PHYSICAL REVIEW B

VOLUME 45, NUMBER 14

1 APRIL 1992-11

Relaxation time of fine magnetic particles in uniaxial symmetry

L. Bessais
Laboratoire de Magnéetisme, CNRS, 1, Place A. Briand, 92195 Meudon CEDEX, France

L. Ben Jaffel*
Institut d’Astrophysique de Paris, CNRS, 98bis, Boulevard Arago 75014 Paris, France

J. L. Dormann
Laboratoire de Magnetisme, CNRS, 92195 Meudon CEDEX, France
(Received 19 February 1991; revised manuscript received 31 July 1991)

Models for fine magnetic particles are shortly reviewed. A method for the solution of the partial
differential equation occurring in Brown’s model is presented, which in the uniaxial case permits us to
calculate numerical solutions for a large range of a values. An approximate formula for the relaxation
time is given. The expression obtained is valid for 0 < a <60, which corresponds to all the physical cases
(including geological scale). This formula is used to fit experimental results and good agreement is ob-
tained. In addition, the question of the validity of Brown’s treatment when the magnetization is not uni-
form, the meaning of the dissipation constant, and quantum effects are discussed.

I. INTRODUCTION

When a ferromagnetic particle is smaller than a certain
critical size, it constitutes a single-domain particle.! The
direction of its magnetic moment m when no external
field is applied is, at zero temperature, along an axis of
easy magnetization corresponding to a minimum of the
energy of magnetic anisotropy. The main effect of
thermal agitation is a continuous fluctuation of the direc-
tion of the vector m along with a possible overturn of m
from one minimum to another, by overcoming a barrier
of energy Ep. Such a set of small particles can be de-
scribed by one or several relaxation times 7; necessary for
the distribution of orientations of m to get close to
thermal equilibrium.

When 7; is smaller than the measurement time 7, the
particle is said to be in a superparamagnetic state.? A
description of the properties of such particles and a mod-
el for the relaxation time have been given by Néel,® who
considered magnetostriction and demagnetization fluc-
tuations induced by vibrations. In Néel’s theory,? it is as-
sumed that the rotation of the magnetization takes place
in unison, i.e., relative directions of the magnetic mo-
ments remain unchanged during the rotation.

Using the theory of stochastic processes, by consider-
ing a random walk of the magnetization direction analo-
gous to the Brownian motion of a small particle in a
liquid, Brown* derived a Fokker-Planck type equation for
the probability density W(t,0,¢) of the magnetic-moment
orientations, the eigenvalues of which are directly related
to the above quoted relaxation times 7;. Unfortunately,
Brown* did not calculate the eigenvalues of his equation.
He obtained an asymptotic formula for high energy bar-
riers, and calculated up to second order in the energy the
values for low energy barriers. Therefore, he could not
give any reliable estimation for the range of validity of
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the common high energy-barrier approximation.

Afterwards, Aharoni,>® Aharoni and Eisenstein,’ and
Eisenstein and Aharoni® tried to solve the differential
equation previously derived by Brown.* They obtained
numerical and asymptotic expressions for the relaxation
time corresponding to small particles of axial or cubic an-
isotropy. However, the numerical series they used were
of slow convergence and the asymptotic expressions not
checked for high energy-barrier values.

Recently, Jones and Srivastava®!? proposed a theoreti-
cal model based upon a formalism developed by Ander-
son!! which they applied to the Mdssbauer spectra of su-
perparamagnetic particles with uniaxial anisotropy by in-
cluding in the calculation all possible values of the com-
ponent of the magnetization along the easy direction axis.
They showed that the Mossbauer line shape can be ex-
pressed directly in terms of the solution of a differential
equation in the continuum limit. A rather arbitrary R
factor is introduced to describe possible quantum effects.
Moreover, this R factor is used as a parameter to obtain
the Mossbauer line shape for a given system of particles.
So it is not clear in their theoretical framework how to
construct a proper R factor. It is clear that the main
feature of their theory is the possibility of treating the
Maossbauer lines formation as a multilevel problem.
However, a different stochastic description of the magne-
tization fluctuations (i.e., Anderson'! instead of Brown?)
did not lead to a sensitive improvement of their model
when compared to Brown’s* treatment.

More recently, Klik and Gunther,'>!3 derived the re-
laxation rate for the axially symmetric model previously
studied by Brown,* following the asymptotic expansion
method of Matkowski and Schuss.!* These authors start-
ed with the classical Fokker-Planck equation in spherical
coordinates, and argued that the obtained prefactor was
unphysical as its T /> dependence was claimed to be
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due to the lack of saddle points. After that, Klik and
Gunther!? applied the results of the formalism of Dygas,
Matkowski, and Schuss!” and obtained, in the asymptotic
limit, the dissipation rate for systems of uniaxial and cu-
bic symmetry. We shall discuss and comment upon these
results in Sec. III.

Considering interparticle interactions, Dormann, Bes-
sais, and Fiorani'® presented phenomenological expres-
sions based upon experimental results they obtained for
some species of small particles. Among other results,
they claimed, from the dynamical study they performed,
the possibility of a phase transition at O K for these parti-
cles.

Note that an important difficulty that arises in the
study of the superparamagnetic relaxation time'®'” is the
lack of a general law (Fulcher, generalized Arrhenius,
power-law type, or others) which is able both to describe
the relaxation phenomenon of small particles and to al-
low for a correct and precise reconstitution of the experi-
mental results.

To refine the classical treatment of fine-particle relaxa-
tion, we present here a method for the solution of the
Fokker-Planck equation derived by Brown' [his Eg.
(2.10)]. The main advantage of our method when com-
pared to the previously used procedures*” is its ability to
provide an analytical formulation of the solution in addi-
tion to the numerical results. This advantage arises from
the cumulative effects of the great speed of convergence
of the method, the matrix formulation of the problem,

and, finally, the simplicity of the orthogonal functions
J
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where E is the energy density. Keeping in mind that the
form of the solution to Eq. (1) does not depend upon the
uniformity of the magnetization, we will use in our treat-
ment the magnetic moment m (m per unit volume is not-
ed “M” in the Brown* paper) of the particle with the
mean magnetization defined as M =|m|/V, where V is
the volume of the particle. This change with regards to

W+k'W,

L. BESSAIS, L. BEN JAFFEL, AND J. L. DORMANN 45

used (sine and cosine contrary to the commonly used
Legendre polynomials).

In Sec. II, we develop the method; in Sec. III we apply
it to the very realistic and simple case of uniaxial parti-
cles, and an Arrhenius-type law is derived for the relaxa-
tion time. In Sec. IV comparison with experiments is
presented, as well as a discussion concerning the validity
of the present treatment when the magnetization is not
uniform, the role of the dissipation constant, the deter-
mination of the preexponential factor 7, and, finally, the
possible influence of quantum fluctuations.

II. THE METHOD

A. Brown model

Brown* considered a small single-domain particle with
a uniform mode of rotation of the magnetic moment.
The fluctuations of the magnetization vector in such a
small particle due to the thermal agitation are important.
Although the problem is difficult, it is possible to derive a
solution if we consider the correlation times correspond-
ing to the random thermal forces to be smaller than the
response time of the system (which is the case of Browni-
an particles). In this case the random forces reduce to a
purely random process with a “white” spectrum, and the
Brown* hypothesis is valid. This simplification allows us
to replace an integral equation (Chapman-Kolmogorov
type) by a partial differential one (Fokker-Planck type).
In his paper, Brown* derived the following equation:

13
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l
Brown’s notation is of importance and will be discussed
in Sec. IV.

B. Solution of Brown’s equation

Having used spherical coordinates, it is obvious that
any physical quantity Y(¢,60,¢), considered as a function
of the angle ¢, is periodic, having a period of at least 2.
Under very weak conditions (Dirichlet’s conditions) it is
possible to expand the function Y(z,0,¢) as a Fourier
series in the variable ¢ as follows:

+ o .
Y(1,6,8)= 3 Y,(1,0)m?, (3)

m=—o®

where 0=60 = and 0=¢ =27, j being the purely imagi-
nary number V' —1, and Y, (t,0) are the Fourier
coeflicients defined as follows:

= 1 27 .
t,0)=——| 7'Y(,0, iméd e . 4)
Y, (1,0)=5— [ Y(1,6,4)e ¢
However, depending upon the parity of the index m ap-

pearing in Eq. (3), we can expand the Fourier coefficients
Y,,(¢,6) as a sine or cosine series as follows:!®
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+
Y, (t,00=3 Y,,(1)

n=0

~ + o
Y, (t,0)=3
n=0

cos(n@) if m is even ,

(5)
Y, .(t)sin(n0) if m is odd ,

where Y, . (t) are the sine or cosine coefficients defined

as follows:
_ _1 pag
Vpm(t)=— fo ¥,(1,0)
cos(n@) if m is even

X jor do (6)
sin(n@) if m is odd
— 1 g
Yo,z,,(t)—gfo Y,,(t,6)d6

Note finally that cos(n8) and sin(n0) can be considered,
J
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respectively, as the Chebyshev polynomials of the first
and second kind. We can then use the above properties
for the probability density W(t,0,¢) and develop it first
as a Fourier series in the ¢ variable. In other words we
can write

+ o
W(t,0,6)= 3 Wi(t,0)e?, (7

k=—c

where W, (t,0) are the Fourier coefficients defined as fol-
lows:

=1 o —jk.¢
Wi(t,0)=—— [ "W(1,6,9)e ~H4dg , (8)

as already indicated by Eq. (4). We also develop the free
energy E as a simple Fourier series, with the coefficients
E,.

Introducing these Fourier series in Eq. (1) and using
their orthogonality properties, we obtain a differential
equation for each k:

L k? ? 3
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Now, the next step is to introduce the Chebyshev polynomial expansion [see Eq. (5)] for each Fourier coefficient

W, (t,0) appearing in Eq. (9), which gives (see the Appendix)

oW, (1)
————SE;:—=2W,_kk'(—kZI—rJ—r2K)
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+ 3 S W, B,k mlh'qQ +jmg'qQ’ —h'q*R +jg'(k—m )rT—h'k(k—m)U+h'rgS] (10)
m rgq
odd

where I, J, K, L, L', M, N, H, P, Q, Q', R, S, T, and U are well-defined functions both of the indices (7,q,s) and the
parity of m (see the Appendix). It is easy to see that Eq. (10) can be written in a more compact form as follows:

dWS'k(t)
dt —K 2

m,r,q

where (L, L', M, H, P, and N) correspond to the same
functions without a tilde for even values of m and are
defined as follows for the odd values: (L=—Q;
L'=—Q';M=R; H=—T; P=U; and N=29).

Now, the previous results enable us to conclude that
we have reduced the multidimensional Fokker-Planck
equation to an infinite system of one dimension but cou-
pled equations for the coefficients W, (7). The correla-
tion between the coefficients W, ; via the right-hand part
of Eq. (11) can be decoupled by considering a finite

ok (kK2G+rI+r’K)+ 3 W, E, _,h'{rgN—k(k—m)P—q>M —qL

+jg'[—mL'+(k—m)rH]} , (11)

Fourier and Chebyshev sum instead of infinite series in
Egs. (4) and (5) (called the spectral approximation)

M
wMN (G 6,6)= 3
k=—M

WN(t,0)e/*¢ (12)

and
cos(n@) if k is even

W(6,0)= 3 W, (1)% sin(n) ifk isodd » 13

n=0

where W{¥(t,0) and W‘M ‘M(¢t) are, respectively, the
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coefficients W, (¢,0) and W, , (¢) resulting from the trun-
cated series. The convergence of the truncated series is
assured by spectral analysis as shown by Canuto et al.'®
We therefore consider in all the following finite Fourier
and Chebyshev series.

C. Matrix analysis

To obtain the relaxation times 7; which are directly re-
lated to the eigenvalues of the Fokker-Planck equation,
we consider the following matrix notation:

W M) —

A M)
(s;,k 38k

The matrix being time independent, the solution of Eq.
(16) reads

WNM(p)= AN N =0) . (18)

In the following we shall show that the problem resides
now in the calculation of e ~ "and that the relaxation
times are simply equal to the inverse of the real parts of
the eigenvalues of 4 ‘™™ Therefore, it is sufficient to di-
agonalize this matrix to get both the relaxation times and
the probability density via Egs. (12) and (13).

We can generally write

AWM =ppp-1 (19)

where P is the nodal matrix associated with 4™ T is
the diagonal (or Jordan) matrix of the eigenvalues, and
P! is the inverse of P. Using the above decomposition
[Eq. (19)], we can write

— 4 (NM)

=pe-Tp-!, (20)

where to simplify the notation we have droPped the in-
dices (N, M) in the new decomposmon of ANM 1t fol-
lows that the computation of e is equivalent to the
eigenvalue problem of A4 ‘™) and thus to the calculation
of P,T,and P!

To calculate the matrix I" and thus all the eigenvalues,
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where WM is a vector of Fourier and Chebyshev
coefficients appearing in Eq. (11). Each element of this
vector is defined as follows:

WM = gy (W) (15)

withr=s+(M+k)N+1);05s<N; —M=k=M.
Taking into account of the above notation, we can
rewrite Eq. (11) in a more compact form

(d/dt) WM = — g (NMIp M) (16)

It is clear that we now deal with a differential linear equa-
tion, where 4‘¥™ is a time independent matrix which
elements are defined in the following manner:

(N,M) — 4(N,M)
Ai,j A(s’ k: sj kj)

(17a)

and

) =k'(k2T +5,J+s7K )Sk,.,kj+ qu,(kﬁkj)h'{ —s;qN +k;(k;—k;)P+q*M +qL + jg'[k;qL'—(k;—k;)s;H]} .
q

(17b)

[

we used the formalism developed by Ben Jaffel and
Vidal-Madjar, ' which allows for the computation of the
eigenvalues and the eigenvectors disregarding their multi-
plicities. We refer the readers to this paper for further
details.

Having I', P,and P~ I we can easily write,

PR
e

=peTp-1 1)

where I'; ;=p;3, ;.
We can now deduce the solution for the density of
probability W(¢,0,4) using Egs. (12) and (13)

N M .
w(t,0,6)=3 3 wWNM(1)e T, , (22a)

n=0m=—M

(9),

where, depending on the parity of m, T, , represent the
sine or cosine functions or, respectlvely, the Chebyshev
polynomials of the first and second kind, and where

Wr(lll\)/,nll‘:l)(t )= W,-(N’M)(t)

=3 Pye "Pg'WNM(=0).  (22b)
k1

Using Eqgs. (21) and (22), we can show that W(z,0,¢) can
be written in the following form:
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- —j 1 im; Im(p, ) -
W(1,0,6)= e Re(p; )t S T, (6)[e JIm(pk)tPikPkl lejm’¢W,(N’M)(t=0)+ jIm(py tP:kPkI I —jm; ¢W(NM)(I“O)]
k i
(23a)
where to each index s =i,k,/ . . ., corresponds mg,n, in a way that s verifies
s=n,+(N+1)m;—1) (23b)
and where Re and Im mean real and imaginary part. Defining
=3 T, O T pot M N =0y’ B, Byl WM+ =0)] (24)

and p, =Re(p; ), we can write using Eq. (23):

W(t,0,8)=S e *'F.(6,). (25)
k

Therefore we can deduce that the F} (6,¢) are the eigen-
functions corresponding to the Fokker-Planck equation
[see Brown,* Eq. (4.3)] and that the p, are the corre-
sponding eigenvalues.

The relaxation times 7, are simply defined as

Tk':l/ﬁk . (26)

At this point, it is important to recall that using the
Fourier and Chebyshev series, we have reduced the mul-
tidimensional Fokker-Planck equation to a simple
differential equation. Using spectral methods and matrix
algebra, we have deduced the corresponding eigenvalues
and eigenfunctions. This only requires the diagonaliza-
tion of a relatively low dimensional matrix (~80). Note
that we have considered the most general form for the
free energy E(6,9).

III. APPLICATION TO UNIAXIAL
SYMMETRY PARTICLES

The anisotropy energy corresponding to a super-
paramagnetic particle state is very complex, and no self-
consistent theory nor experimental data are available to
unambiguously define its real form. Furthermore, this
anisotropy depends strongly on the nature (topology,
constitution, structure, . . .) of the particles.

By symmetry considerations, it is possible® to con-
struct analytical expressions for the anisotropy energy as
a function of some unknown (to be provided or to be de-
duced from laboratory experiments) anisotropy
coefficients. However, considering the complexity of the
phenomena, there is no solid basis for such a formalism
to hold for real samples of superparamagnetic particles.

Nevertheless, one way to overcome this difficulty is still
to consider the symmetry derived formulas as a starting
model to get some insight on the real samples through
laboratory studies: This may help to get some experi-
mental evidence on the departure of these simple models
from the physics of the problem. It follows that there is a
priori no reason to favor a specific symmetry, among oth-
ers, the criteria in any particular choice generally are
based on computational simplifications.

At this level, it is important to clarify some ambiguous
points relevant to the uniaxial symmetry, mostly criti-
cized by Klik and Gunther.'? These authors'?>!? strongly
claimed that the uniaxial symmetry was unphysical and
that all results derived on this basis were completely faul-
ty. We do not agree with these conclusions. Further-
more, we consider it is somewhat difficult to make such
strong statements from an asymptotic solution to the
problem.

Klik and Gunther draw their conclusions from two ap-
parent difficulties of the uniaxial symmetry: the lack of a
saddle point, and the so-called mathematical anomaly of
the spherical coordinate system.

It is true that a completely uniaxial system (becomes a
one-dimensional model) has no saddle point. However,
we do not think that this lack leads directly to the T~ !/2
dependence of the relaxation rate prefactor, nor does the
mathematical anomaly of the coordinate system. More-
over, we believe it is the asymptotic behavior associated
with the mathematical method used by some authors*®°
to solve the Fokker-Planck equation that leads to this
dependence. In this paper, we clearly show (see the Ap-
pendix), that spectra methods avoid the pseudosingulari-
ties the spherical coordinates system introduces, and thus
the mathematical anomaly problem raised by Klik and
Gunther does not exist in our case.

Basically, we consider the uniaxial symmetry as a start-
ing model that can be refined afterwards. In this particu-
lar case (the simplest one), the anisotropy energy E(6,¢),
together with the density of probability W(¢,0,¢) are ¢
(azimuthal angle) independent.

Noting that E(6) can be written as

E(0)=K,sin%(0) , 27

and that the matrix 4‘™™ described in Sec. II is now
just a function of N, we can deduce from Eq. (17)

AN =k'(s;J+sK)+ 3 E h'(—s;gN+q*M+qL) .
q9

(28)
The related eigenvalue problem thus becomes
ANx=px , (29)

where X is an eigenvector of 4~ and p is the correspond-
ing eigenvalue (which represents the inverse of the relaxa-
tion time).
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Defining
vV
A= —B——, and h'= ui , (30
kyTh 1/73+n*m?/v? )
and
a=K,V/k,T, (31
we rewrite Eq. (28) as follows:
ANX=)x , (32)
where 4" is now defined from Egs. (28) and (29) as
A V ~
AN=_"__ N
iy kb Thl Alj (33)

We thus deal with the diagonalization problem of the real
matrix 4% for increasing value of the dimension N until
the stability of the eigenvalues and the eigenvectors is
reached.

IV. RESULTS AND DISCUSSION

The smallest eigenvalue A, seems of particular interest
for superparamagnetic particles study. It corresponds to
the dominant relaxation time. We have plotted in Fig. 1
the variation of A, vs a=K,V /k, T. The exact numerical
calculation of this eigenvalue was performed for a wide
domain of variation of & contrary to the previous publica-
tions. >

From the calculations we carried out, it appears that
the convergence process is very rapid, except for very
high values of a, where it decreases slightly. Then, we
have obtained all the eigenvalues with a precision better
than 102 and for matrix dimension no higher than 80.

Another advantage of the present method is the possi-
bility of deriving a very precise analytical approximation
for the eigenvalues and especially for the most important
of them, A,. This possibility arises both from the succes-

-25 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
log o

FIG. 1. First positive eigenvalue A; of the Fokker-Planck
equation, which is inversely proportional to the relaxation time
7, plotted as a function of the reduced energy barrier
a=K,V/k,T. The full curve corresponds to the exact numeri-
cal calculation and the (+) correspond to the analytical formu-
lation.
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sive analytical approximations we obtain for small matrix
dimension, and the asymptotic behavior (a>>1) we
deduce from numerical calculations.

Considering A, we have derived the following analyti-
cal expression:

AM=2(14+a/4)%exp(—a) . (34)

As shown in Fig. 1, the proposed analytical solution
reproduces quite perfectly the numerical solution. The
accuracy is better than 1% for 0<a =< 60. The upper lim-
it corresponds to a relaxation time higher than one billion
years. That means that this analytical expression is valid
for geological scales. We therefore deduce from Eqgs. (26)
and (29) that the corresponding relaxation time 7, is
given by

= kb;/‘h’ 2(1+ot/4)5/2 expla) , (35a)
which can be written in an Arrhenius-type form:

T1=70e%, (35b)
where

To 4 ! (35¢)

" kyTh' 21+a/4)3?

It is interesting to see here that our dissipation rate ex-
pression has a T 3’2 temperature dependence in the
asymptotic limit of high energy barrier, contrary to the
T 172 dependence previously deduced.*%!%!? Contrary
to Klik and Gunther’s'? claim, our result is, at least, an
indication that the T~ !/2 dependence is not a direct
consequence of the lack of saddle points.

Now, in order to compare the above formula for T,
with the experimental results, it is important to state pre-
cisely the 7, value. This leads us to the question of the
meaning of the parameters included in h’, particularly 7.
We can remark that the modified Gilbert’s equation of
Brown* mix spin parameters (7,7, with particle terms
[the free energy of the particles, the random field h(¢)].
This difficulty was overcome by Brown by supposing the
uniformity of the particle magnetization, i.e., that each
spin magnetic moment sees the same interactions and
then has the same value, direction, the same y, and 7 pa-
rameters. Unfortunately, the particle magnetization is
never uniform due to surface effects. The common
description for a ferromagnetic (or a ferrimagnetic) parti-
cle leads to the existence of a hard core with normal spin
arrangement and a surface part for which the noncol-
linearity of the spin is generally concluded?' and for
which the value of the spin magnetic moment can be
different from the bulk value.

Nevertheless, the validity of Brown’s treatment can be
maintained by considering the magnetic moment of the
particle (M is replaced by m/V in Brown’s notation,
where m and V are respectively the magnetic moment
and the volume of the particle). In this case, the parame-
ters ¥, and 7 are relative to the particle and correspond
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to a kind of mean value of spin parameters. It is probable
that the v, value is very nearly the single spin value be-
cause experimental values deduced from different bulk
measurements are very close. On the other hand, 7
values are probably much larger due particularly to the
defects present in small particles and the influence of the
surface which causes noncollinearity of spins.

This nonuniformity of the magnetization makes ques-
tionable the Brown* hypothesis of a uniform mode of ro-
tation, in other words, the rigid coupling of the spins.
The fact that exchange interactions inside the particle are
much larger than other interactions leads to this mode
probably occurring for spherical particles and to a good
approximation for large particles, but it seems that some
spin rearrangements occur during the rotation for very
small ellipsoidal particles. In our opinion, that does not
change the validity of Brown’s treatment, at least in first
approximation, but in this case the anisotropy constant
which determines the energy barrier probably deviates
from the bulk magnetocrystalline anisotropy constant. 2

Now we can discuss the 7 values. In his paper Brown
has supposed 7=1/y,M, which represents the maximum
possible value of &’ with respect to 77. This expression is
questionable though the proportionality to 1/M,, and the
dimensionality seem correct.?> For a bulk sample, it is
easy to determine the 7 value from the classical formula
giving the resonance line width?»?* AH. For example, for
bulk iron AH =30 Oe for v=9GHz at 300 K (Ref. 23)
and the deduced 7 value is equal to ~3.7X 10" 19/M, to
compare to 5X 1078 /M, deduced from Brown’s sugges-
tion. In fact, the 7 value for bulk iron is lower than the
value cited above because AH is dominated by the
exchange-conductivity mechanism. A better expression
for n will be therefore n=aV /y,|m| in agreement with
the dependence of the Brown treatment to m, a being a
dimensionless parameter. In this case the 4’ factor can
be expressed as

4

2
1 _lml1+a% (36)
h Yo a
The parameter a could be determined from 7 experimen-
tal values, but that is difficult because of the number of
unknown parameters and their possible variation with
temperature. For example in the case of magnetically in-
teracting particles, if the a.c. susceptibility results are
considered, one obtains a straight line in the classical plot
log,ov=/f(1/Tp), where v is the frequency and T} is the
blocking temperature, with an intercept with the log;qv
axis corresponding to 7,~10"!% 5.1 This is due to the
effect of magnetic dipolar interactions between particles
through an additional term to 70¢ which complicates seri-
ously the determination of A’. On the other hand, for
small particles, AH values seem much larger than for
bulk samples?® which lead to a values with an order of
magnitude of one. This estimate would be confirmed by
an experimental determination'® of T, but the available
experimental data is incomplete to estimate its order of
magnitude. A consequence of this relation [Eq. (36)] is
evident for particles made of antiferromagnetic materials.
For these particles, disorder occurs as it does in the parti-
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cle core (except for large particles). Experiments indicate
that |m| proportional to n? with 1 <p <1, depends upon
the particle size, n being the number of spins.?’ From the
above discussion, there are no special reasons which
prevent Brown’s model application for this type of parti-
cle as long as we use the actual value of |m| and the
modified anisotropy constant. In this case, the value of
the preexponential factor 7, will be lowered with regard
to ferromagnetic particles as it is proportional to |m|/V.
We can remark that the antiferromagnetic particle terms
are not adequate, as the magnetic state is indeed very far
from a pure antiferromagnetic state.

From formula (35), it is clear that a correct estimate of
T, is necessary to determine the parameters inside the ex-
ponential and their eventual variation with temperature.
On the other hand, this evaluation and the verification (or
not) of the 7, expression is surely easier when the ex-
ponential has a value near 1, i.e., when « is small. There-
fore it is interesting to discuss the 7, limit values at high
temperature.

The first question concerns the thermal variation of the
dissipation constant 7). AH measurements versus temper-
ature have shown that AH remains constant until around
0.8T,, then exhibits a sharp increase with temperature
and reaches a constant value?>2® above T, the Curie tem-
perature. For the 1/h’ expression (36), we can consider
that n=a(T)V /y,/m(0)|, where |m(0)|/V is the mean
magnetization at zero temperature. In this case,

1 _ [m(0)] 1+a(T)}m(T)>/|m(0)?
k' YoV a(T) '

(37)

From this formula we can infer that for a <1 (the more
probable case), 1/h’ is roughly independent of tempera-
ture with l/h'2|m(0)|/‘yoVa(T). On the contrary, for
a>1, 1/h’ roughly decreases between a(0)|m(0)|/y,V
(low temperature) and |m(0)|/yVa(T) (T=T,). We
can conclude that 1/h’ remains finite when 1/7—1/T,.
Therefore, from Eq. (35), 7;—7,—0 when 1/T—0.
Indeed the limit 1/7 —0 has no real physical meaning as
in this case the magnetic state of the particle becomes
paramagnetic, with a spin-relaxation time'® around 10~
s.

However, it is important to determine the relaxation
time in this limit in order to specify its asymptotic behav-
ior. Unfortunately, one of Brown’s hypotheses, i.e., the
unison rotation mode for the spins, becomes inappropri-
ate in the paramagnetic state. Therefore it is not possible
to derive any relaxation time valid for this latter state
from this model. In addition, it is not definite that
Brown’s treatment is valid for weak values of a@. Formal-
ly, it is always possible to derive 7, but the first eigenvec-
tor which describes the equilibrium state indicates that
the probability density of the particle magnetic moment
is almost equal over the unit sphere. In this case, it is
difficult to keep the picture of particle magnetic moments
relaxing between two preferred directions.

The asymptotic behavior of 7,—0 arises from the ex-
istence in our formulae of the ratio ¥V /kT, also occurring
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in the low energy approximation of Brown.* (The high
energy approximation®> is not valid when « is small.) It
is important to remark that the factor V' /kT appearing in
Egs. (35) arises from the semiclassical description of the
particle magnetization of Brown* through a Langevin
equation, which implies that the relaxation time is entire-
ly independent of the microscopic origins of the relaxa-
tion. On the contrary, Jones and Srivastava® derived an
expression with a “free” parameter R, which represents
the strength of the random field (R should contain infor-
mation on the microscopic origin of the relaxation), but
their expression is not valid when 1/7—0. However,
and contrary to all theoretical considerations, it appears
from experimental results,'® that 7, approaches a finite
and nonzero value of 7y as 1/7T—0.

A way to raise the difficulty could be the addition to 7
of some constant value around 10~ '* s (relaxation time in
paramagnetic state). Another way consists of determin-
ing an approximative formula, valid for a not too small,
which extrapolated for 1/7 —0 gives a nonzero value for
To. For this purpose, we can write

J

1 ey 1
Clch—i— S Pl
TO:
1] 1 1 .
LA T>T
‘1 [KC h (1+a/4)

and that

1

lim r=714(1/T=0)=c, W /T=1/T K.’

1/T—0

(40)

where K, is magnetocrystalline energy constant and
=2. We have tried to fit Eq. (40) to the results obtained
on small iron particles embedded in an alumina matrix.'®
As shown by Dormann, Bessais, and Fiorani, 16, dynami-
cal model for the superparamagnetic particles describing
their mutual magnetic interactions is necessary to recover
the experimental results. This model leads to the K, ex-
pression:
M?*Va ;
k, T

>

K, V=K,V+E, with E,=M*V 3 b,L
J

(41)

where L(x) is the Langevin function. Three parameters
have been considered in the fit: M2V /k,, K,V /k,, and
the ratio b;/a;, which has been supposed independent of
J- On the other hand, a; has been determined from the
ratio ¥ /d?3, considering a compact arrangement of parti-
cles. The ratio V /d3, where d is the mean distance be-
tween particles, is known from microprobe analysis re-
sults. Finally, the a parameter included in h' formulae
(36) has been taken equal to 1. A very good fit is obtained
with MV /k,=300 K, K,V /k,=380 K, and b;/a;
=1.15 and the resulting curve is plotted in Fig. 2.

From electron microscopy measurements, the mean

1
h' (1+a/4)¢
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_ 11
=1 3 (a), (38)

and approximate the g(a) function by clea’a, with
¢;=0.3 and §;=~0.96, valid for a large a interval
(0.3<a<60). The Brown* formalism being inadequate
to describe a paramagnetic state (T >T,), the only way
we have to reach our aim is to evaluate 7, around T =T,
where the Brown model is at its limit of validity, and to
suppose that the behavior of 7 for T'> T, can be deduced
from that approximation. This assumes that the relaxa-
tion time is a continuous function at T=T,. We think
that such an assumption is a good one as far as we can
imagine the relaxation process taking place continuously
from a particle relaxation form for T < T, temperature
range to a spin-relaxation form for the T'> T, range. In
this case, we find for the preexponential factor 7, from a
development of 7, in the neighborhood of 1/T=1/T, as
a Taylor series, which is valid only as far as we approxi-
mate the effect of the term ¥V /kT through the function
gla):

if T<T,,
(39)

f

particle diameter can be evaluated as 555 A for the S13
sample (Ref. 16). For the same sample the magnetization
is equal to 76080 emu/cm® (Ref. 16). This leads to
M?V /k,=390+180 K, which is in agreement with the
fitted value. Concerning K, the main anisotropies, out-
side those resulting from mutual magnetic interactions,
are magnetocrystalline anisotropy (cubic for metallic iron
with K, =5X10° ergs/cm’) and magnetostatic anisotro-
py. This former is typically of uniaxial form because the
particles are spherical as seen by electron microscopy,
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FIG. 2. Variation of the blocking temperature T in the clas-
sical plot of log,o7 vs 1/Tp for the S13 sample. The full curve
corresponds to the fit with the analytical formulation and the
error bars correspond to the experimental results.
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and the correspondent anisotropy constant K, is equal to
K, =iM*N,—N.)V/V_,, where N, and N, are the
demagnetizing factors of the particles, and V. is the
volume corresponding to the metallic iron (our particles
are oxidized on the surface). It has been shown!S that in
first approximation the anisotropy is of uniaxial form
when K,, > K_ /2 and the resulting K, is equal to K,, if
K,, > K,_. From the fitted values K, /M*=1.27 and it is
possible to deduce (considering V' o /¥ =0.55 as deduced

from Mossbauer spectroscopy'®) that K,, is higher than
K, and that N, —N_=1.35 is a very reasonable value for
our spherical particles. All these parameters differ only
slightly from previous determinations. !¢

The good agreement, obtained for the parameters
values, between the determination from our model con-
sidering the uniaxial symmetry and those from various
techniques (electron microscopy, microprobe analysis,
Maossbauer spectroscopy, magnetization and susceptibili-
ty measurement) indicates, in our opinion, a strong sup-
port for uniaxial symmetry as a good starting model for
the study of fine magnetic particles. However, experi-
mental results, not too far from T, would be necessary to
verify the validity of the suggested methods. Unfor-
tunately, experimental results exist only at low tempera-
ture (generally very far from 7,). As can be seen in Fig.
2, the last experimental point toward the boundary
1/T—1/T, comes from Mossbauer data 7, ~107% s.
As noted by the authors,!® the determination of the
blocking temperature corresponding to this data is
difficult: The related uncertainties are fairly large. Con-
sideration of new experimental techniques that reach
higher temperatures and probe shorter time scales seems
essential to determine 7 not too far from T,.

The existence of quantum fluctuations (such as tunnel-
ing®’ or noise'”) is also an interesting question. But a pre-
cise 7 formulation as well as accurate experiments at low
temperatures are necessary to determine the strength of
their effect. We think that our formula, valid over a large
range of a values, is useful for this purpose. However, it
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is not clear to us whether quantum fluctuations, which
arise probably below a certain critical volume, can be ex-
pressed only via a change in 7, as suggested by Jones and
Srivastava,® which relate the R parameter to the micro-
scopic origin of the relaxation, or via a 7 change. Let us
recall that 7 represents the probability of magnetic mo-
ment  reversals. Then a formula such as
1/7=1/7¢,+1/7,, where 7y, and 7y, are related to re-
laxation times corresponding respectively to quantum
and barrier effects, would seem to be a more adequate ap-
proximation.

V. CONCLUSION

In this paper we have presented a method for the solu-
tion of the partial differential equation resulting from
Brown’s model of relaxation of small particle magnetiza-
tion in the case of uniaxial symmetry.

This method permits us to extend numerical calcula-
tions of the relaxation time 7; and leads to only one ap-
proximate formula for 7, valid for all experimental cases,
when previous calculations gave two approximations
(high and low energy) which did not cover all the relaxa-
tion time range. Good agreement is obtained with exper-
imental results. On the other hand, it is concluded that
Brown’s treatment is valid when the magnetization is not
uniform, which is always the case for small particles, and
the meaning of the dissipation constant and its effect on
the preexponential factor 7, is discussed.

Finally, the asymptotic behavior of 7, when the tem-
perature is near the Curie value and the possible influence
of quantum fluctuations are discussed.
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APPENDIX

To obtain Eq. (10), depending on the parity of the Fourier index k, we have, using Eq. (9), to replace each quantity
W, (t,0) and E, _,, by the corresponding expansion series, to multiply the entire equation by cos(n ) if k is even and by
sin(n0) if k is odd, and finally to integrate the resulting equation over the interval [0, 7], which gives the required equa-
tions if we use the following identities corresponding to some general properties of the integrals of trigonometric func-
tions. To clarify the notation, 8 denotes the Dirac delta function.

When the index k is even we obtain:

I(I’S)E_l_fvcos(l@t;os(sﬂ)de
mo sin“0

(A1)

—+[U+s)l+s—2)+(U—5s)I—s—2)] if (1+5s) is even

0 if (1+s)is odd ,

J(s)=" [ "sin(16) cos(s6) cotd d6
mYo

=1le(l+s+1)+tell+s—1)+e(l—s—1)+e(l—s+1)],

where €(/ +s+1) denotes the sign of (I +s+1).

(A2)
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1 pn
K(I,s):;fo cos(10) cos(s0)dO="L(8,,, o+8, ;o) , (A3)
L(L,g,5)=— [ "cos(16) cos(s6) cotfsin(¢8)d 6
TY0
=ilelg—U+1)—s]+elg+(U+1)+s]te[g+(I+1)—s]+elg—(I+1)+s]+e[g+(I—1)—s]
+e[lg+(U—1)+s]+elg—(I—1)—s]+elg—(I—1)+s]}, (A4)
1 p= i
L'(I,q,s)E——f cos(l@)cos.(se)sm(je)de
T Y0 sinf
=1ile(l+s+g)te(l+s—qg)tell—s—qg)+ell—s+q)], (AS5)
M(l,q,s)Eif#cos(le)cos(s9)cos(q9)d9
R
=%(81+q+s,0+81+q—s,0+81—q—s,0+81—q+s,0) ’ (A6)
1 T
N(l,q,s)=— i i
(l,q,s) - fo sin(/8) cos(s0) sin(¢g6)d 6
=408/ 4g+50T814q—s50T8 11g—50F8g—50) > (A7)
O(l,q,s)=L'(g,1,s) , (A8)
1 T
P(l,q,s)z__f cos(l@)co.s(ie)cos(qe)de
T 0 sin“0
=—5lU+g+s)+U+qg+s—2)+(U+q—s)+(+g—s—2)+(—q+s)+(—g+s—2)
+(l—q—s)+(l—qg—s—2)] if (1+qg—+s)is even,
=0 if (I+g+s)is odd , (A9)
Q(,q,s)=L(qg,l,s), (A10)
Q'(l,q,s)=L"(q,l,s), (A11)
R(l,q,5)=N(l,q,s), (A12)
S(lq,s)=Ml(l,q,s) , (A13)
T(l,q,s)=L'(l,q,s), (A14)
_ 1 prwsin(l6)cos(sB)sin(qh)
U(l’ ys):-—_
e9=1 ], sin%6
=—k[(U—q+s)+(U—q+s—=2)—(I+g—s)+(+g—s—2)+(U—gq—s)+(—g—s—2)
—(l+qg+s)+(U+qg+s—2)] if (/+g+s)iseven,
=0 if (/+q+s)is odd . (A15)
Similar identities can be derived without serious difficulties when the index k appearing in Eq. (9) is odd.
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