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The negative-U Hubbard model, doped away from half filling, is believed to undergo a Kosterlitz-
Thouless transition into a superconducting state with power-law pair-field correlations. We have used
numerical simulation techniques to calculate the temperature dependence of the spin susceptibility and
the single-particle density of states. These quantities show that a gap in the single-particle spectrum
develops for a two-dimensional layer in the Kosterlitz-Thouless state.

The two-dimensional negative-U Hubbard model pro-
vides perhaps the simplest many-body description of a sin-
gle layer which can become superconducting. For a half-
filled band (one electron per site), the degeneracy of the
charge-density-wave (CDW) phase and the superconduct-
ing phase drives the transition temperature to zero. How-
ever, when the system is doped away from half filling, the
CDW correlations are suppressed and the system is be-
lieved to undergo a Kosterlitz-Thouless' transition into a
superconducting state with power-law pair-field correla-
tions.>? Here we examine the nature of this state as
determined from numerical simulations of the spin suscep-
tibility y(7) and the single-particle density of states
N(w).

The Hubbard model we have studied has a near-
neighbor hopping ¢ and a negative on-site U interaction:
H=—I<2_;> (c;’_\\.c,-,\v+6;\vcix)+U2n”nil—yZn;,\-. m
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Here (‘,T\ creates an electron of spin s on the ith site of the

lattice, (ij> are near neighbors on a two-dimensional
square lattice, and ni_\.=ci’§.c;,. The numerical simula-

tions* reported here were carried out for an 8§x8 periodic'

lattice. Qualitatively similar results were obtained for
4x4 and 6%6 lattices and at different densities. The
chemical potential was set such that the average site occu-
pation was (n) =0.87. This corresponds to having of order
8 holes (56 electrons) on the 64-site lattice.® The on-site
interaction, for most of the results reported here, was tak-
en as U/t = —4, corresponding in magnitude to half the
bandwidth of 8.

The onset of superconductivity was monitored by study-
ing the equal-time pair-field correlation function

C(l)=(Ai+1AiT> s 2)

with A =ci’}c;’1. The open squares in Fig. 1 show the
Monte Carlo data for C(4,4) corresponding to the largest
possible separation on an 8 X8 lattice. From a finite-size
scaling analysis,’ the Kosterlitz-Thouless transition tem-
perature (Tkt) of the infinite two-dimensional lattice was
estimated to be of order 0.1¢ for U/t = —4 and (n) =0.87.
On an 8x8 lattice, the pairing correlations extend over
the finite-size lattice at higher temperatures than this, as
seen from the rapid growth of C(4,4) for temperatures
less than 0.27 in Fig. 1(a).

The spin susceptibility
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is denoted by the solid squares in Fig. 1. For U/t = —4,
Fig. 1(a), at temperatures well above the Txr, x ap-
proaches a constant Pauli-like behavior with y approxi-
mately equal to the single-particle density of states N (u)
at the Fermi energy. As the system is cooled and pairing
fluctuations developed, y begins to decrease. As the sys-
tem enters the Kosterlitz-Thouless phase and correlations
extend across the 8 x 8 lattice C(4,4) rises and y decreases
dramatically indicating the opening of a superconducting
gap. Figure 1(b) shows a similar behavior for U/t = —6.
Note that in this case, the deviation in y begins at a higher
temperature and the value of y at temperature well above
Txr is smaller than for U/t = —4. This reduction of the
high-temperature susceptibility reflects the decrease in the
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f
local moment® due to the increase in double site occupa-

tion (njin;|) at temperature less than |U].

In order to further explore the nature of the two-
dimensional superconducting state and the existence of a
gap in the quasiparticle spectrum, we have calculated the
single-particle density of states

N(w)=~F Alp,w). )
N
Here A(p,w) is the single-particle spectral weight, which
we have determined from the Monte Carlo data for
the single-particle Green’s function

G(p,t)=—(Tc,(z)c(0))
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01k i FIG. 2. The single-particle (single-spin) density of states
' N(w) vs o for U= —4, t=1, and {(n) =0.87 at different temper-
atures. Here w is measured relative to the chemical potential u,
1 which is —0.15 at low temperatures. (a) =2, the dashed
(b) curve is the density of states for the noninteracting system (with
0 . S R | L Lorentzian broadening I'=1¢) and both curves show the Van
0 0.4 0.8 1.2 1.6 2 Hove peak; (b) B=4, here the gap begins to develop; (c) f=6;
T (d) B=38, here the gap is well developed on the 8 x8 lattice; the
asymmetry reflects the Van Hove peak.
FIG. 1. (a) The magnetic spin susceptibility y(7) (solid

squares) vs temperature 7 for an 8 x8 lattice with U= —4¢ and
(n)=0.87. The open squares denote the pair-field correlation
function C(4,4) at the point of maximum spatial separation on
this lattice size; (b) same as (a) for U = —61.

by inverting the integral relation’

—TtTw

* e
G(p,t>0) f_wde(p,w) T (5)
This has recently been discussed for the positive-U Hub-
bard model,® and we have used similar techniques (includ-
ing use of moments) to obtain the results shown in Figs.
2(a)-2(d).

The density of states of the noninteracting infinite lat-
tice extends from —4¢ to 4¢, with a Van Hove logarithmic
singularity at w=0. With U =0, the density of states
N(w) for an 8x8 lattice with a Lorentzian broadening of
1.0 is shown as the dashed curve in Fig. 2(a). The
Lorentzian broadening has been added to facilitate com-
parison with the Monte Carlo results that always are
broadened due to the effects of statistical errors.® The
solid curve is N(w), computed from the Monte Carlo
values for G(p,7), with U = — 4t evaluated at a high tem-
perature, Br=2. At this high temperature, the single-
particle density of states of the interacting system is simi-
lar to that for the noninteracting system. However, as
shown in Figs. 2(b)-2(d), as the temperature is lowered
and the superconducting pair-field correlations develop, a
gap opens in N(w). Note that this gap is centered about
u=—0.15. The asymmetry reflects the Van Hove peak in
the noninteracting density of states. At low temperatures,

the gap A is of order U/t. Figure 2(d) is in very good
agreement with exact diagonalization results.’

To summarize, we have studied the temperature depen-
dence of the spin susceptibility and the single-particle den-
sity of states. At temperatures less than |U|, the size of
the local site moment depends upon |U|, decreasing as |U|
increases. Note that this higher temperature reduction in
x increases with [U| even though at values of |U| = 8¢ the
Kosterlitz-Thouless transition temperature decreases with
increasing |U|2. As the Kosterlitz-Thouless transition
temperature is approached, the pair-field correlation
length rapidly increases, exceeding the lattice size, and
below this temperature y(T) decreases rapidly to zero, in-
dicating a quasiparticle gap has opened. Indeed, in this
same temperature region we found a gap opened in the
single-particle density of states N(w). At low tempera-
tures this gap in N(w) is well developed in agreement
with exact results at zero temperature.® Thus the two-
dimensional negative-U Hubbard model, doped away
from half filling, exhibits a gap in its quasiparticle proper-
ties in the Kosterlitz-Thouless state.
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