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A theory of correlated hopping diffusion on lattices with site-exclusion interaction is presented. %'e

develop a variational procedure to estimate the disunion constant D. We derive a method of obtaining
several sequences of decreasing upper bounds for D. The method is extensively discussed for the particu-
lar sequence that starts with the mean-field approximant D . The first term of a second sequence D ™
is obtained by a suitable renormalization of the jump rates and is closer to D than D ". This modified
mean-field approximation enables us to formulate an improved version of the Miller-Abrahams
equivalence to a resistor network that includes correlation effects.

I. INTRODUCTION

Hopping transport on a lattice is treated in many cases
by considering that the moving particles are noninteract-
ing, ' the problem being thus reduced, in a one-particle
description, to that of a random walker. This simple pic-
ture is altered when one takes into account different types
of interactions. One of the most important is the site-
blocking interaction, which rules out the double occupan-
cy of a given site. ' This arises from the Pauli ex-
clusion principle in the case of hopping fermions (elec-
trons) (see Ref. 13 and references cited therein) and from
a short-range (hard-core) repulsion in ionic conductors
(see Ref. 14 and references cited therein). Even this most
simple, shortest-range interaction brings about dynamic
correlations which determine substantial changes in the
transport properties of the lattice gas.

The one-particle description is usually restored by the
mean-field (MF) approximation in which the dynamic en-
vironment encountered by the carrier is replaced by its
equilibrium average. In this approximation the problem
becomes exactly soluble in the case of periodic lattices
and one-dimensional chains, where the MF value of the
diffusion coefficient D " is readily obtained. It was in
the frame of the MF approximation that Miller and
Abrahams' proved the well-known equivalence between
the dc conductivity of a hopping system and that of a
resistor network. This approach was frequently used for
obtaining approximate results and for proving difFerent
properties of the conductivity.

The evaluation of the exact difFusion constant D (or,
using the Einstein relation, of the dc conductivity) is a
many-body problem and thus a much more complicated
one. An attempt to go beyond MF was made by Fedders
and Sankey who developed a systematic method based
on diagrams for computing terms in the moment expan-
sion of the correlation functions. The general formalism
of Ref. 5 was further used by Fedders ' for the study of
two particular lattices.

A remarkable result was that of Richards who ob-
tained the exact value of o (0) for a one-dimensional (1D)
periodic model with two kinds of sites, using a

stationary-Bow formalism. The same author made a gen-
eralization to arbitrary two-sublattice structures and
then obtained the frequency-dependent conductivity
t7(co) for the 1D model. ' The latter was again discussed
by Fedders and Richards. "

An interesting approach to the problem of occupancy
correlation is due to Chase and Thouless. ' Taking ad-
vantage of the formal similarity between the MF rate
equation and the exact evolution, given by the master
equation, they transposed the Miller-Abrahams argument
from the real space onto the configuration space. Thus
they obtained a "many-particle" resistor network with 2
nodes, for a lattice of N sites. Even for 1D models the ex-
ponential increase of the computational volume with the
sample length restricted the calculations to small systems
and approximate (percolative) considerations.

In a previous paper' we treated the correlated hop-
ping problem on a 1D random system with two types of
sites. Corrections to the MF conductivity due to correla-
tions were calculated using a stationary-Sow approach.

Our present work reexamines the problem for the pur-
pose of calculating the diffusion constant of identical par-
ticles (also called the constant of collective or of chemical
difFusion, to distinguish it from the tracer diffusion con-
stant). We make use of a transitory regime approach, in
contrast to the steady-state one used in earlier papers
which calculate the dc conductivity. ' ' The two
methods are equivalent. ' Their results may be com-
pared due to the Einstein relation between D and o (0).

In Sec. II the master equation theory of the diffusion
constant is presented. It is shown that D is expressed by
the resolvent of the master evolution operator A, restrict-
ed to the "one-particle" subspace S, . The MF is
identified as the approximation of restricting the operator
before taking the resolvent. General properties of A are
also discussed.

In Sec. III we examine the particular case of periodic
lattices, which are of interest in their own right but also
can be regarded as quite general large systems with
periodic boundary conditions. Therefore we are interest-
ed in properties which do not depend on the size of the
unit cell. It is shown that D can be identified from the
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small frequency and quasimomentum asymptotic behav-
ior of a certain diagonal element of the resolvent of A.
Using the recursion method' we obtain a continued-
fraction expansion for this matrix element, wherefrom by
truncations at different levels we get a decreasing se-
quence of upper bounds for D. It is shown that one can
improve the procedure by minimizing in a certain class
the first term of the sequence. It is proved that in this
case the first term is equal to D

Several applications of this scheme are presented in
Sec. IV. They are not limited to periodic lattices but in-
clude general 1D chains too, illustrated on the particular
case of the random binary chain.

In Sec. V we present an alternative, variational formu-
lation of the general theory of Secs. II and III. This
viewpoint provides additional freedom for the choice of
the first step in the approximation sequence. The main
result of this section can be stated as follows: we define
an improved MF-type approximation which involves re-
normalized transition rates on the same lattice. The for-
mal structure of the MF theory is left intact but due to
the inclusion of correlation effects in the transition rates
the modified diffusion constant DM is lower than the
first correction to D " in the previous scheme, still
remaining an upper bound for the exact value D. For lat-
tices without triangles (i.e., in which the particle cannot
return to its initial site at the third jump) the renormal-
ization of the transition rates takes a particularly simple
form. Adapting the Miller-Abrahams procedure to this
approximation the renormalized resistors are easy to cal-
culate. The obvious advantage over the network of
Chase and Thouless is the maintaining of the original N-
node lattice. As in Sec. III, DM is only the first term of
a descending sequence of upper bounds for D. In the irn-
proved MF frame it is shown that correlations have a
drastic effect on the low-temperature behavior of the con-
ductivity, as illustrated on 1D binary chains.

Section VI contains a short summary.

d—P„(t)=g[')V„„P„(t)—')V„„P„(t))dt n'

Q—A„„,P„,(t) .
n'

(2.3)

')V„„=Q')V„,5„„+s s (1—
nk )n,',

k, l

(2.4)

where 5k is the set of occupation numbers 5k = (51, ; );,
the Kronecker 5 in Eq. (2.4) means that n is generated
from n' by transferring one electron from xi to xk, and
'Nkl is the rate of this individual transition. The factor
(1 nk

—)n/ forbids the transition unless xt is occupied and

xk is empty in the initial state n . Equations (2.4) and
(2.2) ensure that 'N„„obey in their turn the detailed bal-
ance condition

~En ~ tJEn-
nn'e n'ne

and therefore the macrocanonical distribution

0 1 f3EP =—en Z

(2.5)

(2.6)

(with the chemical potential p taken as the energy zero) is
the equilibrium solution of Eq. (2.3). Equations (2.2) and
(2.4) show that the only interaction between the hopping
particles considered here is the Pauli (occupancy, hard-
core) interaction.

The (time-dependent) average of any n-dependent func-
tion F is

F(t)=QF„P„(t) . (2.7)

In the diffusion problem we are interested in the time
evolution of the departure of the average occupation
number n, (t) from its equilibrium value f; =f( ),sf be-

ing the usual Fermi function. Denoting

IV„„.is the rate of the transition n'~n. If we consider
only individual transitions (i.e., one electron hops at a
time) we have

II. MASTER EQUATION THEORY
OF THE DIFFUSION CONSTANT

5n; =n; f;, — (2.8)

'N, - -e ' ='N -,-e
—P~ —P~; (2.1)

A state of the system is characterized by a set of occu-
pation numbers n = [n; ), , where n; is either 0 or 1. The
energy associated with the state n is given by

E„= E,, n, (2.2)

The master equation describes the evolution of the proba-
bility P„(t) of finding the system in the state n at time t
It reads

%e denote by x; and c.; the positions and energies of
the localized states on which hopping takes place and by
')V; the transition rate from x; to xJ. These quantities
completely define the hopping system. The transition
rates are non-negative quantities obeying the detailed bal-
ance relation (@= 1 /kT)

one immediately gets from Eq. (2.3) the following equa-
tion:

dt '

J
'J fJ(1 fi) f (1 f —)—

l J

"f;(1 f;)f&(1 f,)——(2.9)

where 8;.J are the symmetrized transition rates [see Eq.
(2.1)]

IV;, = "lV;, ( 1 f; )fJ
=

WJ, . — (2.10)

In order to get a closed equation for 6n, one usually

neglects the second sum in Eq. (2.9). In this way one ob-
tains the rate-equation description, or the mean-field
(MF) approximation, on which most of the hopping-
theory results are based.

If the lattice is uniform, i.e., all energies are equal, the
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neglected term cancels out and the MF result is exact. In
nonuniform lattices the approximation is good for small
concentrations of electrons or holes but otherwise serious
deviations are expected, especially at low tempera-
tures, ' ' and corrections to the MF approximation are
needed. This is the occupancy correlation problem.

We begin with some definitions and notations. The
master evolution operator A, defined in Eq. (2.3},is given
explicitly as

with

:(—5nJ, P(t)) =5nj(t) (2.19)

P(0)=5n;P

so that

(2.20}

rier distribution in x at time t for a pointlike initial con-
dition in x,.

y; (t)=(5n, e 'P 5n, )

A „„=5„„+%'„-„—'N„„. .
n"

(2.11)

(F,G) =gF„'6„ (2.12)

and by A the Hermitian conjugate of A with respect to
it. The formal solution of Eq. (2.3) is

P(t) = e 'P(0) (2.13)

In the space of the n-dependent functions, where it
acts, we denote by (, ) the canonical scalar product

q&;, (0)=f;(1 f;)5;J—. (2.21)

g,,(s)=(6nj, Sn,
)

.
1

s+A (2.22)

The action of A is conveniently described in the ortho-
normal basis (in (, ) ) defined as follows. Let

It is obvious now that the problem we have to handle is
the calculation of

and for any (real-valued) F„we have

F(t)=QF„(e ')„„,P„.(0)
nn'

=(F,e 'P(0)) =(e 'F,P(0)) . (2.14)

ri, = 5n, , a—, =+f, (1 f, ) . —1

a;

For each subset I of the lattice define

(2.23)

(2.24)

Therefore the time dependence can be carried over the
"observables" by defining

—AffF(t)=e 'F .

We define a new scalar product (, ) with the help of
p0

The set I ~i)z ) ] z is orthonormal and it can be shown as in
Ref. 5 that one has

~ l»rtt &= g ~rttu(i»i»k» &rk, i
keI

(F,G) =(F,P G)=QF„'P„G„, (2.16)

in which, due to the detailed balance relation Eq. (2.5),
the operator At is Hermitic. Therefore, in order to avoid
confusing notations we denote from now on A by A.
Moreover, it can be shown that A ~0, which accounts
for the dissipative nature of the master evolution.

The diffusion constant tensor D in our hopping system
is given by the s ~0 limit (s )0) of

where

1 1+ g lrttu»i» & ftkI+ g ~rite»i» & &ki
kCI keI ak
I NI leI

+~»rtt) g i Wki+ —,
' g Wki

kEI, ak kEI
l&I I eI

(2.25)

$2
eD(s)e= g[e (x; —x; )] y;;(s), (2.17) 1 1 1 1r„,= M„,—= 5„,y.w„,.—w„, —=r„,

ak aI ak as

where e is an arbitrary unit vector and g;J(s) is the La-
place transform of the correlator

(2.26a)

q&;J.(t)=(5n (t},5n;) =(5n, e "'5n; ) . (2.18)
k

+kl ~kl
akaI

+1k (2.26b)

The expression for D is immediate from the Kubo for-
mula for the conductivity cr, '" together with the Ein-
stein relation between cr and D. (Usually, in the frame of
the Kubo theory s approaches the origin along the imagi-
nary axis s = iso, co—+0.) Another common definition of D
is given by the linear asymptotic behavior of the second
moment of the particle-density distribution. In the terms
of the Laplace transforms this is precisely the content of
Eq. (2.17) since y, (t) can be inte. rpreted as the excess car-

Particular cases of (2.25) are

g ~„,. ) =y~z, . )r„+y~q, q, )n, , (2.27a)

[in which, up to some renotations, one can identify the
operators appearing in the right-hand side of Eq. (2.9)]
and
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Ale;n, &= g (lq, n(&1„+lg,g, &l,, )+lg, &
—&,, +lg, &

1 1

l&i,j

(f; f,—)'+ g lg;ri qi.) —0;i+ 0 i +le;2), ) g W;i+ W.( +W;
1&ij i ja ' a. l~l j al' aJ ai aJ

(2.27b)

1 1

iJ

and the "many-body" problem, defined by A in 2 di-
mensions becomes a "one-body" problem defined by I in
the N-dimensional space Si (N being the number of sites).

In nonuniform lattices Eq. (2.28) is no longer valid.
One defines instead, in analogy with Eq. (2.28), the ma-
trix R,, (s) by

1

s+%(s)
(2.29)

The MF approximation amounts to R(s) =I, or
equivalently

Several facts are worth discussing here.
(a) In uniform lattices 0; =0 and the subspace S, of

"one-particle" states, spanned by [ le; ) ],, is invariant for
A. Therefore

x (r}=r+g, a=1,2, . . . , L, (3.1)

where r runs over the Bravais lattice and g' specifies the
position inside the cell. The index i is replaced by (r, a),
and all quantities defining the model are assumed to be
translation invariant

s (r)=e, a (r)=a

W .(r, r')=W (r —r') .
(3.2)

The reason for considering the periodic lattice is twofold:
on the one hand many models of interest are periodic
(e.g. , see Refs. 6 and 8) and on the other hand some re-
sults are independent on the size of the unit cell and
therefore are relevant for nonperiodic models too. In or-
der to emphasize such situations we shall sometimes keep
the notations of the previous section in which the transla-
tion invariance is not explicit [e.g., x, for x (r} and so
on].

The definition of D(s} is now rewritten as
1 1

's+A ' 's+Q, AQ,
(2.30) $2

eD(s)e= g[e (r+g —g )]2+a2
where Q, is the projector on Si.

(b) The s ~0 limit is strongly connected to the spectral
behavior of R(s) near the origin. The following proper-
ties are immediate: (i) R(s) is a Hermitic positive definite
matrix; (ii) zero is a nondegenerate eigenvalue of R(s),
the corresponding eigenvector is s independent and has
components proportional to a;.

The first statement stems from similar properties of A.
The second is a consequence of the fact that [see Eqs.
(2.26) and (2.27)]

Apl', &a, =o. (2.31)

1eD(~)e= — g[e (x, —x )]'W,
2yu2 ~ J &j

(2.32}

The uniqueness (in S, ) of this eigenvector of A arises
from the following connectivity property of the lattice
(assumed throughout the paper): the graph defined on
the lattice by the bonds (i,j ) with WJAO is connected.

(c) D(s) defined by Eq. (2.17) is an increasing function
of s, for which D( 0O ) given by

a r

Xa g r, g ~ 0 a ~ .
1

s+A (3 3)

In terms of the (discrete) Fourier transformed quanti-
ties the second inoment of Eq. (3.3) becomes the second
derivative at the origin, with respect to the reciprocal-
space variable q

2
s 8 1eD(s)e= ——e ri(q), ri(q)
2 Bq 's+A (3.4)

where

le(q)) = 2, ,~2 gl21 (r))a e
2 ' 1/2

(3.5)

a

and N is the number of cells used in the Born —von
Karman cyclic boundary condition.

In terms of the matrix 7(, and using the canonical sca-
lar product with respect to the a indices, we have

is an upper bound. Equation (2.32) is an exact MF results
in which correlations play no role.

21(q), 2)(q) = u(q), u(q)(
1 1

s+A

with

(3.6}

III. PERIODIC LATTICES

If the hopping takes place on a periodic lattice the sites
are located at

u (q)=

a

a a iq-g'

a 2 1/2
a=1, . . . , L (3.7)
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and

,(q, s)=g%' ~(r, s}e '~", a, a'=1, . . . , L .
r

{3.8)

R(q, s)= g kz(q, s)lvz(q, s))(vz(q, s}l (3.9)

Therefore the small-q, small-s behavior of the diagonal
matrix element of (s+ A) ' depends on the "band struc-
ture" of%'(q, s}. The properties of R(s) listed in the pre-
vious section are translated here as follows: for every q
and s the spectrum of A'(q, s) is strictly positive, except
for the lowest branch, which touches the origin at q=O,
and has a parabolic behavior around this point. More
precisely, we have the spectral decomposition of%'(q, s}

s+a, (q)—
Ib, (q)l'

Ib, {~)l'
s+a2(q)—

which A takes the form of a Jacobi matrix

~ ln)(q}& =a)(q)ln&(q) &+b)(q}ln2(q) &,

& lg2(q) & =b f (q)lg&(q) &+a&(q) lg&(q ) &

+b2(q) lrt3(q) &,

and so on. Then one has

1
~i~a», + „~i~a~)

(3.13)

(3.14)

with the following behavior near q=O:

kz(q, s)-kz(O, s))0, A, )1,
k, (q, s )-qS(s)q,

lv, (q,s))- ga' ' 'r'la),
a

(3.10)

where 2)(s) is a positive-definite tensor and la ) the vector
with components equal to a . Around s=0, q=O the
leading (singular) term of Eq. (3.6) stems from the lowest
branch of the spectrum (A, = 1 )

The behavior discussed above [Eq. (3.11)] is ensured by
the fact that a, is quadratic in q and b, is linear. All the
other terms in the expansion may be taken at their q=0,
s =0 value.

The complete calculation of the continued fraction is
usually impossible. Truncating it at different levels p by
putting b =0 leads, due to the positivity of A, to a de-

creasing sequence of upper bounds for the true value of
the difFusion constant: D"' D' '~ D' '

~ ~ ~ & D
Using [see Eq. (3.5)]

u(q), u(q)
1

lri, (q)&= ga,'' '~'pig, &a, e" '

i i

(3.15)

1

s+qS(0)q
(3.11)

L 1
l(u(q), v&(q, s)) l'

, s+k~ qs together with Eqs. (2.26) and (2.27a), one immediately ob-
tains

and is the only one that survives in the s —+0 limit of Eq.
(3.4) giving

1 —iq.(x,.—x. )
a, (q)= gM, e

pa 2 tj (3.16)

D=2)(0) . (3.12}

Two aspects are essential here.
(a) Equation (3.11) shows that the excess carrier distri-

bution has the expected difFusive behavior around s =0,
q=O. Other details of the distribution are irrelevant.
The whole procedure, involving the second derivative fol-
lowed by the limits q~0 and s —+0, is equivalent to the
statement that the difFusion constant is equal to the ten-
sor appearing in the right-hand side of Eq. (3.11).

(b) In the proof of Eq. (3.11}the only important feature
of l u (q) ) is the fact that its leading term in the q —+0 lim-
it coincides with that of lv, (q,s)). Therefore we may re-
place l u (q) ) by any other vector having the same behavior
without changing the result. Nevertheless the approxi-
mation procedure is affected by the change and one can
use this degree of freedom in order to optimize the
scheme, in a sense that will be clarified below.

The diagonal matrix element of the resolvent of A
from Eq. (3.4) can be represented in a continued-fraction
expansion using the recursion method. ' To this end,
starting with lg& &

= lg(q}&, by repeated applications of
A one generates an orthonormal basis lg2 &, lg3 &, . . ., in

=q2eD(~)e . (3.17)

Therefore the first term in this sequence of upper
bounds for D is D'"=D( ~ ). This is not a very good
starting point for our approximation scheme, being
higher than the MF value D . It is very important to
optimize the first step of the recursion procedure because
the repeated applications of A, though straightforward in
principle, lead to tedious calculations.

In order to improve D'" let us consider the spectral
decomposition of I {q},

1(q)= g y~(q}lu~(q)}{u~(q)l (3.18)

which has strong similarities with that of%'(q, s ) in what
concerns the q~O behavior,

The leading term of a, (q) when q~O along the e direc-
tion (q=qe, q~0) is

a, (q}-q2 g[e (x; —x, }] WJ.
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ydq) -y, (0)&o, xwi

y i(q) -qD""q,

(u&(q))- ga' ' '~a) .
a

(3.19)

a8'ect the value of D, but gives the lowest possible value
of the first approximant D'", because we approach q=O
along the lowest spectral branch of I (q). Corresponding
to this change the first term in the orthonormal basis of
the recursion method is now

It is clear that ~u, (q)) is a valid replacement for ~u (q) )
since both vectors have the same leading term. Changing
in the expression of eD(s)e ~u(q)) by ~u, (q)) does not

lg&(q)&= —g~g (r)&e'q'u, (q)
1

and leads to

(3.20)

& le~(q) & =y~(q)lg, (q) &+ g ~g (r)g (r') &0 .(r —r') e'q' —e'q"
2 a ~

(3.21)

In the first term one identifies I (q) I
u i(q) }=y i(q) l u, (q) ) (3.27)

a)(q) =y)(q)

and therefore [see Eq. (3.19)] we have now

(3.22) in powers of q up to first order, and using Eqs. (3.19) and
(3.25), we get

D~ &]=DM" (3.23) gM (r —r')y (r')=0
a', r'

(3.28)

The second term is orthogonal on the first and conse-
quently it is equal to b, (q)~q2(q)&. We need only its
leading (first) order in q,

or, equivalently

QMJy =QWJ(y; —y )=0 .
J J

(3.29)

&1(q)~92(q) &
- ', , /, y~9;1J &&iJe (y; yJ»—

'pa~2 '1/2 ' J 'J ~ J Therefore [y;]; is the solution of My=0, having the
asymptotic behavior [compare Eqs. (3.1}and (3.26)]

where we used the expansion of
~ u, (q) }

(3.24)
y; —x; . (3.30)

Cla
u, (q)-, [1+iq c ]'ya2 ' 1/2 (3.25)

up to the first order in q, together with the definition of
y

y (r)=r+c (3.26)

The only relevant information contained in ~u, (q)) is
the set of vectors c, defined by Eq. (3.25) or equivalently
the set y (r) of Eq. (3.26). These are MF theoretic quan-
tities, i.e., they are entirely defined by I'(q), and once
they are known

~ g2(0) & is known, and the recursion
method proceeds with iterated applications of A upon it.

Although the definition of [y;]; seems to rely on the
translational invariance of the lattice, a closer look at the
problem shows that this is not so. Indeed, expanding

If we interpret the operator M as a discretization of the
Laplacian, this is the counterpart of the linear solution of
the Laplace equation. Local inhomogeneities lead to lo-
cal fluctuations around the purely linear solution which
remains only asymptotically valid. In the stationary How
theories the departures of y; from x; are related to the
well-known local changes in the chemical potential. "

Fortunately the periodic lattices are not the only ones
for which asymptotic linear solution is available. Anoth-
er interesting class of models with this property consists
of linear chains, under quite reasonable assumptions, as
we shall see in the next section. On physical grounds one
may assume the existence of such a solution for non-
periodic systems, provided they are macroscopically
homogeneous.

All the quantities needed for the continued-fraction ex-
pansion may be expressed in terms of the asymptotic
linear solution. For instance,

2

a, (q)=y, (q)=(u, (q), I (q)u, (q))- g W (r —r')[e (y (r) —
y .(r'))]

2N+a
r, r'

(3.31)
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wherefrom

eD "e= g[e.(y; —
yj )] W;, .1

l,J

Also, from Eq. (3.24)

, g[e (y; —
y, )]'&,',

1

i i,j

(3.32)

(3.33)

DMF 2Wd
2 2,+,

2Wd

(~A +~B )~A~B

(fA fB—)'+aA+aB
7

ay ag

b2=0 .

(4.2)

and lr/z(0) ) is (up to normalization) Due to the vanishing of b2 the first correction to D
gives the exact result

lr/ (0)) =ylr/;r/f )Q,Je (y; —yJ) . (3.34) 2 2

D(2) DMF a&+a&

(fA f, )'—+~A'+.B
' (4.3)

IV. SOME APPLICATIONS

A. Exact solubility at the MF level

B. The Richards model

Consider now the model of Ref. 6. It consists of a
linear chain of equidistant alternating sites of two types
A and B. The hopping takes place only between nearest
neighbors. Only one value of Wis present,

W=~ABfB(1 fA )='ll'BAf A(1 ——fB) . (4.1)

Straightforward computations give (d is the spacing be-
tween the sites)

It is natural to ask whether there are models for which
the continued fraction is finite due to the vanishing of
some b in Eq. (3.14). Of course such models are exactly
soluble.

All the lattices with identical site energies have b, =0
because 0;.=0 and therefore the MF theory becomes ex-
act. Nevertheless the class of models for which D =D
(at least in some direction) is larger as can be seen from
the examination of Eq. (3.33). It is sufficient to have
e y; =e.

y/ whenever 0; 40. This situation can be illus-

trated on the model of Ref. 8. In this model the hopping
sites are arranged in a tetragonal lattice, and the diffusion
constant along the c axis was found in Ref. 8 to be equal
to the MF value in a certain domain of the parameters.
In fact the MF theory is exact for any values of the hop-
ping rates, because 0; %0 only for i and j on the same
(001) plane, on which e y; =e x; =const for e=(001) due
to the reQection symmetry with respect to the plane.

C. The linear chain

Assuming for simplicity the sites are equidistant with
distance d, and denoting W, ;+&= W;+&,. = W~, Eq. (3.29)
takes the form

W;-i(y; —y;-i) = W;(y;+i —y;»
wherefrom

1y;=a+
k(i

(4.4)

(4.5)

The correct asymptotic behavior y;-id for igl oo [Eq.
(3.30)] is ensured by taking a=d( W ') ' where

( W ) = lim —.g1 1

. Wk
(4.6)

The existence of the average for the inverse hopping rates
given by the above limit is not a too restrictive hypothesis
and will be assumed to hold in what follows.

Using Eq. (3.32) one obtains

d2
DMF ( W

—1)—1 (4 7)(~')
with the average ( ) defined as in Eq. (4.6) for all quanti-
ties. Equation (4.7) is a well-known result. The first
correlation corrections involve more complicated aver-
ages which depend on the relative frequency of the appar-
ition on the chain of different types of atoms and se-
quences of atoms. For the case of the Richards model we
recover the results of Eq. (4.3). Another simple case is
that of a binary random chain for which

which was first obtained by Richards using a stationary-
Qow formalism. The latter is expected to be equivalent to
the transitory-regime approach used here, as suggested
by the above results, but the proof is not immediate (see
Ref. 16). General conditions under which b2=0 can be
written down but are dificult to interpret and it seems
that they are not met by other simple models.

D(2) DMF 2pApB(fA fB) ( W )—
pA~B WAA +pB~A WBB+[pA+A +pB~B+(fA fB )']WAB

(4.8)
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&
—pA W

+pB +2pApB2 1 2 1

A A ~BB ~AB
'

&=PAaA+PBaB .
(4.9)

where p„and pB are the concentrations of the atoms A

and B, respectively. Therefore,
where the supremum is taken over a11 the states in the
Hilbert space in which the operator A acts.

We can rewrite the variational problem in a way in

which the functional does not depend on the normaliza-
tion of lx &. To this end we change lx & into A, lx & in Eq.
(5.1) and take the supremum with respect to A. E CL".

This yields

V. VARIATIONAL FORMULATION
OF THE HOPPING DIFFUSION PROBLEM

(5.2}

The frequent appearance of upper bounds for the
diffusion constant in the hopping model is connected to
the fact that the problem can be formulated variationally.
The variational principle is quite simple and reads

1

+ „nina~)'s+A
=sup[2 Re&x, YJ,(q) &

—&x,(s+ A)x &] (5 1)

lx &
= lg, (q) &+ lx, & (5.3)

with lx, & orthogonal on lq, (q) &. Equation (5.2) becomes

Now one may normalize lx & so that &x, ri&(q) & =1 [of
course one may also have states with &x, 7i, {q)& =0 but
these cannot be solutions of our variational problem].
Therefore one may write

1 1

's+A s+a, (q)+ inf [2 Re&g, (q), (s+A)xi&+&x„(s+A)xi&]
x& lg&(q)

Using again q=qe and

A le, (q) & =a, (q)le&(q) &+qlq&(q) &

(5.4)

(5 5)

as in Eq. (3.13) [but this time with lri2(q} & not normalized] we obtain, after changing our variational parameter lx, &

into —
q lx, &,

1 1

s+A s+ai(q) —
q sup [2 Re&f2(q), xi &

—&x&, (s+A)xi &]
x& lg&(q)

(5.6)

wherefrom

eg)e=eD "e

sup [2Re&ri (0),x, &
—&x„Ax, &] .

x
&
ig&(q)

(5.7)

In Eq. (5.6) we got another variational problem similar
to the initial one. By repeating the steps which led us
from Eq. (5.1} to Eq. (5.6} we gradually recover the con-
tinued fraction described in Sec. III. Terminating it by
zero at a certain level amounts to taking the correspond-
ing trial vector equal to zero (as, for instance, the MF ap-
proximation corresponds to choosing lx, & =0). Of
course other choices may be made, all leading to lower
bounds for the true supremum, i.e., upper bounds for the
difFusion constant.

In what follows we take advantage of the flexibility of
the variational principle in order to improve the approxi-
mation scheme. Denoting as in Sec. II by S& the space
spanned by the one-particle states lg; & and introducing
the subspace Sz spanned by the "W-bond" states le;gj &

&x, (s+ A )x & &xi, (s+I }x,&

inf 2
1n

1&x,rii(q}&l' .i&s& 1&xi,g~(q}&l'
(5.9)

which is the MF approximation. By extending the search
to S&S2 we get a better result,

where (i,j ) are pairs of indices with W; %0, we observe
that S, and S2 are orthogonal and ri, (q)&GS, and

ln2(q) & es, .
Corresponding to the splitting of the whole space in

the direct sum of S, , Sz, and their orthogonal S3 (in this

order), we have the 3 X 3 block matrix form of A,

I 0 0
A= 0 T X (5.8)

0 X V

where the structure is immediate from Eqs. (2.25}—(2.27}
and the blocks may be identified there. If in Eq. (5.2} we

restrict the search of the infimum to S&, we obtain

&x ( +A)x& &x„{s+I')x,&+2 Re&x2, Qxi &+&x2,(s+T)x2&
inf

2
1nf 1n

x
l &x,g&(q) & l2 x& Es& x2cs2 l&x„g,(q) &l'

(5.10)
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The infimum in S2 is achieved for The improved MF problem defined by I corresponds
to renormalized transition rates 8';- given by

ix, &= — nix, &s+T
and we are left with finding

(5.11}
1 f; fi-'

g (a,'W, , +a,'W, , )
(5.15)

inf
xi ESi

s r n n x

~&x, , g, (q)) ~'
(5.12)

This is quite similar to the MF problem Eq. (5.9) with the
"effective" I (only its s =0 value enters the calculation}:

r=r —n —n.t1
T

(5.13)

Inverting T is in general a difBcult problem. In period-
ic lattices, if the number of "bonds" is finite (up to
translations}, the Fourier transform reduces it to the in-

version of a finite matrix, but the result depends strongly
on the particular geometry and on the size of the elemen-

tary cell.
Therefore it is remarkable that in lattices in which the

W bonds form no triangles the inversion of T becomes
trivial. Indeed, the examination of Eq. (2.27b) shows that
in such lattices T is a diagonal operator in S2,

X = X
1

2 +Tg 1 (5.16}

All the advantages of the MF theory are present, in-
cluding the equivalence ala Miller and Abrahams' with a
resistor network problem. Equation (5.15} says how to
modify the resistors to include the correlation effects.
The upper bound DM obtained in this way is not only
lower than the usual MF but also lower than the first
correction to it D' '. This happens because D' ' corre-
sponds to taking b2=0 which amounts to searching the
infimum of Eq. (5.2) in the subspace generated by ~ri, }
and ~gz), while here we minimized on the whole S,SS2
subspace.

Let us make the following remarks.
(a) If triangles are present in the lattice, T is no longer

diagonal. Denoting its diagonal part by T it is clear
that

T&j;kl ~(&j )(kl)T&j

(f; f,}'—
T(i W(i ~ z

+ g 2 W(1 +
~ Wii

gi gj 1/i jgi Qj

(5.14a)

(5.14b}

is no longer the optimal choice of the S2 component.
Nevertheless Eq. (5.16}gives a trial vector for our varia-
tional problem. Whether this guess is good or not de-
pends on how large the of-diagonal part of T is. The re-
sult for the "improved" transition rates in this case reads

W2 f f 2

WjJ
l J ij

W;, Wl W;, (f; —fi}(f(—f, ) (f; f, )(fI f, ) —(f; f—i)(f; f, )— —

1%i j ~' ~ '~l il lj ij lJ il ij
(5.17)

The last sum in Eq. (5.17) is the contribution of the trian-
gles. If these are missing we are left with the first two
terms, which give Eq. (5.15).

(b) It is interesting to note that results which turn out
to be equivalent to this improved MF theory were ob-
tained earlier, using the stationary-How approach, in two
particular cases: in ordered two-sublattice structures '

with hops only between the sublattices, and in one-
dimensional chains. ' In both cases the lattices had no
triangles.

(c) Corrections to D™can be also obtained using a
continued-fraction expansion, as in Sec. III. Truncations
of the fraction also lead to a decreasing sequence of upper
bounds for D: D =D +D ~ ' D. As explained
above we have D'" ~D' '.

In order to prove these statements it is enough to no-
tice that taking the infimum in Eq. (5.2) with respect to
the S2 component of x eliminates this subspace from the

problem, leaving a renormalized A operator acting on
S,@S3,

—n~—x~
T

—x—n v —x—x1 1

T T

(5.18)

Apart from this modification, the whole scheme of Sec.
III remains unchanged.

(d} Immediate consequences of the renormalization of
the resistors Eq. (5.15) can be seen in the low-temperature
behavior of the conductivity. As an illustration we con-
sider the example of the random binary chain with
c.~ & sz at particle concentrations for which the chemical
potential lies between E„and Es (in our convention @=0
so that s„(0(ss ). We assume the energy and tempera-
ture dependence of the transition rates as in Ref. 18 and
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discuss the so-called correlation factor' defined as

D
DMF

(5.19)

In the first correction to the usual MF theory, as given
by Eq. (4.8), one immediately obtains the T~0 limit

(2)
(2)

MFD
(5.20)

indicating a reduction of the diffusion to one-half. In
fact, the reduction due to the correlations is much more
drastic as shown by the improved MF theory of this sec-
tion. Indeed, the corresponding correlation factor

DMF ( gr 1)—1 —e i'~
DMF (gr —1)—1T 0

(5.21)

becomes exponentially small ( b, =min I ~
s „~, ~ e~ ~ ] is the

shortest distance from the chemical potential to an ener-

gy level). The exponential factor of Eq. (5.21) contributes
to the increase of the activation energy of the conductivi-
ty from its MF value E=c.z —c~ to the value E+h.
This effect was found in the literature both analytically
and numerically ' for the Richards and the random
model, respectively. In fact the improved MF theory
predicts the activation energy E+6 for any chain in
which sequences of four alternating sites have nonzero
frequency of appearance. Indeed, according to Eq. (5.15)
such sequences give rise to the highest resistances in the
chain, increasing as exp[P(E+b )] and they control the
total conductivity of the sample.

Going to higher corrections one may expect a still
higher activation energy, but both numeric and heuristic
arguments' ' indicate that the lowest conductivity
among the binary chains is that of the Richards model,
for which DM coincides with the exact solution. These
are strong reasons to believe that the true activation ener-

gy is E+A.

VI. SUMMARY AND CONCLUSIONS

We have presented a theory of the diffusion constant D
of hopping systems with hard-core interaction based on a
formula [Eq. (2.17)] that involves the restriction of the
resolvent of the master evolution operator A in the one-
particle subspace S&. We have considered the case of
periodic lattices, in which the Laplace-Fourier transform
of the diffusion Gaussian emerges as the small-s, small-q
singularity of the excess particle evolution [Eq. (3.11)]
and the diffusion constant can be identified in this leading
term.

The evaluation of the diagonal matrix element of the

resolvent was done by the recursion method. (This is en-

tirely in the spirit of Fedders and Sankey who used Pade
approximants for the calculation of each matrix element

(q, s), with the only difference that we compute suc-
cessive approximants for D itself). Due to the positivity
of A, successive truncations of the continued fraction
form a decreasing sequence of upper bounds for D.

It was shown that the essential feature of the state
~u(q)), on which the resolvent is calculated, is its q~O
limit, identical to that of ~u, (q, s)), the eigenvector of
R(q, s) corresponding to the lowest spectral branch.
This behavior (as well as the vanishing of the correspond-
ing eigenvalue) is connected to the conservation of the
number of particles in the hopping process. This essen-
tial property is preserved in the MF approximation,
wherefrom the same q~O limit stems for

~ u, (q) ) and

y, (q) of Eq. (3.19). Replacing ~u(q)) by ~u, (q)) was
shown in this way to be legitimate, as far as the exact
diffusion constant D is concerned, and an improvement
for the approximation procedure, since the first approxi-
mant is lowered to the value D"'=D ". A11 the terms of
the continued fraction can be written in terms of the
asymptotic linear solution of Eq. (3.29). Generalization
to nonperiodic systems comes with the realization that
the existence of such solutions is not limited to periodic
lattices. Nevertheless a word of caution is needed here:
extrapolations to nonperiodic systems are done by taking
the infinite elementary cell limit on the results, i.e., after
the s~0 (t~ao) limit, and not the other way around.
In other words, no matter how large the elementary cell,
the particle has enough time to explore a still larger re-
gion and "feels" a periodic environment. The problem of
commuting these limits is delicate even in the MF
description (see, e.g. , Ref. 19) and is beyond the aim of
this paper. The variational procedure described in Sec. V
was exploited in the sense of improving the above ap-
proximation scheme.

By renormalizing the transition rates so as to include
correlation effects a modified MF-type description was
proposed. It was shown to lead to a better approxima-
tion to the diffusion constant than the usual MF theory,
while preserving all the advantages of a one-particle
description (including the Miller-Abrahams analogy with
a network of renormalized resistors). Strong correlation
effects were easily pointed out using the improved MF
theory in the low-temperature behavior of the conductivi-
ty.

Note added in proof It has been c. alled to our attention
that Spohn has also given a variational formulation for
the diffusivity problem of lattice gases, in a slightly
different setting (uniform periodic lattices and arbitrary
short-range interaction). The upper bound obtained in
Ref. 20 corresponds to D( ~ ).
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