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Theory of coherent x-ray radiation by relativistic particles in a single crystal
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A quantum theory is developed for a type of coherent x-ray radiation observed recently. It is shown

that the lowest-order coherent-radiation processes due to the interaction between the particle and the
crystal electrons are classi6ed into two kinds: electronic bremsstrahlung and x-ray radiation. An analyt-
ical expression for the radiation probability is derived using quantum electrodynamics. For ultrarela-
tivistic particles, our quantum expression yields the classical formula by Ter-Mikaelian, in agreement
with the experimental results.

I. Bv'rRODUCTION

Radiation from relativistic charged particles passing
through matter has been studied for a long time. Espe-
cially, radiation in a single crystal has been of special in-
terest because it becomes very intense coherent radiation
under certain conditions. For example, the periodic
modulation of the trajectories of incident electrons by the
crystal potential causes coherent bremsstrahlung (CB)
and channeling radiation (CR}. CB and CR have been in-
tensively studied both theoretically and experimentally. '

Recently, a type of coherent x-ray radiation by relativ-
istic electrons, called parametric x-ray radiation (PXR},
has been observed. In contrast to CB and CR, as will
be shown in Sec. II, PXR is due to the scattering of the
virtual photons by the periodically distributed electrons
in the crystal. Therefore, PXR is connected with x-ray
dimraction. In fact, very intense x-rays have been ob-
served around the Bragg condition of the x-rays.

PXR was considered by Ter-Mikaelian more than two
decades ago. In his book, Ter-Mikaelian calculated the
radiation intensity as a special kind of "resonance radia-
tion" using classical electrodynamics. Subsequently,
several theoretical studies have appeared. ' However,
the theories of PXR have been classical or semiclassical
in that they use the Maxwell equations for obtaining the
electromagnetic field in the crystal. As a result, the pre-
vious theories can only describe more or less macroscopic
mechanisms of PXR. In this paper, we present a com-
plete quantum description of PXR, giving a clear micro-
scopic picture of it.

II. THE HAMILTONIAN AND THE DIAGRAMS

Previous studies showed that PXR is due to the in-
teraction between the particles and the crystal elec-
trons. ' Therefore, we consider a system composed of
three parts: the projectile, the crystal electrons, and the
radiation field. In calculating the electromagnetic in-
teraction in the crystal, the Coulomb gauge should be
used because the binding states of the crystal electrons
are taken into account. " The crystal electrons are as-
sumed nonrelativistic. Thus, the tota1 Hamiltonian for
the system is given by

c =c( 1 —
—,'go),

where yo is the electric susceptibility:

go= —co(~)/c ~k~2, too=(4npoe2/m, )'~

(6)

For x rays, Eq. (6) is consistent with the classical rela-
tion' c' =c/~e, where e is the dielectric constant in the
medium (see the Appendix).

The interaction Hamiltonian is given by

2= —ea A(r)+ g
/r —r, /

2
+ 2+A(r, . ),

2meC

g A(r,. ).Q,.

Htot Hp +Hc +Hr +H

where Hp, H„and H„are the nonperturbative Hamil-
tonians of the particle, of the crystal electrons, and of the
radiation field, respectively. The unperturbed states for
the particle satisfy the Dirac equation

HstP~, =E(p)tP~, , f~, =u~ exp(ip. r)/V V,
where u&, is the spinor normalized to unity and V is the
volume of the crystal. The unperturbed states for the
crystal electrons as a whole satisfy the Schrodinger equa-
tion

H, ~n)=e„~n& .

The unperturbed Hamiltonian for the radiation field in
the crystal has the usual form

H, = g duo(k)(a&, a&, +—,') . (4)
k, a

However, as shown in the Appendix, the photon states
are different from those in vacuum because of the interac-
tion with the crystal electrons. They now satisfy the fol-
lowing dispersion relation:

to(k) =c'Ikl .

The "velocity of light" in the crystal c' is defined by
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where r and r; are the coordinates of the particle and the
ith crystal electron, respectively. the field operator A(r)
is defined by

A(r) = g[ A(k, a )az, exp(ik r)+H. c.],
k, a

(9a)

A(k, a ) =
' 1/2

27TAc

Vco(k)
(9b)

where ak, is the annihilation operator for the photon
having the wave vector k and the polarization a and ek,
is the polarization vector for the photon. It should be
noted that the third and fourth terms in Eq. (8), which
represent the interaction between the crystal electrons
and the radiation field, have been neglected in the theory
of CB and CR.

Now, we consider the lowest-order Feynman diagrams
for the radiation processes due to the interaction between
the relativistic charged particles and the crystal electrons.
They are shown in Fig. 1.' The wavy lines, the solid
lines, and the twin-solid lines represent the transverse
photons, the incident particle, and the crystal electrons as
a whole, respectively. The four-point contact vertices for
the particles and the crystal electrons represent the static
Coulomb interaction Hz, and the other contact vertices
in which the two photons are attached to the crystal elec-
trons ("seagull" parts) represent the interaction due to
H,' '„. The diagrams (c) and (f) show the well-known
"electronic" bremsstrahlung. " However, the processes
associated with the diagrams (a), (b), (d), and (e) have not
been studied in detail. Indeed, these four processes as a
whole correspond to PXR when the final state of the
crystal electrons as a whole is the same as the initial state
except for the quasimomentum transfer to the crystal
electrons as a whole. It should be noted that, in contrast
to processes (c) and (f), representing radiation emitted by
the particle itself when it collides with the crystal elec-
trons, processes (a) and (d) as well as (b) and (e) represent
radiation emitted by the crystal electrons under the action
of the field of the particle. As will be discussed later, this
cause a typical difference between the two types of radia-
tion on the dependence on the mass of the particle.

III. THE PROBABILITY AMPLITUDES

Once the diagram for a fundamental process is given,
the calculation of the probability amplitude becomes
straightforward. For example, the compound matrix ele-

(b) (c)

(4) (e)

ment for process (a) in Fig. 1 is given by

(lip, ,k„n'IH, ' '„11(~...k,', n )
KFI —g

M Ei E

x(g~, , k,', n IHp „If&„0,n ), (10)

Where I, M, and F are the quantum numbers of the ini-
tial, the intermediate, and the final states of the system,
respectively: F= ( p', s ', k, a, n

'
), etc.

As mentioned in Sec. II, the radiation processes are
coherent when the initial state of the crystal electrons is
the same as the final state, except for the quasimomentum
transfer A'h to the crystal electrons as a whole. In the
coherent case, the initial and the final energy of the crys-
tal electrons are degenerate; c.„=c.„. Thus, substituting
Eqs. (8) and (9) into Eq. (10), we obtain

FIG. 1. The second-order radiation processes due to interac-
tions of a relativistic charged particle with electrons in a crystal.
The solid lines, the twin-solid lines, and the wavy lines represent
the projectile, crystal electrons as a whole, and the photons, re-
spectively. (a), (b), (d), and (e) show the fundamental processes
of PXR while (c) and (f) represent the ordinary electronic
bremsstrahlung.

3

KFI'= — g A(k', a'}-(ut,, au, ) A(k, a) A(k', a')9'„„(k'—k)5(p'+A'k'Ip)
m ce,a

(krak')

where 5(QI Q') is the Kronecker delta and 9'„„(Q)is the form factor defined by

V„„(Q}= n g exp( i Q r; ) n— .

Assuming that the crystal electrons are initially in their ground states, n =no, the corresponding form factor Voo(Q) is
related to the electron density p(r). Since p(r) is a periodic function, we obtain
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9'00(Q) = V g ph5(hi@) r (13)

where h are the reciprocal lattice vectors and ph are the Fourier components of p(r).
The matrix element for the process (d) in Fig. 1 can be calculated in the same manner. The total matrix element for

the processes (a) and (d} become

K("=K"+K(")= ~~FI FI FI
h(WO) a'

' 1/
27TAc

Vco(k) y h(up, eh. .czup, )(eked. eh, ), , 5(p'+&khlp),
co(k) —co(kh)

(14}

where eh, . is the polarization vectors for the photon kh( = k+ h) and we have defined that

gh= —coh/lckl, coh=(4irphe /m, )'~ (15)

Next, we calculate the matrix eleinents for the processes (b) and (e) in Fig. 1. Similar calculations to the above yield the
following matrix elements:

KFI —KFI +KFI(II) ( b) (e)

3

(u ~~, up, )5(p'+A'ql p)~ C2 pq2 P P

Xg A(k, a).
fico(k) +s„

n X exp(iq r,. ) nr)(m X exp( —ik r )p n

J

fico(k }—s„
(16)

where c,„=c„—c . It is very difficult to compute the summations over all the eigenstates of the crystal electrons. In-
stead, for obtaining an analytical expression, we introduce the approximation that the excitation energies ls„ l

are
much smaller than the energies of the emitted photons:

l «%co(k) . (17)

(18)

For x rays, A'co 2 10 KeV is satisfied whereas the average value of c„ is of the order of the mean excitation energy, I & 1

KeV. Therefore, Eq. (17) is reasonable. By using (17), Eq. (16) reduces to the much simpler form
' 1/2

+FI e X+—h V k
(up' 'up, )(ek. kh), 5(p'+iikhlp),(a) 2Mc' t co(k)

where we have used the completeness relation g lm ) (m
l

=1 and the identity

p; $ exp(iq r~)=iiiqe. xp(iq. r;)+ /exp(iq. r )p,
J J

(19)

In calculating the polarization of the photons, we fix the directions of the two independent polarization vectors, suc
that the one is parallel to the k —h plane and the other is normal to the plane. We write them as el' and ez, respectively.
Thus, we have

hj. kj. hi lk k k l kh ki ki khj (20)

In this geometry, the summation over the polarizations in Eq. (14) becomes obvious. From Eq. (14) and Eq. (18), we
obtain the total matrix element for PXR

ey h~(k)' 2' 1/2

Ic(k) a) = g 5(pip'+Rkh}Y(kxa) x

h(WO) Vco(k)
(21)

(u~., eh, au&, )(ek, .eh, ) c(u&, u, )(ek, h)

co(k) —co(kh)' co(k)co(kh)'
(22}

where a =
ll, l and ek~ h=0 has been used.

Next, we calculate the spinors. In this paper, we do not consider polarized particles. Therefore, we should calculate
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IY(k, a)l'= —, yy IY(k,a)l'.
s, s'=1,2

After some calculations, we obtain

(23)

/
Y(k, a )/

= /P(k, a ) f (eh, .p) —(eh, p)(ek, 5p)+ —p.5p+ z-y' rr'

+2P(k, a )Q(k, a )[(eh, .P) —
—,'(ek, 5P)]+ ~Q(k, a )

~
1 —

—,
' P.5P+ (24)

where

ek eh c(ek h)
P(k, a)= 2, Q(k, a)=

co(k)' —co(kk)' co(k)co(kh)'

@=cp/E(p), P'=c p'/E(p'), 5P=P —P', 'V =+I —P, 1"= Pl —P'

(25)

(26)

IV. RADIATION PROBABILITY

w(k, a)= ~E(k, a)~2pF . (27)

The probability of PXR per unit time is now obtained
by the golden rule:

PXR without any approximations except for Eq. (17).
However, for ultrarelativistic particles satisfying y»1,
we can obtain a much simpler formula. Since the ener-
gies of the emitted photons are in the x-ray region, in the
relativistic limit we can neglect the recoil energy due to
the photon emission:

The density of final states PF is given by fico(k) «E(p), E(p') . (29)

PF= c)co(k)

gE PCd

Using (29), Eq. (24) reduces to

~Y(k, a)~ =~P(k, a)(ek, p)+Q(k, a)~ (30)

E(p')
E(p)

1 —P* n —(1 e)—fico(k )

E(p)

Vco(k) dQ
(2ir) A'c'

(28)

where we have defined P"=Pc/c' and n=k/~k~. Substi-
tuting Eqs. (24) and (28) into Eq. (27), we obtain an
analytical expression for the radiation probability of

pF= 1 —P* n
' Vco(k) dQ

(2') A'c*
(31)

Using Eqs. (30) and (31) and taking into account Eq. (20),
we obtain from Eq. (27)

It is worthwhile to point out that Eq. (30) can be obtained
directly by the calculation neglecting the particle spin.
By using ~yo~

= ~1
—

e~ && 1, the density of final states be-

comes

ei co(k)dQ 2 co(k) [[co(k)/c]P —hj ek,

2ir(1 —P' n)e' k ~@0~
c* kh —[co(k)/c']

(32)

where we have neglected the terms equal to or smaller
than the order of ~yo~( & 10 '). In the above, we have
also used the following dispersion relation for PXR:

ty of the incident particle. If we sum up the polarization
of emitted x rays, we obtain the classical results ' by us-

ing the relation

co(k)—=kh v . (33) g /[[co(k)/c]P —h].e„, /
=/[[co(k)/c]P —h] Xn/

kh
—[co(k)/c*] =kki+ [co(k)/c] /~py1 (34)

where kh~ is the component of kh transverse to the veloci-

Equation (33) has been easily obtained from energy and
momentum conservation laws. Except for the depen-
dence on e, Eq. (32) coincides with our previous result de-
rived by semiclassical considerations. ' Using Eq. (33),
the denominator in Eq. (32) can be rewritten as

(35)
The reduction to the classical formula is quite reasonable
because calculations neglecting the quantum recoil and
the spin of the particle generally yield the classical re-
sults. ' This is the reason why the classical formula ex-
plains the experimental result well. Obviously, the quan-
turn result is needed when we consider the polarized par-
ticles. Also, for relatively low-energy particles ( y —1),
the quantum recoil should be taken into account. In the
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latter case, however, the radiation probability becomes
small as seen in Eq. (32) and Eq. (34).

V. INTERFERENCE WITH ELECTRONIC
COHERENT BREMSSTRAHLUNG

As one can see in Fig. 1, the amplitude of PXR may in-
terfere with that of "electronic" coherent bremsstrahlung
(ECB) represented by diagrams (c} and (f). In fact, the
dispersion relation for ECB is the same as Eq. (33). How-
ever, the interference effect should be small because Eq.
(32) in itself explains the experimental results. Now, we
confirm this explicitly.

The amplitude of ECB is easily obtained by neglecting
the quantum recoil and the particle spin. The result is

As mentioned in Sec. II, an interesting feature of PXR
is that the photons are emitted by the crystal electrons.
This is similar to Cerenkov radiation (CR) and transition
radiation (TR). Therefore, PXR production occurs not
only for relativistic electrons and positrons but also for
any other relativistic charged particles. It means that
PXR might be applicable to particle detectors, like CR
and TR.
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1/2

~(Ecs)(k ) ~ 2' kari) k) e h

ch (1—P' n)y

X5(p'+A'khip) . (36)

APPENDIX

It is well known that the phase velocity of light
changes in matter. In classical electrodynamics, it can be
written as'

ki= —hi . (37)

Equation (33) suggests that PXR has sharp peaks in the
vicinity of the Bragg condition for the "virtual" photon
k„=coP/c. Since the directions satisfying Eq. (37) are far
from the forward direction, we may neglect interference
effects.

Equation (36) shows that ECB is intense only in the for-
ward direction satisfying

Pe.n }
—1 2~2

On the other hand, PXR is intense in the direction that
the denominator of Eq. (32), i.e., Eq. (34), becomes very
small:

C =C /")/E (A 1)

H„= +fico (k)(at, ak, +—,'),
k

(A2)

where aP(k) =ciki is the frequency of a photon in vacu-
um. In matter, additional diagonal terms appear due to
the interaction with the electrons. The simplest term can
be derived by considering

where e is the dielectric constant. From a quantum-
electrodynamical point of view, Eq. (Al) is far from obvi-

ous. We show that Eq. (Al} holds for x rays in matter to
within the first-order approximation.

The unperturbed Hamiltonian for the radiation field in

vacuum is given by

VI. CONCLUDING REMARKS

2

(nnlH, , lnn)= r nn X An(r;)r nn), (A3)
2m c

In this paper, we have developed the quantum theory
of PXR. We have derived an analytical expression in-
cluding quantum recoil and spin. Neglecting these quan-
tum features, our expression yields the classical formula,
in agreement with the experimental result.

In certain experimental geometries, the absorption of
the emitted photons becomes important. We can easily
take into account the effect of absorption, by including
the imaginary part of the wave vector of the photon
along the emitted direction.

A (r)= gA (k, a)[al„exp(ik r)+H. c.],

A (k, a)=
2

' 1/22'
e

VoP(k )

From Eqs. (A2) and (A3), we obtain

where A (r) is the field operator in vacuum:

(A4)

2

(n WHO, , ' 'ino) = g i A (q, b)i [2FOO(0)(a &a b+ —,')+Foo(2q)a ba b+Foo( —2q}a bat&]
2m~0 qb

2

+ g g A (q, b) A (q', b', )[Foo(q+q')aqbaq, „,+F00( q+q')aq„a-
2mec q qi (q+qi)

b, b' (b&b')

+F00(q —q')aqsaq~ +F00( —q —q')aqbaqI, ] .t (A5)
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Using Foo(0)/V=po and yo(q) defined by Eq. (7), the first
terin in Eq. (A5) can be rewritten as

Equation (A7) must be consistent ~vith the classical
Hamiltonian for a dielectric, i.e.,

—g —go(q)trito (q) aq&azb+ —=0—,' .
q, b

(A6) I«[elEI'+ I&l']
8m

(A 10)

H, =H„+H„'

= girico (k)[1—
—,'yo(k)](ai„ai„+—,

'
) .

ka

Now, defining the photon frequency in matter by

to(k) =to (k)[1—
—,'yo(k)],

(A7)

(A8)

we obtain Eq. (4).
It should be noted that Eq. (A8) is consistent with Eqs.

(5) and (6). Moreover, if we define

e= 1+go, (A9)

then we obtain Eq. (Al) from Eq. (6) because ~yo~ ((1 for
x rays.

Taking into account Eq. (A6), the unperturbed Hamil-
tonian in matter is modified to the form

If we define the field operator in matter by Eq. (9), we ob-
tain Eq. (A10) from Eq. (A7).

We have considered only the dispersion due to the in-
teraction caused by H,' '„. If we calculate the second-
order perturbation, we will find that the interaction by
H,"'„also contributes to the dispersion. ' It must be em-

phasized that our derivation of the dispersion relation is
based on the perturbation theory, i.e., because of the fact
that x rays satisfy ~yo~ (10 . It would be much more
difficult to give a consistent description of QED in the
matter for arbitrary frequencies. In fact, even in classical
electrodynamics, the dispersion effects in general have
not been clearly understood. ' We will not discuss this
problem further in this work.

Finally, we point out that, in accordance with Eq.
(A7), H„' should be subtracted from the interaction Ham-
iltonian H,' ', . This has been done in our calculations.

'Coherent radiation sources, edited by A. W. Saenz and H.
Uberall (Springer-Verlag, Berlin, 1985).

This radiation could also be called quasi-Cerenkov radiation,
resonance radiation, parametric Cerenkov radiation, etc.
Though we are not sure whether "parametric x-ray radia-
tion" is the most suitable term, we use it henceforth for the
sake of convenience.
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