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We consider the sine-Gordon chain driven by a high-frequency parametric force in the presence of
loss. Using an analytical approach based on the method of averaging in fast oscillations, we predict that
such a parametric force may support propagation of m kinks, which are unstable in the standard sine-
Gordon model. The steady-state velocity of the 7 kinks is calculated, and the analytical results are in

good agreement with direct numerical simulations.

I. INTRODUCTION

The sine-Gordon (SG) system is known to model many
physical objects in the framework of one-dimensional ap-
proximations such as flux motion in Josephson junctions,
dislocations in solids, nonlinear spin waves in the
superfluid phases of 3He, ferromagnetic and antiferro-
magnetic systems, etc. (see some references, e.g., in the
review paper Ref. 1). The simplest localized solutions of
the system are the so-called kinks which describe motion
of topological excitations, for example, fluxons in long
Josephson transmission lines or various domain walls in
magnetic systems. The kink connects two nearest ground
states of the system, e.g., u =0 and u =2, u being the
angle variable, so that it may be called a 27 kink. In real
physical systems when dissipative losses are included,
kinks may exist in the form of state configurations, and
they move under an external constant force.! In a num-
ber of physically important systems, an applied force is
periodic in time. Detailed investigations of the ac driven
SG system with loss show a lot of interesting features of
the system dynamics, e.g., spatial-temporal complexity
and chaos (see, e.g., Refs. 2 and 3). In some physical sys-
tems, e.g., magnetic chains, the applied periodic force
acts as a parametric force (see, e.g., Refs. 4—6 and refer-
ences therein). As is well known,* a low-frequency (LF)
parametric force may stabilize the breather when the fre-
quency of the external force lies in the gap of the linear
spectrum. However, such a LF parametric force has no
strong influence on the kink dynamics.! It is the purpose
of this paper to analyze the influence of a high-frequency
(HF) parametric force on the SG system dynamics. Us-
ing an analytical approach and direct numerical simula-
tions, we demonstrate that the parametrically driven SG
system may support propagation of the 7 kinks (which
are unstable in the standard SG model) when the frequen-
cy of the force is large enough. Due to the existence of
these 7 kinks, the shape of the 27 kinks may be more
complicated and it is described by an effective double-SG
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equation. We also study the dynamics of the envelope
solitons excited at u = which are stable under the
influence of the HF parametric force only.

II. ANALYTICAL APPROACH

A. General formalism

Let us consider a discrete nonlinear chain under the
influence of a parametric force and in the presence of dis-
sipative loss. The model equation is

" dvie,)
¢n _K(¢n—l_2¢n+¢n+1)+‘_d-¢—_

= A cos(wt)G($,)—vd, , (1)

where A4 and w are the normalized amplitude and fre-
quency of the periodic force, respectively, and y is the
normalized dissipative coefficient. The parameter K de-
scribes a coupling between particles in the chain, V(¢) is
the normalized external potential and the function G (¢)
characterizes the parametric force. For the parametrical-
ly driven SG model which is considered in this paper we
take

V(¢)=1—cos(¢), ()
G (¢)=sin(¢) . (3)

Without a perturbation, Egs. (1) and (2) describe the
well-known SG model, i.e., a chain of interacting parti-
cles in the harmonic periodic potential. In the continu-
um limit, when ¢,4,~¢,*ad, +La’¢,, the SG system
supports the kink solution,

x —ut

‘/CZ—UZ

#(x,t)=t4tan" 'exp , 4)

where a is the normalized lattice spacing, ¢ is a normal-
ized time, v is the normalized kink velocity, and
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¢ =aV'K is the normalized limit velocity. Small ampli-
tude excitations of the discrete chain near the minima of
the potential are linear waves with the dispersion law,

Q?=1+4K sin? , (5)

g9
2

i.e., the system elgenfrequenmes lie in the region
anm <Q?< Q2 ., where Q2 =1and Q2, =1+4K.

We will consider the perturbed system Eq. (1) assuming
that the frequency o is large enough to be outside of the
region of parametric instability of linear waves. To de-
scribe the nonlinear dynamics under influence of such a

J

‘5;1 +§n —K((Dn—l-zq)n+<Dn+l)_K(§n~]_

= A cos(wt)G(

If the force frequency lies outside of the region of the
parametric resonance, Q2 <(Q/2)2< Q2 ., the periodic
force cannot excite waves in the system. Hence, it is
reasonable to assume that the function §,(¢) does not de-
pend on n, ie., &,4,=&,. It is clear that Eq. (7) has
terms of different nature, slowly and fast varying. These
different terms have to be compensated separately. It
means that for fast oscillations the following equation has
to be valid,

£, +E V(D)= )—vE, (®)

and in Eq. (8) the function G (®) may be considered as a
constant value. As a result, the forced solution of Eq. (8)
has the form

A cos(wt)G(P,

AG(®D,)
()= —_— cos(wt +96) , 9
\/(w —-co 2+7%0?
where
(0> —wd)
cosd=——r—r—————— (10)
\/(coz—w(z))-f-"y?‘coz
and
a)ZEV"(CD,,) . (11)

Substituting Egs. (9) and (10) into Eq. (7) and averaging in
fast oscillations, we may obtain the equation for the slow-
ly varying function ®, (),

&, +yd,—K(®,_,—20,+P,. )+ V'(D,)
A’GH D)V (D,)
4[ 0*—wd)*+70?)
AN —wd)G'(®,)G(D,)

- 3 , (12)
2[(0*— 03)*+y%0?]

where ©} is defined by Eq. (11). To obtain the RHS of
Eq. (12), we have used the following results:
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HF parametric force, we will use the method of averaging
which is analogous to that for the well-known Kapitza
problem, i.e., dynamics of a pendulum with an oscillating
pivot (see Ref. 7). To derive an averaged equation of
motion for the system dynamics, we will consider the
wave field ¢, as a sum of slowly and fast varying parts,
ie.,

@,(1)

where the function §,(¢) describes the fast oscillations
(|€,1>>1&,1). Substituting Eq. (6) into Eq. (1), and using
the expansion in the small £,,, we obtain the equation

=, (1)+E,(1), (6)

2§n +§n+1)+ V'((I)n )+§n V”(q)n )+%§3’ Vln(q’n)

®, )+ A cos(wt )€, G'(®,)—yd, —vE, . (T

(£, V"($,))=0,
1 A’G¥®,)

(gr=1
J 2 2(w*— )+ 70’
and
A*G(®, )cosd
{acos(wt)E,(t))= —_
2V (0*— 0} +7%0?
AG (P, N 0*—wd)

2[(0*— @} +yw?] ’

where the brackets stand for the averaging in fast oscilla-
tions with frequency o. In the case 0’ >>a)(2), i.e., in fact
in the region w?>Q2,, (to be outside of the region of
parametric resonance), the first term in the RHS of Eq.
(12) may be omitted because it is much smaller than the
second one, and Eq. (12) takes the form

dv,
20,4+, )+ ——r =

&, —K(®, _— Ty —yd, , (13)
where
22
V(@)= V(@) + A5 (14)
4(*+7y°)

Equations (13) and (14) describe averaging dynamics of
the parametrically driven SG system with loss.

B. 7 kinks

For the SG model defined in Egs. (1)
potential of Eq. (14) may be written as
2052
V(@) =1—cosb+ AP (1)
4(w*+7v*)
and the equation of motion (13) takes the form of the
discrete double-SG (DSG) equation

—(3), the effective
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&, —K(®,_,—2®,+®,,,)+sind,

2
to
4(o*+7y?)

The effective potential energy Eq. (15) has two different
states when the parameter A is changing. If

A%> A2 =2w*+7?),

sin(2®,)=—y®, . (16)

a7

the potential of Eq. (15) has additional minima at
b=7+2mn (n =0,x1,...) (see Fig. 1). In the continu-
um limit, ie., when the expression
bur1~d,tad,t1a’p, is valid, Eq. (16) has the static
solution in the form of the 27 kink.! However, when
A%> A2, the effective potential Eq. (15) supports also
stable propagation of the 7 kink,

A(x—V,1)
A,V =V}

where V', is the normalized steady-state velocity of the 7
kink. This solution is unstable in the standard SG model.
Unlike the 27 kink,?® the solution Eq. (18) has a nonzero
velocity which is determined by the amplitude of the
driving force and dissipation,

®(x,t)=2tan"! |exp , (18)

4

[1+_Aiz2__

V,= oy - (19)

2(0*+7?)

Here, we must, of course, require that the condition of
Eq. (17) is fulfilled. The 7 kink Egs. (18) and (19) is an ex-
act solution of Eq. (16) in the continuum approximation.
In fact, it may be obtained from the steady-state kink
solution of the perturbed SG equation

Uy — Uy, +sinu =2h sin(u /2)—yu, , (20)

which was analyzed in Ref. 9. Due to difference between
the energy values at ® =0 and ® =, such a solution can-
not be static, and it moves at a fixed velocity defined by
the balance between the energy difference AE
=E(®=7)—E(®=0) and dissipative losses.
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FIG. 1. The ac induced effective potential [Eq. (15)] as a
function of the phase ® for two different values of the driving
amplitude. 4 =0.25-4,, (solid) and 4 =1.10- 4, (dashed).
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C. Envelope solitons

As we can see from Eq. (15), the condition Eq. (17)
means that the maximum of the potential V4 at
¢=m+2mn is transformed into a minimum. Therefore,
near the new minima of the potential it is possible to ob-
serve propagation of nonlinear excitations which are
completely absent without a parametric driving force.
To analyze such nonlinear excitations let us put
@, =7+V¥, and expand Eq. (16) at y=0in ¥,,

¥, —K(V,_,—2¥,+¥,,,)+Q3¥,—p¥i=0, 1)
where
AZ
0==--1,
0 Aczr
, 22)
_1144%
=5 az ™!

We look for oscillating nonlinear solutions of Eq. (21) in
the form

W, (t)=F,(t)e’®"+c.c. , (23)
where ©, =nga —Qt is the phase of the wave in the
discrete approximation, and the wave frequency  and
wave number q are connected by the linear dispersion re-
lation,

Q?=Q2+4K sin® (24)

92
2

Such a discrete carrier approach allows us to use the
discrete approximation for the carrier wave and the con-
tinuum approximation for the wave envelope F,(t). Asa
result the equation for the wave envelope has the form
(see the similar calculations in Ref. 10),

iF,+P(q)F,,+Q|F|*F=0, (25)
z=x—V,t, Vg=%(ql=£é(-sin(qa) , (26)
P(q)=% cos(qa)—%sinz(qa) , 27
o=-%. 8)

Equation (25) is the well-known nonlinear Schrodinger
equation and it has the soliton solution in the form,

exp[1iVz —4i(a*—1V?)]
cosh[a(z —V1)]

F(z,t)=a (29)

Using the transformation to the initial variables, it is pos-
sible to obtain a localized solution of Eq. (21). It is im-
portant to note that such a localized soliton exists only at
the condition 42> A2 when the square of the frequency
Q, defined by Eq. (22) is positive.
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III. RESULTS OF NUMERICAL SIMULATIONS

We have considered a discrete system given by
. . 1
¢n+s}n¢n_ 2(¢n~1_2¢n+¢n+1)
Ax

=—y¢,+ A sind,cos(wt) , (30)

where i =1,2,...,1001, and ¢,=¢, and ¢ g0 =P1000 N
order to simulate a long, but finite, size system. The total
length of the system is given by the choice of
Ax =K ~12=0.1, which obviously results in a length of
L =100. In the simulations we have used a standard
fourth-order Runge-Kutta method to integrate the sys-
tem in time, but also a second-order explicit finite-
difference method has been successfully tested and com-
pared to the fourth-order Runge-Kutta method. The
time step size was chosen to be Ar=0.01-27/w and this
was found to be quite sufficient to describe the fast oscil-
lating driving field.

The two conditions to be fulfilled by the parameters
Ax, A, and w are

1

Ax?

@*>41+4 , (31)

w'<iA?—yi=14?. (32)
By choosing Ax =0.1 and @ =100 we find these to be

10*> 1604 , (33)
A>V2X100 . (34)

Clearly, the condition for not exciting the linear modes
[Egs. (31) and (33)] is fulfilled for these choices of parame-
ters. In order to create an effective potential, we must
choose A4 in accordance with Eq. (34). Also we must
choose 4 so that the amplitude of the fast oscillating field
(€) given by Eq. (9) fulfills the condition |£,(¢)| <<1. For
the parameters chosen above, this is fulfilled for 4 <<w?.
Choosing the driving field amplitude 4 =250 we have
in fact observed stable and localized 7 kinks propagating
through the system. Initially, we have placed a 7 kink
with no velocity at the center of the system (x =50).
Typically in our simulations the speed of the kink, con-
verting ¢=m to w=0, reached its steady-state velocity
after approximately 10 normalized time units. In Fig. 2
we have shown the spatial section of the system between
x =70 and x =80 as the kink passes through this region.
In Fig. 2(a) the dissipation parameter ¥ has been chosen
to ¥ =0, whereas Fig. 2(b) shows the situation for y =0.4.
What is interesting is here first of all to observe the local-
ized 7 kink, but, secondly, also to observe the effect of
the dissipation. In Fig. 2(a) we clearly observe a tail of
radiative losses following the traveling kink. Since the
traveling kink converts ¢ =m down to ¢=0, the system
will continuously experience a loss in potential energy,
which must be converted into kinetic energy or dissipa-
tive loss. The radiation of energy is necessary contribu-
tion to the wave profile, in order to eliminate this excess
energy in the steady-state motion. In the case of ¥y =0
the decay of the radiated energy is ensured by the exter-
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FIG. 2. Steady-state motion of a 7 kink. Parameters are
Ax=0.1, L =100, 4 =250, and ®=100. (a) y=0. (b) y=0.4.

nal parametric field if Eq. (31) is fulfilled. If we, on the
other hand, supply the system with direct dissipation
(y=0.4) as shown in Fig. 2(b), we find that this loss com-
pensates the converted potential energy (¢ =7—¢=0) so
that no radiative losses are visible in the steady-state
motion.

In order to verify the power balance velocity of Eq.
(19) of the traveling 7 kink in the parametrically driven
system, we have performed numerical experiments for
different driving amplitudes 4 and dissipation parame-
ters v, following the trace of the kink as a function of
time. In Fig. 3 the results of the numerical experiments
are shown. Here the perturbation prediction of the
steady-state velocity is shown as curves of different types
and the corresponding measurements of the 7 kink veloc-
ity made on the system Eq. (30) are shown as markers.
The general behavior of the balance velocity is that the
perturbation result seems to be a very good estimate for
larger values of the dissipation parameter y, where al-
most perfect agreement is found between the numerical
experiments and the perturbation approach. However,
for smaller ¥ the perturbation result estimates the veloci-
ty to be too high compared to the experiments. We be-
lieve that this is a result of the radiative effects, induced
by the fast oscillating field and the discreteness of the sys-
tem as noted above. These effects have been totally
neglected in the perturbation treatment, since we here
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FIG. 3. Comparison between the predicted steady-state ve-
locity [Eq. (19)] (lines) and the results of numerical experiments
(markers) made on the system Eq. (30). Parameters are
Ax =0.1, L =100, and ®=100. (a) The kink velocity as a func-
tion of the driving amplitude A for different values of the dissi-
pation parameter y. y=0.1: (solid/cross), ¥ =0.2: (dashed/
plus), y=0.3: (dash-dotted/circled  point), y=0.4:
(dotted/square). (b) The kink velocity as a function of the dissi-
pation parameter y for different values of the driving amplitude
A. A =250: (solid/cross), 4 =350: (dashed/plus), 4 =450:
(dash-dotted/circled point).

have assumed a continuous system with the time-
independent effective potential. This then leads to too
high an estimate of the velocity. For larger values of the
damping y the radiative effects are of course damped
more (see Fig. 2), which then leads to a better agreement
between the analytical results and the measurements. In
Fig. 3 the transition from dissipative losses to radiative
losses is visible. As the dissipation parameter y is de-
creased, we observe an increasing discrepancy between
the perturbation result and the results of the numerical
experiments. Further, we find that the measured veloci-
ties are in all cases smaller than the predicted, indicating
that some losses in the 7 kink dynamics are not con-
sidered in the perturbation treatment. This trend is also
verified by the observation of the behavior of the velocity
as a function of the driving field amplitude 4 for ¥y =0
[Fig. 3(b)]. Here, we find, as is intuitively expected, that
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an increasing field amplitude gives rise to increasing radi-
ative losses, causing a decreasing velocity of the kink. In
the numerical experiments, resulting in Fig. 3, we have
initiated the 7 kink in the center of the system with a ve-
locity of ¥,c ~!=0.5. This initial velocity was necessary
to avoid spatially trapped kinks in the cases of relatively
small ¥ and relatively large A4 values. The trapping of
the kinks may be a consequence of the radiative effects,
but more likely it is caused by the very high potential hill
(see Fig. 1) separating two neighboring pendulums in the
®=0 and the ®=m wells, respectively. So we believe
this to be an effect of the discreteness of the system.

In Fig. 4 we show the more complicated situation of
the collision between two 7 kinks, moving in opposite
directions. The two kinks have been initiated at x =25
and x =75, respectively. Here we show only the center
section of the system (x =45 to x =55) as the collision
takes place. Figs. 4(a) and 4(b) show the same event, but
for two different values of dissipation, ¥y =0.1 and
¥ =0.2, respectively. In both cases, we observe that the
colliding 7 kinks eventually form a bound state as a 27
kink as may also be predicted by the continuous effective
potential model Eq. (20). Another type of collision be-
tween kinks is shown in Fig. 5, where the collision be-
tween = kink and an anti-7 kink is shown for the two dis-
sipation parameters used in Fig. 4. This type of collision

FIG. 4. Collision between two 7 kinks. Parameters are as in
Fig. 2. (a) y=0.1, (b) y=0.2.
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time

FIG. 5. Collision between a 7 kink and an anti-7 kink. Pa-
rameters are as in Fig. 2(a) y =0.1, (b) y=0.2.

is very similar to the collision of two 27 kinks of opposite
polarities observed in the standard continuous SG sys-
tem. The two kinks are, due to dissipation (and radiative
effects), trapped in an oscillating bound state, which in

the SG system can be denoted by the breather solution.
As seen from Fig. 5, this oscillating mode will eventually
decay away. We note here that the direction of motion
for a 7 kink is always so that |¢| = states are converted
to ¢ =0 states. This implies that if two 7 kinks move to-
wards each other and collide, so will a pair of a 7 kink
and an anti-7 kink. Similarly, we can note that if two 7
kinks travel away from each other, so will the pair of
kink and antikink. This is unlike the behavior of the 27
kinks in the standard SG model, where two kinks of
equal polarity always will attract each other.

IV. CONCLUSIONS

In conclusion, we have analyzed the dynamics of the
sine-Gordon model in the presence of a high-frequency
parametric force. Using the analytical approach based
on the averaged equation of motion for the slowly vary-
ing field component, we have demonstrated that the
effective potential energy of the system allows propaga-
tion of localized 7 kinks if the amplitude of the paramet-
ric force exceeds a certain critical value. In the presence
of dissipative losses, the 7 kink propagates at a fixed ve-
locity which is a function of the driving parametric force
amplitude and dissipation parameter.

We have also analyzed envelope solitons in the discrete
carrier limit, which may be stable at the level ¢ = sup-
ported by the parametric force.

By means of direct numerical simulations we have
showed that the stable propagation of the 7 kinks can in
fact be observed, provided that the force amplitude is
large enough. The results of our analytical approach and
numerical simulations are in good agreement.

*On leave from Institute for Low Temperature Physics and En-
gineering, 47 Lenin Avenue, 310164 Kharkov, U.S.S.R.

'yu. S. Kivshar and B. A. Molomed, Rev. Mod. Phys. 61, 763
(1989).

2A. R. Bishop, K. Fesser, P. S. Lomdahl, and S. E. Trullinger,
Physica D 7, 259 (1983).

3A. Mazor and A. R. Bishop, Physica D 27, 269 (1987).

4N. Grgnbech-Jensen, Yu. S. Kivshar, and M. R. Samuelsen,
Phys. Rev. B 43, 5698 (1991).

5C. Vanneste, A. Gilbert, P. Sibillot, and D. B. Ostrowsky, J.
Low. Temp. Phys. 45, 517 (1981).

5G. Cicogna and L. Fronzoni, Phys. Rev. A 42, 1901 (1990).

7L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. (Per-
gamon, New York, 1976).

8See, e.g., Tadashi Uchiyama, Phys. Rev. D 14, 3520 (1976); C.
A. Condat, R. A. Guyer, and M. D. Miller, Phys. Rev. B 27,
474 (1983); M. Salerno and M. R. Samuelsen, Phys. Lett. A
128, 424 (1988).

9A. M. Kosevich and Yu. S. Kivshar, Fiz. Nizk. Temp. 8, 1270
(1982) [Sov. J. Low Temp. Phys. 8, 644 (1982)].

10M. Remoissenet, Phys. Rev. B 33, 2386 (1986).



FIG. 2. Steady-state motion of a 7 kink. Parameters are
Ax=0.1, L =100, A =250, and ©=100. (a) y=0. (b) y=0.4.
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FIG. 5. Collision between a 7 kink and an anti-7 kink. Pa-

rameters are as in Fig. 2(a) y =0.1, (b) y =0.2.



