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Jt-J2 model: Energy, correlations, and order-parameter fluctuations on finite lattices
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(Received 12 July 1991)

A modified spin-wave theory is applied to frustrated quantum antiferromagnets on finite square lat-
tices. The results for the energy and for the correlation functions are found to agree very well with exact
values obtained by numerical methods. The fluctuations of different order parameters, previously pro-
posed to characterize possible different phases of purely quantum origin, are investigated. Our results
suggest that the enhancement of long-range dimer and twist order seen numerically is not significant,
and is due to the finite size of the lattices considered.

The Cu-0 planes in undoped high-T, compounds are
well described' by a square-lattice Heisenberg model
displaying long-range antiferromagnetic order. Upon
doping, this long-range order is destroyed and a different
nonmagnetic phase sets in, the fluctuations of which are
believed to be central to a microscopic understanding of
the high- T, phenomena. Following the suggestion that
the effect of holes in destroying the Neel order can be ac-
counted for by the introduction of frustration in the orig-
inal Heisenberg model, many authors considered the
possibility of finding such phases in frustrated quantum
antiferromagnets. In this regard the simplest model one
can think of is the so-called J, -J2 model:

H=J, QS, S, +s+J2+S, .S, +s, ,

which includes, in addition to the standard J& Heisenberg
coupling, a frustrating next-nearest-neighbor interaction
Jz along the diagonal 5' of the square-lattice plaquettes.
Classically, the ground state of this model has Neel order
for J2/J, &0.5, while for J2/J, )0.5 it decouples into
two Neel sublattices with an energy independent of the
angle between the corresponding staggered magnetiza-
tions. At Jz/J, =0.5 various states become degenerate,
suggesting that near this point quantum fluctuations
could stabilize a new phase with some kind of disorder.
The nature of this phase is of considerable interest, and
several candidates for the ground state in the
intermediate-parameter region near Jz /J

&

=0.5 have
been proposed: resonant-valence-bond state with short-
range order, long-range dimer order in a columnar pat-
tern, " twist order, and the more exotic chiral order. '

Most of the proposals come from studies involving ap-
proximations such as conventional (large-S) spin-wave
theory or a variety of mean-field decouplings, which
disregard, in one way or another, part of the fluctuations
originating in the quantum nature of the spins. Conse-
quently, more reliable techniques are needed to establish
faithfully the existence of any of these states of purely
quantum origin. One alternative is provided by numeri-
cal methods —mainly exact diagonalization of small
systems —although in this case it is hard to extrapolate
the results to the infinite-size limit (see note added).

Clearly, it would be desirable to have analytical ap-
proxirnations capable of providing a bridge between the
exact, small-system results and the unreliable, infinite-size
approximations, that is, a method which could
reproduce —at least qualitatively —the results obtained
for finite systems, while having a well-defined behavior
with lattice size. Takahashi" has recently formulated a
constrained spin-wave theory (SWT) of the unfrustrated
Heisenberg model, which yields excellent agreement with
the results of exact diagonalization for small systems
(even the exact results for the smallest lattices' ). His
idea was to supplement the conventional SWT with the
condition of zero magnetization for low-dimensional sys-
tems at finite temperatures (Mermin-Wagner theorem)
and for finite systems at T =0. ' This is implemented by
means of a constraint introduced through a Lagrange
multiplier, which acts as a chemical potential for spin-
wave bosons. Since, for the unfrustrated Heisenberg
model, successful extrapolations of finite-size results use
SWT as a guide, Takahashi's theory works well as the
bridge approximation we were claiming for above. Un-
fortunately, attempts to use it for the J&-J2 model showed
that the results deteriorate rapidly with the amount of
frustration introduced. '

More recently, Xu and Ting' have generalized this
theory by dressing the excitations through the self-
consistent decoupling of quartic interactions in the spin-
wave Harniltonia. The renormalized phase diagram
they obtained for the J, -Jz model differs qualitatively
from that obtained with conventional theory. In partic-
ular, they found no windows in the intermediate-
pararneter region between the two classical magnetic
phases of the model, suggesting the existence of a new

phase, different from the spin-liquid state proposed in
earlier studies. Since their results for N~ ~ come close
to those obtained by numerical methods, it seems to us
that this approximation deserves a better look at its pre-
dictions, particularly on finite lattices.

In this work we investigate how well the constrained
self-consistent SWT reproduces the exact results obtained
in numerical studies of the J, -J~ model. ' Conversely,
by reproducing qualitatively results obtained for finite
systems, we will try to assess whether some features
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In both phases the consistency equations (3) and (5)
must be supplemented by the zero-magnetization condi-
tion f (0)=S +—,', imposed through the Lagrange multi-

plier.
In the thermodynamic limit N~ ~ and for A, equal to

zero, these equations reduce to the Xu-Ting equations'
(in this limit the system does get magnetized so that the
Lag range multiplier that ensures zero magnetization
must vanish). Note also that when A. =O there are diver-

gent terms in the k summations for k=O, m, which have
to be treated like in the Bose-condensation problem. '

The point J2/J&=0. 5 is the classical phase boundary
separating the Neel and collinear orders for S—+ ~. For
S =

—,
' there is a strong renormalization of the phase dia-

gram because of quantum fluctuations, leaving a region of
coexistence of both orders where presumably a new phase
sets in. '

We have numerically evaluated Eqs. (2)—(5) for finite
lattices. In Fig. 1 we plot the predictions for the energy
of systems of sizes N =16 and 20, together with the exact
results from Ref. 7. As can be seen, for N =20 our re-
sults are in very good agreement with the exact ones in
both phases and in the whole parameter region; for
N =16 the approximation does not follow the rounded
shape of the exact curve near the transition point (a
consequence of the absence of level crossing for this lat-
tice ). Of course, for finite systems we do not expect the
breaking of lattice-rotation symmetry implied by col-
linear order. Nevertheless, the energy in this phase is
surprisingly well approximated by taking the symmetry-
broken state as starting point in the calculation.

The results for correlation functions and structure fac-
tor in the Neel phase are shown in Figs. 2 and 3, where
we also plot the exact results taken from Ref. 13 for
comparison. Again, the agreement is excellent in the
whole region corresponding to this phase, except for
N =16, where the additional symmetries of this lattice

found numerically are significant or only due to the finite
size of the lattices considered. To this end we compute
four-spin correlation functions, which are needed to
study the fluctuations of different order parameters as a
function of lattice size. These order parameters have
been previously proposed in the literature in order to
characterize the nature of (possible) new phases in the
intermediate-parameter region. Since our interest is fo-
cused on ground-state properties, all the calculations will
be carried out at zero temperature.

Following Takahashi, " we add to Hamiltonian (1) the
constraint of zero total (staggered) magnetization,

H'=H+) g( —I )'S,',
where (

—1)'=1 (
—1) for spins pointing up (down) in the

classical ground state. A standard Dyson-Maleev trans-
formation' of spin operators in H' leaves us with a spin-
wave Hamiltonian in Bose operators with quartic interac-
tions. Further Hartree-Fock decoupling of these quartic
terms, plus a Bogoliubov diagonalization of the resulting
quadratic Hamiltonian, produced the following results.

(a) Neel phase (J2 /J, & 0.5 ),

H' =J, (S; S;+s)+J2(S; S; )

= —J I.g(5)]'+J I:f(5')]',
where

1 Qk Vk;k."'= 2X&
k (1 QkYk)

(3a)

1 1
(3b)

J2g(5„)
'9k='9 J f(5 )

7( 1 'Yk)
1 y

(3c)

and Yk =-,'(cosk„+cosk» ),
21=

I
I —

A, /J)zg (5)]
(b) Collinear phase' (J2/J& &0.5),

p k
=cosk~ cosky and

0.45

~ ~

H' =J, (S; S, +s )+J,(S;.S;+s )+2J2(S; S;+s.)
050

= —Ji Ig(5. ) 1'+Ji If (5, )]'—&J2lg(5')]' (4)
055

where, in this case, n
0

lLJ

g(r) eikr.1 Ak

2N~ (g2 g2)1 l2

0.60
(sa)

(r)= 1 Bk ei k.r
2~ + (g2 g 2 )1/2

0.65
(5b)

and 0.70
00 04 0.6

Jz/3~
OB 1.0

g(5„) 2J2g(5')

g (5„) 2J2g (5')

FIG. 1. Ground-state energy per bond for N=16 (lower
solid line), N =20 (upper solid line), and N = ~ (dashed line).
Also shown are exact results for N=16 (open circles) and
N =20 (solid circles) from Ref. 7.2J,f (5»)
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FIG. 4. Neel and collinear order-parameter susceptibilities.
Open (solid) circles are exact results for N = 16 (20) from Ref. 7.

FIG. 5. Column order-parameter susceptibihty. Open (sohd)
circles are exact results for N = 16 (20) from Ref. 7.

present, the strongest candidate being the dimer order in
a columnar pattern (see below). The predicted y,»»„«,
values are very small in the whole Neel phase, as expect-
ed, and in remarkably good agreement with the exact
ones. Results for N =16 are also included in Fig. 4 for
comparison. Note the early enhancement of collinear or-
der shown by the exact results and the large departure of
approximated values from exact ones for this particular
lattice.

Probably, the most interesting quantity is the column
order-parameter susceptibility, whose behavior is plotted
in Fig. 5. In this case the results are not very good quan-
titatively, but still not too far from the exact ones, and
show the qualitative behavior seen numerically. This is
in part satisfactory since y„&„„takes very small values
(compared with the maximum possible ones), which re-
sult from subtle cancellations among four-spin correla-
tions (one must bear in mind that we are reproducing the
behavior of a parameter associated with a nonmagnetic
phase, by means of an approximation which essentially
relies on having a magnetized ground state}. In any case,
were we going to trust this result, since the curve Battens
to zero for X~ 00, it would mean that columnar order is
not present in the thermodynamic limit.

We have also computed the susceptibility of the twist
order parameter. However, in this case the results are
quantitatively wrong, even unphysical (negatives) for
small J2. The reason for this can be understood as fol-
lows. Consider four spins 1,2,3,4 with 1,3 in sublattice A
and 2,4 in sublattice 8. By means of the Lagrange identi-
ty, it can be seen that y,„;„is a summation over ground-
state averages such as

&(s, .s, )(s,.s, ) &- &(s, .s, )(s,.s, ) & .

Exact calculations on a 2X2 lattice show that our ap-
proximation gives good results for & (S,.S3)(S~.S4) & (in
fact, the exact value 0.0625 for J2=0), while it largely
overestimates correlations of the type &(S&.S2}(S3.84)&
(exact value 0.25 for Jz =0 against a prediction of 0.337).

Since this last type of correlation appears always with
negative sign in y,„;„,the cancellations which take place
in y,»„„donot occur in this case, producing the above-
mentioned negative results for small Jz. Nevertheless, it
is interesting to comment that, for large Jz, y,„;„grows
in going from X =16 to 20 (as in the numerical study7}
and later decreases to zero for larger lattices. Were this
qualitative behavior to be trusted, we would conclude
that the enhancement of twist order seen numerically is
only a consequence of the particular lattice sizes con-
sidered.

In conclusion, the constrained self-consistent SWT
gives very good results on finite lattices for energy (in
both phases) and correlation functions in the Neel phase
for Jz/J, &0.5. In the intermediate-parameter region
0.5 &Jz/J& 0.6, its predictions for correlation functions
and structure factor depart from the exact values, leaving
open the possibility of a new phase very close in energy to
the Neel state. In order to have a deeper check on the
theory, we have also computed four-spin correlations. It
turns out to be that at least half of these functions are
inaccurately given by the approximation, which is not
unexpected since four-body operators are most of the
time out of reach of simple Hartree-Fock-like theories.
Nevertheless, calculations of different order-parameter
susceptibilities by means of this four-spin correlation pro-
duced results in good quantitative (for y,»&;„„,) or quali-
tative agreement with exact ones. Since order parameters
are carefully chosen to distinguish a Neel-like ground
state from other possibilities, our results suggest that
peaks or enhancements seen in numerical studies mean
no more than the following: When on Snite lattices the
precursor Neel order is fading away as a result of frustra-
tion, all these parameters tend to Buctuate a little more,
even though they will not eventually become. the new
ground state in the thermodynamic limit. This is seen in
our calculations, where we found order-parameter
enhancements in a region which, according to the same
approximation, will clearly display weak Neel order for
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1V~ 00. Finally, it would be interesting to perform simi-
lar calculations at finite temperature in order to make a
comparison with a recent numerical study' of the ther-
modynamics of the model on a 4X4 lattice.

We have recently become aware of recent work by H.

J. Schulz and T. A. L. Ziman where they numerically di-
agonalize a 6X6 lattice and make a finite-size scaling
study using the 4X4 and 6X6 lattice results. Their
findings, as ours, hint at a strong finite-size dependence of
relevant quantities.
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