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m kinks in a parametrically driven sine-Gordon chain

Yuri S. Kivshar
Departamento de Fisica Teorica I, Facultad de Ciencias Fisicas, Universidad Comp/utence, 28040 Madrid, Spain

Niels Gre(nbech-Jensen
Department ofApplied Physics, Stanford University, Stanford, California 94305

Mogens R. Samuelsen
Physics Laboratory I, The Technical University ofDenmark, 2800 Lyngby, Denmark

(Received 16 August 1991)

We consider the sine-Gordon chain driven by a high-frequency parametric force in the presence of
loss. Using an analytical approach based on the method of averaging in fast oscillations, we predict that
such a parametric force may support propagation of m kinks, which are unstable in the standard sine-

Gordon model. The steady-state velocity of the ~ kinks is calculated, and the analytical results are in

good agreement with direct numerical simulations.

I. INTRODUCTION

The sine-Gordon (SG) system is known to model many
physical objects in the framework of one-dimensional ap-
proximations such as flux motion in Josephson junctions,
dislocations in solids, nonlinear spin waves in the
superfluid phases of He, ferromagnetic and antiferro-
magnetic systems, etc. (see some references, e.g., in the
review paper Ref. 1). The simplest localized solutions of
the system are the so-called kinks which describe motion
of topological excitations, for example, fluxons in long
Josephson transmission lines or various domain walls in
magnetic systems. The kink connects two nearest ground
states of the system, e.g., u =0 and u =2m, u being the
angle variable, so that it may be called a 2m. kink. In real
physical systems when dissipative losses are included,
kinks may exist in the form of state configurations, and
they move under an external constant force. ' In a num-
ber of physically important systems, an applied force is
periodic in time. Detailed investigations of the ac driven
SG system with loss show a lot of interesting features of
the system dynamics, e.g., spatial-temporal complexity
and chaos (see, e.g. , Refs. 2 and 3). In some physical sys-
tems, e.g., magnetic chains, the applied periodic force
acts as a parametric force (see, e.g., Refs. 4—6 and refer-
ences therein). As is well known, a low-frequency (LF)
parametric force may stabilize the breather when the fre-
quency of the external force lies in the gap of the linear
spectrum. However, such a LF parametric force has no
strong influence on the kink dynamics. ' It is the purpose
of this paper to analyze the influence of a high-frequency
(HF) parametric force on the SG system dynamics. Us-
ing an analytical approach and direct numerical simula-
tions, we demonstrate that the parametrically driven SG
system may support propagation of the n kinks (which
are unstable in the standard SG model) when the frequen-
cy of the force is large enough. Due to the existence of
these m. kinks, the shape of the 2~ kinks may be more
complicated and it is described by an effective double-SG

equation. We also study the dynamics of the envelope
solitons excited at u =~ which are stable under the
influence of the HF parametric force only.

II. ANALYTICAL APPROACH

A. General formalism

V(P) =1—cos(P),

G($)=sin($) .

(2)

Without a perturbation, Eqs. (1) and (2) describe the
well-known SG model, i.e., a chain of interacting parti-
cles in the harmonic periodic potential. In the continu-
um limit, when (b„+,=P„+a/„'+—,'a P'„', the SG system

supports the kink solution,

P(x, t) =~4 tan exp
—1 x —vt

c v
2 2

(4)

where a is the normalized lattice spacing, t is a normal-
ized time, v is the normalized kink velocity, and

Let us consider a discrete nonlinear chain under the
influence of a parametric force and in the presence of dis-
sipative loss. The model equation is

d V(P„)E($„,2—$„+P„,—)+
n

= A cos(cot)G(P„)—y(b„, (1)

where A and co are the normalized amplitude and fre-
quency of the periodic force, respectively, and y is the
normalized dissipative coeScient. The parameter E de-
scribes a coupling between particles in the chain, V(P) is
the normalized external potential and the function G((b)
characterizes the parametric force. For the parametrical-
ly driven SG model which is considered in this paper we
take
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c =a&K is the normalized limit velocity. Small ampli-
tude excitations of the discrete chain near the minima of
the potential are linear waves with the dispersion law,

0 =1+4E sin
2

i.e., the system eigenfrequencies lie in the region
0 (0 (0,where Q . =1 and 0 =1+4K.

We will consider the perturbed system Eq. (1) assuming
that the frequency co is large enough to be outside of the
region of parametric instability of linear waves. To de-
scribe the nonlinear dynamics under inhuence of such a

HF parametric force, we will use the method of averaging
which is analogous to that for the well-known Kapitza
problem, i.e., dynamics of a pendulum with an osci11ating
pivot (see Ref. 7). To derive an averaged equation of
motion for the system dynamics, we will consider the
wave field P„asa sum of slowly and fast varying parts,
i.e.,

p„(t)=@„(t)+g„(t),
where the function g„(t)describes the fast oscillations
(lg. I

» lg. I ) Substituting Eq. (6) into Eq. (1), and using
the expansion in the small g„,we obtain the equation

P„+g„—K(4„,—24„+4„+,) —K(g„,—2g„+g„+,)+ V'(@„)+g„V"(@„)+—,
' g'„V'"(@„)

= A cos(tot )G(4&„)+A cos(cot )(„G'(4„)—y4„—yg„. (7)

If the force frequency lies outside of the region of the
parametric resonance, 0;„(( 0/2) (0,„,the periodic
force cannot excite waves in the system. Hence, it is
reasonable to assume that the function g„(t)does not de-

pend on n, i.e., g„+,=g„.It is clear that Eq. (7) has
terms of different nature, slowly and fast varying. These
different terms have to be compensated separately. It
means that for fast oscillations the following equation has
to be valid,

and

(g„v"(y„)) =0,
A G(4„)

(~2 ~2)2+ y2 2

A G(4„)cos5
(a cos(cot)g„(t))=

2Q( 2 2)2+ 2 2

g„+g„V"(4„)= A cos(cot )G(4„)—yg„, (8)

where

and in Eq. (8) the function G(4) may be considered as a
constant value. As a result, the forced solution of Eq. (8)
has the form

AG(4„)„(t)= cos(cot +5 ),
Q( 2 2)2~ 2 2

A G(4„)(co—too)

2[(co —coo) +ye) ]

where the brackets stand for the averaging in fast oscilla-
tions with frequency co. In the case co &&coo, i.e., in fact
in the region co & Q,„(tobe outside of the region of
parametric resonance), the first term in the RHS of Eq.
(12) may be omitted because it is much smaller than the
second one, and Eq. (12) takes the form

and

cos5=—
(~2 ~2)

Q( 2 2)+y2 2
(10)

dV, NK(4„(—24—„+4„+,)+ = —y4„,
n

where

(13)

coo= V"(4„).
Substituting Eqs. (9) and (10) into Eq. (7) and averaging in

fast oscillations, we may obtain the equation for the slow-

ly varying function 4&„(t),

4„+y4„—K(4„,—24&„+@„+i)+ V'(4 „)
A G (C&„)V"'(4„)
4[(~2 ~2)2+y2~2]

A G
V,tt(4) = V(4)+

4(o) +y )
(14)

B. m. kinks

For the SG model defined in Eqs. (1)—(3), the effective
potential of Eq. (14) may be written as

Equations (13) and (14) describe averaging dynamics of
the parametrically driven SG system with loss.

A (co —coo)G'(@„)G(C&„)

2[( 2 2)2+y2 2]
(12) V,s(4)= 1 —cos4+ A sin@

4(co +y }
(15}

where coo is defined by Eq. (11). To obtain the RHS of
Eq. (12), we have used the following results:

and the equation of motion (13} takes the form of the
discrete double-SG (DSG) equation
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4„—K(4„,—24„+4„+,)+sin@„

A+ sin(24„}= —y4„.
4(co +y )

(16)

The effective potential energy Eq. (15) has two difFerent
states when the parameter A is changing. If

A )A =2(ni+y ) (17)

C

2 2A y
2(c) +y )

' 1/2 (19)

Here, we must, of course, require that the condition of
Eq. (17) is fulfilled. The n kink Eqs. (18) and (19) is an ex-
act solution of Eq. (16) in the continuum approximation.
In fact, it may be obtained from the steady-state kink
solution of the perturbed SG equation

u« —u„„+sinu=2h sin(u/2) —yu, , (20)

which was analyzed in Ref. 9. Due to difference between
the energy values at 4=0 and 4=m, such a solution can-
not be static, and it moves at a Sxed velocity defined by
the balance between the energy difference AE
=E(4=m. )—E(4=0) and dissipative losses.

the potential of Eq. (15) has additional minima at
4=m+2nn (n =0,kl, . . . ) (see Fig. 1). In the continu-
um limit, i.e., when the expression

a((I„'2—,'a p'„' is valid, Eq. (16} has the static
solution in the form of the 2~ kink. However, when
A2& A,2„, the effective potential Eq. (15) supports also
stable propagation of the m. kink,

A (x —V, t)
4(x, t) =2 tan ' exp (18)

A,„+c—V,

where V, is the normalized steady-state velocity of the n.

kink. This solution is unstable in the standard SG model.
Unlike the 2n kink, the solution Eq. (18) has a nonzero
velocity which is determined by the amplitude of the
driving force and dissipation,

C. Envelope solitons

As we can see from Eq. (15), the condition Eq. (17}
means that the maximum of the potential V,I at

+.2mn is transformed into a minimum. Therefore,
near the new minima of the potential it is possible to ob-
serve propagation of nonlinear excitations which are
completely absent without a parametric driving force.
To analyze such nonlinear excitations let us put
4„=n+%„andexpand Eq. (16) at y =0 in qi„,
ql„—K(%'„ i

—2%„+%„~i )+Qc+„—Pili„=0,
where

(21)

A0 = —1
A cr

l 4AP=
6

(22)

We look for oscillating nonlinear solutions of Eq. (21) in
the form

%„(t)=F„(t)e'"+c.c. , (23)

where 6„=nqa —Qt is the phase of the wave in the
discrete approximation, and the wave frequency 0 and
wave number q are connected by the linear dispersion re-
lation,

r

+4g sin2
2

(24)

iF, +P(q)F +Q~F~ F=O,
t}Q aK

z =x —V t, V = = sin(qa),
Bq Q

(25)

(26)

Such a discrete carrier approach allows us to use the
discrete approximation for the carrier wave and the con-
tinuum approximation for the wave envelope F„(t).As a
result the equation for the wave envelope has the form
(see the similar calculations in Ref. 10},

I I I
}

I I I I
(

I I I I
1

I I I I
/

I I I I
1

I ~ ~ I
1

~ I3

A=1.1A

T

P(q) = cos(qa) — sin (qa)
Ea K

0 (27)

/ X t
~

~ r
/I 3

2Q
(28)

Equation (25) is the well-known nonlinear Schrodinger
equation and it has the soliton solution in the form,

0
0 2 4 6

(29)
exp[ —,'i Vz 4i (a ,' V )t]— ——

F(z, t)=a
cosh[a (z —Vr) ]

FIG. 1. The ac induced effective potential [Eq. (15)] as a
function of the phase N for two different values of the driving
amplitude. A =0.25- A„(solid)and A =1.10.A„(dashed).

Using the transformation to the initial variables, it is pos-
sible to obtain a localized solution of Eq. (21). It is im-
portant to note that such a localized soliton exists only at
the condition A ) A,„when the square of the frequency
Qc defined by Eq (22) is pos.itive.
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the SG system can be denoted by the breather solution.
As seen from Fig. 5, this oscillating mode will eventually
decay away. We note here that the direction of motion
for a m kink is always so that if' =m states are converted
to /=0 states. This implies that if two ski.nks move to-
wards each other and collide, so will a pair of a m kink
and an anti-m. kink. Similarly, we can note that if two ~
kinks travel away from each other, so will the pair of
kink and antikink. This is unlike the behavior of the 2'
kinks in the standard SG model, where two kinks of
equal polarity always will attract each other.

IV. CONCLUSIONS

f ))t) )~ )~
n iver

I( i ~ ~
) ~

~

IItallllllhL((I

g5.0

FIG. 5. Collision between a m kink and an anti-m. kink. Pa-
rameters are as in Fig. 2(a) y=0. 1, (b) @=0.2.

is very similar to the collision of two 2n. kinks of opposite
polarities observed in the standard continuous SG sys-
tern. The two kinks are, due to dissipation (and radiative
efFects), trapped in an oscillating bound state, which in

In conclusion, we have analyzed the dynamics of the
sine-Gordon model in the presence of a high-frequency
parametric force. Using the analytical approach based
on the averaged equation of motion for the slowly vary-
ing field component, we have demonstrated that the
effective potential energy of the system allows propaga-
tion of localized m kinks if the amplitude of the paramet-
ric force exceeds a certain critical value. In the presence
of dissipative losses, the m. kink propagates at a fixed ve-
locity which is a function of the driving parametric force
amplitude and dissipation parameter.

We have also analyzed envelope solitons in the discrete
carrier limit, which may be stable at the level P=rr sup-
ported by the parametric force.

By means of direct numerical simulations we have
showed that the stable propagation of the m kinks can in
fact be observed, provided that the force amplitude is
large enough. The results of our analytical approach and
numerical simulations are in good agreement.
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