k =q/2 (clock angle P
equal to 0 and n, respectively}. Note that in this model
we have the symmetry J(q, k) =J(q, q

—k) which is lack-
ing in the random gauge model. The T=O scaling of the
maximum is shown in Fig. 3. The scaling exponent y for
the Ising case is equal to D —1 whereas for the continu-
ous symmetry model it should be equal to D —2. We find
that y is equal to D —2 for q & 2 on length scales shorter
than some critical value L, (q) which diverges as q tends
to infinity. In Fig. 3, the first six iterations show essen-

10

Equation (9) is derived by noting that the renormalized
Hamiltonian is characterized by renormalized exchange
interactions and by a constant term. The latter was
determined by imposing condition (8) on the rescaled
couplings. Note that in the limit of T tending to 0 only
the largest exponent contributes to the sum in Eq. (10). If
the microscopic Hamiltonian involved anisotropic cou-
plings (J"different from J~) then pair energies would de-
pend not only on the difFerence in spin angles but also on
their sum. In that case the discretization scheme would
involve q X q and not just q couplings in the Hamiltonian.

U
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300
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900

FIG. 2. Scheme of decimation in the discretized XFmodel.

FIG. 3. Scaling of J{q,O) for D=2 and D=3 for various

values of q for uniform ferromagnetic models shown on the

right-hand side of the figure.
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FIG. 4. Iterations of J(q, O) for the uniform ferromagnetic
model with q=900 for temperatures indicated in the plot (in

units of J/k& ). The T=O line was obtained from the recursion
relations which were explicitly considered for this limiting T.

FIG. 6. Angular dependence of J(q, k) in the ferromagnetic
model with q=900. The dotted line corresponds to the micro-
scopic cosine interactions. The remaining lines correspond to
the fixed point situations at T=O (dashed line) and T=0.4J/k&
(solid line).

tially no crossover to the Ising-like behavior for q= 300.
We found that L, (q) becomes very large when one cal-

culates finite temperature couplings, even when T is
infinitesimal. This is shown in Fig. 4 for the 2D XYmod-
el with q=900. No trace of a crossover is seen up to 20
iterations at T =0.04Jlks in this case: the effective cou-
pling has reached a fixed point. For temperatures less
than 0.44Jlka, J(q, 0) settles on a T-dependent fixed
point value which is suggestive of a line of fixed points.
This line seems to terminate at a Kosterlitz-Thouless'
transition temperature of 0.44Jikii. At higher T's the
coupling rescales to zero, indicating paramagnetic behav-
ior. Figure 5 shows the behavior of the normalized helci-
ity modulus defined as the fixed point value of J(q,0}nor-
malized to its T=O value. The plot clearly indicates a
sharp transition to the paramagnetic phase.

We now focus on the angular (or k) dependence of
J(q, k). This is shown in Fig. 6. The microscopic cou-
pling is given by the cosine function. Below the
Kosterlitz-Thouless transition the fixed point "potential"
develops a pronounced minimum at P=n and a max-
imum at /=0. The values at the extremal points are no

1.0

longer symmetric. The di8'erence between the maximum
and minimum shrinks with T, becoming equal to 0 at the
critical point.

MKRG schemes have not been unequivocally success-
ful when applied to the 2D XY model. Jose et al.
(JKKN) ' showed that their MKRG scheme, based on
expansion in a Fourier series and Migdal-Kadano8'recur-
sion relations for the Fourier coefficients, gave numerical
results apparently consistent with the Kosterlitz-Thouless
line of fixed points. However, a more careful study in-
volving a mapping to the Villain model indicated that
this was not quite correct. ' Indeed, the flows are toward
a paramagnetic fixed point at any nonzero T, thereby
barely missing the subtle Kosterlitz-Thouless transition.

Does our discretized clock model have a genuine line
of fixed points in the manner of Kosterlitz and Thouless
or is the behavior we observe in Figs. 4-6 akin to that of
the Villain model in the JKKN analysis? The form of the
interaction at the apparent fixed point shown in Fig. 6 is
visually very similar to that presented by JKKN (except
for a scale factor of 2} and is very close to the Villain
form. Thus we expect that our approach is probably
similar to that of JKKN in that the line of fixed points is
almost but not quite present. Future studies to clarify
this point would be desirable.

0 IV. FRUSTRATED MODELS

0.0
0.0

I

0.2
I

0.4 0.6

1&ET/J

FIG. 5. Normalized helicity modulus for the ferromagnetic
model with q=900 as a function of temperature. The open cir-
cles indicate J(q, O) after 20 iterations for those temperatures at
which an evidence for a gradual decrease in J(q,O) is seen. Fur-
ther iterations would result in the helicity modulus being zero.
The data points denoted by the crosses are for temperatures at
which no decrease in J(q,0) is seen within 20 iterations.

We now turn to the analysis of several 2D and 3D frus-
trated models. We have studied various models corre-
sponding to special choices of A;-, q, and sets of cou-
plings in the Hamiltonians described by Eqs. (l) and (2) in
which the P; variable takes on discrete values between 0
and (q —l )2m. /q. The quenched random angle A,.J may
also be now chosen from q' discrete values. The Ising bi-
rnodal spin glass is a special case when q =q'=2. We
will see that the random gauge model is obtained for
larger values of q =q' (q=300 or more).

Other classes of models correspond to Hainiltonian (2),
where J;. and D;- are chosen independently from a
Gaussian distribution. The Ising Gaussian spin glass is a
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special case of q=2 with D,"=0. For q » 1 and D; %0
we should mimic the random Dzyaloshinsky-Moriya
model. If we set D;.=0 and take larger q we obtain the
bimodal XYspin glass and the Gaussian XY spin glass for
the corresponding distributions of the couplings J; . Of
all these models the random gauge system has an O(2) lo-
cal gauge invariance, which we hope will be recovered in
our discretization scheme when q =q' » 1. On the other
hand, the bimodal and Gaussian Ising spin glasses have
the Z2 gauge invariance symmetry. The random
Dzyaloshinsky-Moriya model provides a good example
for tests of the relevance of the local gauge invariance:
for Gaussian J; and D;& coupl. ings the model has O(2) lo-
cal gauge invariance and should behave like the random
gauge model, but the local gauge invariance is destroyed
if either J; or D;~ are non-Gaussian. J(q, g) denote
J(q, k) for k corresponding to the discrete angle P. A
typical plot of J (q, P) is shown in Fig. 7—for the q= 300
random gauge model. The dotted line depicts one select-
ed microscopic coupling. It is of the shifted cosine form.
Two typical couplings picked from the pool of couplings
obtained after eight iterations are shown by the solid
lines. The structure is more complicated and a clear
departure from the cosine form is seen. In general, each
set of J(q, g) attributed to a single bond coupling can be
characterized by its maximum and minimum values. %e
are interested in how these extremal values scale for the
models studied.

Our results for these Inodels are shown in Figs. 8 and
9. The former is for the maximal coupling and the latter
for the minimal one. The scaling of the average maximal
and minimal couplings is seen to be virtually identical so
we focus on Fig. 8. Strikingly, the models with the local
gauge invariance built in are characterized by a LCD & 3,
whereas those without the invariance do not have a
nonzero transition temperature in D=3. As mentioned
before, the random Dzyaloshinsky-Moriya model with
Gaussian exchange couplings is locally gauge invariant
and indeed in D=3 it has a phase transition similar to
that in Ising spin glasses. On the other hand, the
Dzyaloshinsky-Moriya model with bimodal exchange
couplings is not locally gauge invariant and this model
does not undergo a finite-T phase transition. The data

2.0—

0 0

I

~ RGXY
~ GSG
~ BSG
~ GXY

U
—2.0

a —40
E

2.0
O

~ .--e- .2.0 8 0

—4.0 I I

ITERATION

FIG. 8. Scaling of max J(q, g) for various frustrated random
systems. For GSG (Gaussian Ising spin glass) and BSG (bimo-
dal Ising spin glass) q=2. For RGXY (random gauge XY mod-
el}, GXY (Gaussian XY spin glass), and DM (random
Dzyaloshinski-Moriya with Gaussian exchange couplings)
q= 300. For BXY(bimodal XY spin glass) q= 900. In each case
the pool consisted of 2000 bonds.

4.0

2.0—

0.0

~ -2.0

2D
I

~ RGXY
~ GSG
~ BSG
i GXY

points corresponding to the latter model are virtually in-
distinguishable from those for the bimodal XY spin glass
and are not shown in Fig. 8. Our results, and especially
the different behaviors of the random Dzyaloshinsky-
Moriya model with Gaussian and non-Gaussian cou-
plings, are a confirmation of our previous conjecture on
the role played by local gauge invariance in determining
the LCD of frustrated systems.

The T=O scaling exponent y in D=3 is found in our
discretized MKRG scheme to be the same for the Gauss-
ian and bimodal Ising spin glasses, the random gauge
model, and the random Dzyaloshinsky-Moriya model

E —4.0

90 180 270 360
0 («g)

0.0 I -. .

—2.0—
S.

e

5 ~ ~

FlG. 7. J (q, P) vs P for the 3D random gauge XYmodel with
q=300. The dotted line is a typical microscopic coupling. the
solid lines show two typical couplings after eight iterations.

I I

ITERATION

FKJ. 9. Similar to Fig. 8 but for the minimal value of J(q, p).
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FIG. 10. The form of individual couplings for the 3D bimo-
dal XY model after 0 (dotted line), 4 (broken line), and 8 (solid
line) iterations.

with the Gaussian exchange couplings. Its value is equal
to

yMx =0.26 (D =3) . (l2)

This should be compared to the exponent y of 0.19 ob-
tained by the transfer matrix method for the 3D Ising
spin glasses ' ' and y of order 0.3 for the random gauge
model obtained by the method of T=O quenches. ' It has
been suggested '" that the y exponent for the random
gauge model might be the same as that for the 3D Ising
spin glasses. Our MKRG results agree with this expecta-
tion. However, defect-energy calculations by Gingras
and Reger et al., based on large-sample statistics, yield y
of order 0.05.

The corresponding calculations in D=2 show that
whereas the random gauge model continues to be similar
to the Gaussian Dzyaloshinsky-Moriya one, they are
different from the Gaussian spin glass: y = —0.36 for the
random gauge and Gaussian Dzyaloshinsky-Moriya mod-
els and it is —0.24 for the Gaussian Ising spin glass, indi-
cating a T=O phase transition in each case. For the ran-
dom gauge XY model the MKRG scheme of Gingras
yields y = —0.74 and the T=O scaling calculation of
Fisher et al. " gave y = —0.5. It is seen that the discre-
tized MKRG scheme is consistently closer to the nurneri-
cal results on the stiffness.

We also find evidence that the LCD's for the random
gauge and the Gaussian Ising spin glass models are
slightly different and are 2.59+0.05 and 2.55+0.05, re-
spectively. The procedure to find the LCD is similar to
the one outlined in Ref. 16 for the case of Ising spin
glasses. The idea is to combine in effect 2 ' decimated
bonds into a rescaled coupling where D is no longer re-
stricted to be an integer. For instance, for the Gaussian
Ising spin glass model at its 1cd the required number of
decimated bonds is about 2.92. Thus one has to combine
two decimated bonds with a weight of 1 and to take the
third decimated bond with a weight of 0.92. The behav-
ior of the 2D bimodal Ising spin glass model is totally
different from that of the 2D Gaussian Ising spin glass

FIG. 11. Same as in Fig. 10 but for the Gaussian XYmodel.

and this point is discussed further in Ref. 17.
Consider now the Gaussian and bimodal XY spin

glasses for which the LCD appears to be larger than 3.
Figure 8 shows that the average maximal value of J (q, P)
does not behave as I. , but that an effective y changes
continuously from a value of order —1 and asymptotical-
ly reaches a value of —0.1. Numerical studies of the
stiffness for the bimodal XY spin glass' suggest y = —1.
On the other hand similar studies of the D=3 Gaussian
XY spin glass' gave y of order —0.45. The bimodal and
Gaussian XY models need not be in the same universality
class in 3D (i.e., below the LCD), but our MKRG
analysis suggests that they might be. The reason for the
apparent dependence of y on the length scale can be
grasped from Figs. 10 and 11 which show forms of typi-
cal couplings. In the initial iterations these forms have
pronounced structures which disappear only after 6-7
iterations leading to the fixed. paint behavior

The stability of an ordered phase at low temperatures
depends on the scaling behavior of low-energy excita-
tions. It would be interesting to investigate how the local
gauge invariance, or lack of it, affects low energy excita-
tions in spin systems. The presence of the local gauge in-
variance, within the MKRG scheme, yields the zero-
temperature exponent y for the 3D gauge glass model to
be close to that for the Ising spin glass. Equality of these
exponents would not mean, however, that the two models
belong to the same universality class. For instance, the
ferromagnetic Ising and Potts models have a LCD of 1,
but they are in different universality classes. Gingras
has shown recently, using a mean-field theory, that the
gauge glass is in a different universality class than the Is-
ing spin glass.
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