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Copper-oxygen charge excitations and the effective-single-band theory of cuprate superconductors
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We propose a formally controlled perturbative method for constructing an effective-single-band (SB)
Hubbard theory from s multiband (MB) model for cuprate systems. Our SB theory explicitly incorp-

orates the lowest MB Cu-0 charge excitations, and thus possible charge-transfer instabilities, and

remains valid, even for the extreme charge-fluctuation limit of the MB model, up to excitation energies

of typically -3-4 eV. This is contrasted with recent approximate slave-boson and diagrammatic stud-

ies of the MB model.

only (if at all, c.f. Ref. 12) in the extreme tight-binding
limit where the typical site-diagonal excitation energy
scales dominate over the inter-site oA'-diagonal matrix ele-
ments, i.e., roughly speaking in the narrow-band limit. '

Given the considerable hybridization strengths tdn and t„~
in the cuprates, ' there is thus no compelling reason to
formulate the MB model in terms of such atomiclike or-
bitals and we propose here to represent the full MB model
from the outset in terms of the Cu 3ds2 r2 and Cu-
centered oxygen Wannier orbitals, pl and g~, chosen to
transform like x —

y (B~g) and x +y (Al„), respec-
tively, under the point symmetry group of the Cu site j. '
The most general three-band Hamiltonian, in d-p-g repre-
sentation, can be decomposed into single-site (ls), two-
site (2s), three-site (3s), and four-site (4s) contributions,
H =Hi, +H2, , +H3,. +H4, ., where H„, is defined to con-
tain all possible terms which are quadratic or quartic in

the Cu site-centered d-, p-, g-hole creation and annihila-
tion operators with precisely v out of the (at most) four
available Cu site indices diA'ering from each other. The
d-P-g matrix elements have not yet been calculated direct-
ly, but can be estimated from the d-p matrix elements '
via the p (p,g) orbital transformation. They are rap-
idly decreasing, both with increasing the number v of
different sites involved and with increasing separation be-
tween the sites. For typical parameter values, ' the
characteristic excitation energy scale of H ~ „oforder 5-6
eV, is about 1 order and, respectively, 2 orders of magni-
tude larger than the largest matrix elements of H2, and of
H„., v=3 and 4, "with the dominant 2s matrix elements
being of order 0.3-0.5 eV and the dominant 3s and 4s ma-
trix elements no larger than 0.05 eV. Thus, in contrast to
the original d-p representation, the d-p-g model con-
forms quite stringently to the narrow-band criterion, pro-
vided that Cu and 0 orbitals (di, pi, and gl) around the
same site j and all respective on-site intra- and inter-
orbital hybridizations and interactions are fully included
in H i, . Our basic approach is thus to start from H i, as a
zeroth-order approximation and to truncate the M 8 mod-
el Hilber space to a subspace 8'sq of low-energy eigen-
states of H~, . For realistic (p- or n-type) dopant concen-
trations, ( 1 extra carrier per Cu site, %'q8 can be re-

Whether the low-energy electronic excitations in the
cuprate materials can be adequately described by the
single-band (SB) Hubbard model' has been a controver-
sial issue for several years. Zhang and Rice (ZR) first
pointed out how one might construct an eA'ective-SB
strong-coupling ("t-j model" ) theory in the spin-
fluctuation limit' of the more complete three-band Hub-
bard mode1. Numerical finite-lattice studies have
indeed confirmed the close, almost quantitative correspon-
dence between the low-lying states of the three-band mod-
el and the "lower Hubbard band" states of the SB
strong-coupling theory. On the other hand, certain ap-
proximate treatments"" of the multiple-band (MB) model
appear to suggest that eA'ective SB behavior breaks down
already at a very low "coherence" energy scale" and alto-
gether in the char~e fluctuation regime of the multiple-
band system' " '" " '" " '" where the bare Cu-to-0 hole
charge-transfer (CT) energy s=st, —st is comparable to
the nearest neighbor (NN) Cu-0 and 0-0 hybridization
terms t/p and tpp, and to the NN Cu-0 Coulomb repu1-
sion V,I„. In the present paper, we outline an alternative
approach to the MB-to-SB mapping problem which does
not rely in any way on the strong-coupling assumptions
implicit' in the original ZR mapping and which thus
remains valid in the charge fluctuation limit of the MB
model, even when )e) « (t,t„~l, ~t„„), and V,t„The low-.
energy Cu-0 charge excitations of the MB model are ex-
plicitly incorporated into the SB Hilbert space and are
represented, quite naturally, by the states in the "upper
H ubbard band. "

While our approach is easily generalized to more com-
plicated MB models for the cuprates, we will apply it here
specifically to the three-band extended Hubbard model
for which detailed estimates of model parameters are
available. ' This model was originally formulated in

terms of the atomiclike Cu 3d, 2 ), 2 and 0 2p orbitals of
the two-dimensional (2D) CuOq square lattice, " and
parametrized by c, tdp, tp„, Vdp, and the d- and p-orbital
on-site Coulomb repulsions, Ud and U„, and ferromagnet-
ic direct exchange couplings, Kdp and Kpp, respectively.
However, this particular choice of a truncated orbital
basis set is in principle arbitrary and rigorously justifiable
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stricted to states containing only the ni =0-, 1-, and 2-hole
Is ground-state configurations, with energies E (ni)
and wave functions in~&, respectively, given by
10&"'=13d ) with spin S=0, I»"'=0.8613d'&
+0.5I i3d' g'& with spin S = —,', and the ZR singlet state

i 2& = 0.8 I i 3d p'&+0. 51 i 3d '
p )

+0.2913d "& —0 03 I » "X-'&

with spin S=0, where e.g. , i3d p'& denotes the Is basis
I

configuration containing 1 hole in the Cu 3d, 2, 2 and 1

hole in the surrounding 0-ligand P-orbital and prefactors
indicate the mixing amplitudes for typical MB input pa-
rameters.

These 1s ground-state configurations can now be
straightforwardly identified with the corresponding four

nJ =0-, 1-, and 2-hole Is configurations of the SB Hub-
bard model. The effective SB Hamiltonian, to first order
in hH =H —H), , is then obtained by projection of H onto
.Asa which, in SB language, has the form

H ' =QUniln;l+ g g t„q(j —m)cj.„~„,q + g —QV„&(j m—)ni„n„,i + —,
' K(j —m)SJ" S„,

j j &nt a, A. ,a j Ant 2, a.,k

+ g L(j —m)ctlc ic„,lc„,l+H ' +H '

Here cj„creates a hole in the SB model at site j, with spin
rJ= t, J, ni =ci~;, and ni =g ni Co. rrelated occupa-
tion and creation operators are respectively defined as

t
n;„- =P;„-„nJ, nJ.„-=~ nJ.„-„,and cjoy+' PJgJQ' with projec-
tion operators PJ i

=1 —
nJ and PJ 2 =nJ for

a'=1, 2. The terms H3,' and H4,'. arise from the corre-
sponding terms H~,. and H4,. in the MB model. Their ma-

trix elements, as well as those of the second- and more dis-

tant neighbor 2s term, are typically at least 1 order of
magnitude smaller than the NN 2s terms. The effective-
SB on-site repulsion U =E (2) +E (0) —2E ( I ), of
order 3-3.5 eV (c.f. Table I), is smaller than the Cu d-

orbital on-site repulsion Ud-8-12 eV, although compa-
rable to its ionic (t,t„=0=t„„)—valu—e for a charge-transfer
insulator'" where U-e+ Vd„&U,I. Due to the local
Coulomb correlations in Hi, , both the SB delocalization
(t„.i) and the extended repulsion (V,.q) terms become oc-
cupancy dependent. Our estimates for V & and U would

probably increase by -0.2-0.4 eV if O-O NN and second
NN as well as Cu-Cu NN. Coulomb repulsion terms
were taken into account in the corresponding M B model.

The higher-energy, "non-SB" 1 s configurations dis-

carded in our first-order truncation are separated from

those retained by an energy Apse-3. 5-4 eV, measured
from the lower H ubbard band states, i.e., from the
ground-state energy of Hi, ., at half filling. ANsa deter-
mines roughly the excitation energy scale above which the
effective-SB description breaks down and MB effects have
to be explicitly taken into account. ' This should be con-
trasted with slave-boson I/N-expansion results" which ap-
pear to suggest that non-SB behavior asserts itself already
at a much lower coherence energy scale, well below 0. 1

eV. Since hN88 is about 1 order of magnitude larger than
the typical matrix elements of H„, , v~ 2, virtual transi-
tions from %'s~ into the non-SB states will give only small
second-order corrections for the on-site and NN matrix
elements in Eq. (3). We reemphasize' '" that this large
stabilization energy of the low-lying SB states, ANsp, rela-
tive to the non-SB excitations arises primarily from the
Cu-0 and O-O hybridization terms and not, as is some-
times incorrectly assumed, from the CT energy e or the
Coulomb repulsions U,(. Our approximate mapping
scheme and hence the effective-SB theory (which are
based on the smallness of hH=H —Hi, relative to h, Nsq,
and not on the smallness of, say, itd„i, it„„i relative to s)

TABLE I. MB Hubbard model input parameters from Ref. 6
(HSSJ) and Ref. I 0(c) [McMahan, Annett, and Martin
(MAM)], our resulting on-site and NN inter-site SB parameter
estimates, and direct MB estimates [J i, AM™H,from Ref. 6],
in units of eV. Results in parentheses are for the same two MB
parameter sets, but with s=O.

HSSJ MAM

U,I

Up

V,II

(dp

(pp

KIp

Kpp

8

10.5
4.0
1.2

—1.3
0.65

—0.18
—0.04

(o)

9.4
4.7
0.8

—1.5
0.60

3.s (o)

~NSB

U

V~~

V)~

K

J (I'T)

J (NPT)

J (MB)

~C.'Tl

~M)l
~NtP'

5.6
3.5

0.42
0.32
0.41
0. 1 1

0.14
0.15

—0.035
0.054

0.152
0.143
0.128

1.5
2.54

2.4

(3.9)
(l.7)
(o.s7)
(o.35)
(o.47)
(o. I 7)
(o. I4)
(o. I6)
(—o. l I)
(0.11)

(0.485)
(0.347)(. . . )
(0.50)
(0.84)
( . . )

6.2
3.0

0.48
0.42
0.48

0.092
0. 1 1

0. 1 I

—0.023
0.058

0.27
0.25

1.3
2.0

(4.2)
(l.6)
(o.6o
(o.4l)
(0.52)
(o.I4)
(o. I 3)
(o. l4)
(—0.092)
(0.11)

(0.66)
(0.45)(. - )
(0.50)
(0.95)
( . . )

I

therefore remain valid even in the extreme charge fluctua-
tion limit, isi « lit,t„ll, it„„i,and Vt„, of the d pM-B mod-

el, as evidenced by the smallness of, e.g. , it„-ii/ANsa even

for a=0 (c.f. Table I). This is in contrast to the con-
clusions of Refs. 3(b), 8(a), 8(b), and 9. The SB picture

may break down, at much lower low-energy scales
(« alt„„il), in the Kondo limit where it,t„i« it„„i or for

very large Cu-0 repulsion Vd„))Ud, td(, .
In the limit U»iti~i, a strong-coupling expansion to

order t i~ reduces H to a t-J model' with hopping ma-
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trix elements t(j —m) =t
~ i(j —m) and t(j —m)

=tzz(j —m) in the electron- and hole-doped case, respec-
tively, and antiferromagnetic (AF) NN spin-exchange
coupling J. J is estimated perturbatively as J
= —(K[+4ti2/(U+6V~q —7V~~ —

4 (K)+L) and non-
perturbatively (J ) as the singlet-triplet splitting of a
2s NN cluster embedded in six surrounding sites where
nj =1 is frozen. Our SB estimate J from the Hy-
bertsen, Stechel, Schluter, and Jennison (HSSJ, Ref. 6)
MB input parameters agrees to within l2% with their
value J which is obtained directly from the MB mod-
el and thus takes into account higher-order renormaliza-
tions of the effective-SB parameters due to virtual excita-
tions into non-SB states. J ~ —J " is a rough mea-
sure of the magnitude of these higher-order [O(AH )1
corrections, neglected in our first-order truncation. Our
HSSJ-based SB estimates for J are also in good agree-
ment with available experimental values J '" '

=0.128(6) eV for the cuprates. Our J estimates, based
on various MB parameter sets of McMahan and co-
workers, ' ' ' are about 2-4 times larger which, as
pointed out earlier, " is the combined result of
their' ' ' somewhat larger input values for tdp, small-
er values for s, and neglect of direct exchange (Kd„and
K„„)terms.

The low-lying charge excitations of the MB system cor-
respond in the SB picture to states in the upper Hubbard
band, i.e., to the creation of a Is ZR singlet (n, =2) and a
~3d' ) configuration (n~ =0) by inter-site (j j') hole
transfer. For su%ciently large U,I, this excitation is ac-
companied by a net charge transfer from Cu to 0 orbitals,
since the average oxygen site occupation per hole,

(n,&+n;~)/n, , in the ZR singlet Is state is substantially
larger than in the single-hole ls state. However, in con-
trast to d-p -based descriptions of the Cu-0 CT
excitation, ' " '" " ' ' the current approach takes both lo-

ca1 Coulomb correlations and local hybridizations into ac-
count already in zeroth order. The Cu-0 CT instability,
first discussed within the context of the M B
model, ' " '" " '"' can now also be described straightfor-
wardly within the corresponding SB model, in contrast to
assertions in Refs. 9. In the SB model, the instability
would manifest itself in a transition from a ground state
favoring singly occupied sites and hence, near half filling,
maximally homogeneous charge distribution (HC), to a

competing ground state, favoring doubly occupied and

empty sites, i.e., near half filling a maximally inhomo-

geneous charge distribution (IC), that is, charge dispro-
portionation, between the two Cu sublattices. From the
exact solution of the model in the ionic limit (t,q=K
=L =0), we infer that, at half filling, the IC state exhib-
its charge-density-wave (CDW) order, while the HC
state, for small t i2&0, develops AF spin-density-wave
(SDW) order. For U & l6(V~2 —Vq~), either p- or n-type
dopant-induced carriers are accommodated in the IC
phase as singly occupied sites in the appropriate sublattice
and the SB ionic-limit stabilization energy of the HC state
relative to the IC state, that is, the IC-HC ground-state
energy difference, per Cu site is

(2)

where c=(NI, —lV)/JV is the number of dopant-induced
hole carriers per number of Cu sites W, i.e., c &0 and
c &0 for p and n doping, respectively. Thus, in the SB
picture, the CT instability arises essentially from the com-
petition between the effective SB on-site and NN repul-
sions, U and V~~, and the HC-IC phase boundary [where
AqT~(U, V~ ~, c) =Ol is independent of the dopant concen-
tration, up to ~c~ =50%. As shown in Table I, we find

the HC state to be well stabilized with h,qTi=-+1.3 —1.5
eV &0 at half filling. Since increasing V,j„ in the MB
model enhances both V~~ and U in the SB model, we

would have to raise V,I„ to about 22 eV or 6.5 eV, assum-
ing HSSJ MB parameter values with v=3.6 or 0 eV, re-
spectively, in order to drive the HC state unstable. For
t,q&0, AqTi is likely to be enhanced by the SB delocaliza-
tion energy.

-' We caution that for such large values of
(-22 e't/»Ud, s, r,l„) our present single-site-based

perturbative approach is likely to break down in a quanti-
tative sense. Nevertheless, the foregoing results do sug-
gest strongly, in contrast with Ref. 9, that the cuprate ma-
terials are very far from any purely electronically driven
CT instability, if one assumes realistic parameter
values"' with, e.g. , V,I~

& e. The possibility of a phonon-
driven CT instability, due to coupling to the oxygen
breathing modes, is currently under study. -'" The forego-
ing CT instability phenomenon should be clearly dis-
tinguished from a phase-separation (PS) instability which

has been su~gested to occur in the p-doped MB model for
V,l„+2c" " '-' The PS instability is well reproduced by
our corresponding SB model where it arises as a conse-
quence--' of the hole hopping matrix element I~~ changing
its sign, and hence t2~ 0 (while t~~,J, r ~iWO) at some
suSciently large VI„. For the HSSJ parameters, this hap-
pens when Vd„=7.0 and 4.7 eV, if a=3.6 and 0 eV, re-

spectively.
The Mott-Hubbard (MH) gap, that is, the charge exci-

tation energy for creating a spatially well-separated SB
electron-hole pair at half filling, can be estimated as

h~&) —=U+8(V(~ —Vl ()+hE(t i i,J)+LE(t~~,J) . (3)

Here, U+8(V~~ —V~~) is the MH gap in the ionic limit
(r„.q =K =L =0), J =J ', and AE(r, J) (0 is the SB
delocalization energy gain of a single carrier with hopping
matrix element t injected into the half-filled AF ground
state. AE(t, J) can be estimated from 0- and I-hole tJ-
model ground-state energies. ' Our SB result, h, ~i~ =2.54
eV, from the HSSJ M B parameters, is again in good
agreement with their value of Ag~g =2.4(3) eV, " ob-
tained directly from the MB model. It also agrees well

with the suggested" experimental value of 2.6 eV in

La~Cu04. We caution that h, ~iq is larger than the experi-
mentally observed onset energy for optical absorption

AoA —1.8 eV which probably corresponds to an excitonic
(i.e., electron-hole bound state) transition. "

A~q~ can be

unambiguously determined only by photoconductivity ex-
periments.

To summarize, starting from a ZR d-p-g Wannier or-
bital representation of the full three-band Hubbard mod-

el, we have developed a systematic perturbation mapping
onto an effective SB theory which explicitly incorporates
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the lowest Cu-0 charge excitations, as well as possible
Cu-0 charge instabilities, into an eAective-SB model.
The SB estimates for the AF exchange coupling J and for
the Mott-Hubbard gap i5NtH are found to be in good
agreement with results obtained directly from the corre-
sponding three-band Hamiltonian. Ar'e assert that the
eff'ective-SB description is valid up to excitations energies
h, ~q8-3-4 eV and does not break down in the charge
Ouctuation limit of the MB model. It is possible that cer-
tain slave-boson I/¹xpansion" or diagrammatic ap-
proaches to the MB model (which are principally uncon-
trolled approximations) do not capture the essential local
physics arising from the strong Cu-0 and O-O hybridiza-

tion overlap and may lead therefore to conclusions which
are dilTerent from ours.
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