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Simulation of vortex motion in underdamped two-dimensional arrays of Josephson junctions
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We report numerical simulations of classical vortex motion in two-dimensional arrays of under-

damped Josephson junctions. A very e%cient algorithm was developed, using a piecewise linear ap-
proximation for the Josephson current. We find no indication for ballistic motion, in square arrays nor

in triangular arrays. Instead, in the limit of very low damping, there appears to be an effective viscosi-

ty due to excitation of the lattice behind the moving vortex.

Theoretical research in the past few years has suggested
the possibility of ballistic vortex motion in arrays of highly
underdamped Josephson junctions in the quantum ' or in

the classical ' regime. This possibility has been investigat-
ed experimentally and it was very recently claimed to have
been confirmed. In the experiment vortices were creat-
ed by a small magnetic field and accelerated by a current
in one region of a triangular array and then launched
through a channel into a field and current free region.
The launching direction was parallel to one of the array
axes. At very low temperatures a voltage probe opposite
to the launching channel at a distance of 40 lattice cells
showed the arrival of vortices. The ratio of the Josephson
and charging energy was about 250 and therefore the
quantum fluctuations of the phases of the superconducting
order parameter of the islands are very likely negligible.
Under this assumption the motion of the vortex follows
from the classical equations for the island phases. This set
of equations is in general hard to solve analytically
without making crude approximations, but can of course
be solved numerically for not-too-large arrays. Indeed,
such numerical calculations were performed some time
ago' for a square array and for one particular value of the
damping (in those calculations, in contrast to ours, also an
inductance was included). However, no systematic study
of the dependence on the strength of the damping has yet
been made. This will be the focus of the present work.

Adopting the resistively shunted junction (RSJ) model
and assuming that the only important capacitance is the
capacitance C between nearest neighbors, the equations of
motion for the phases pl of the superconducting order pa-
rameter at the islands j (j=1,2, . . . , 1V) of the array read

critical current, and i;,- the external current fed into island

j. We assume that the temperature is low enough to
neglect the thermal noise generated by the resistors. The
nonlinearity of the Josephson current i, sin(P~.

—
Pz ) prohi-

bits the determination of the exact solution of these equa-
tions. What we will do is replace the sine function for
every junction by a piecewise linear approximation and
determine the exact solution for each linear branch in the
N-dimensional space of the junction phases. The approxi-
mation for sin2zx used in our algorithm is depicted in Fig.
1. For each linear branch the equations of motion then
acquire the form

(2)

where the matrix G is the same as the matrix G except for
the elements GJJ, Gtt, GJt =GtJ for which min„~4' —Pt—2trn~ ) 0.4tr (see Fig. I), which depend on the particu-
lar linear branch we have to use. Time has been redefined
in units of 1/to„t with tot, the plasma frequency, co„
=(8E;E, )'t '/h, where .-E, =e /2C is the cha.rging energy
We had to define an adjusted Josephson energy
E; =(5/2tr)E; (E; =&oi, /2tr, with 4o=h/2e the Aux

quantum) because of the slightly different slope at the ori-
gin of the linear approximation (see Fig. 1). The elements

b, in Eq. (2) contain the external current contributions
and contributions which depend on the specific linear
branch. The strength of the damping is regulated by the

1 hatt
QG, t C +— = —gi, sin(pl —pk)+i, , .

2e R 2e -0.5 -0.3-
0.3 0.5

where the sums are over nearest-neighbor islands k and
the overdots denote time derivatives. The matrix Gjf,- is
the lattice Green's function (Glt = —

1 if j and k nearest
neighbors, Gjj 4 for the square array, G~j =6 for the tri-
angular array; at the edges of the array G~I, has to be ad-
justed appropriately). R is the shunting resistance, i, the.FIG. l. The approximation (solid line) of sin2ttx (dashed

line) used in the algorithm.
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McCumber parameter P,.:

P, =(2n') FiR C/+o. (3)

The junctions are in the underdamped regime if p„& l.
The algorithm now works as follows. In the first stage,

starting from some initial phase configuration on a specific
linear branch, the exact solution of Eq. (2) is calculated
by expanding the phase configuration into a static part,
solving Eq. (2) with zero left-hand side, and eigenvectors
pt of the equation

Z&JI;di =~XII;A,
l.

which have a time dependence

yt(r) =pl', (0)exp( ——,
'

[p,. '"~ (P,.
' —4Z)'~']r).

(4)

In the second stage, this solution is propagated in time un-
til we have to cross over to another linear branch. At the
crossing time we match the junction phases and their time
derivatives and repeat the process. What makes the algo-
rithm so eScient is (I) the availability of an exact solu-
tion on each linear branch and (2) the fact that the matrix
G only differs from G for islands j in the immediate neigh-
borhood of the vortex. This means that all vectors pt with
zero components for these junctions trivially satisfy Eq.
(4) with lt, =l (in the terminology of Ref. 2 these junc-
tions are treated as a "linear medium" ). The determina-
tion of the other eigenvectors then reduces to an M x M
instead of an N &N problem, with M the number of junc-
tions j for which min„~p~ —pt —2rrn~ &0.4n (j and k
nearest neighbors). If there are not too many vortices
present in the array we have M&&N and an important
gain is obtained. The crossing times can be calculated
very e5ciently by a Newton-Raphson root-finding pro-
cedure. The CPU time involved in the algorithm is
effectively linear in N.

In Figs. 2 and 3 we show results for the vortex velocity i

as a function of the driving current for the square and the
triangular array, for several values of P, . The distance be-
tween the centers of neighboring plaquettes is a. We feed
a current i for the square array and 2i for the triangular
array into each island on one side of the array and extract

it at the opposite side. Antiperiodic boundary conditions
are imposed in the direction perpendicular to the current.
The vortex is introduced into the array by an initial guess
of the phase configurations. Physically, this geometry cor-
responds to a cylindrical array with two vortices of equal
sign opposite to one another. For both the square and the
triangular array the current was injected perpendicular to
one of the axes of the array. The depinning current was
found to be 0.095i,. for the square array and 0.025i, for
the triangular array, in good agreement with the theoreti-
cal values.

The most striking feature in Figs. 2 and 3 is the satura-
tion of the vortex velocity in the limit of low damping,
meaning that the vortex experiences a noni anishing
viscosity in this limit. This is in contrast to the theoretical
predictions of ballistic vortex motion. Theoretically it
was predicted that the vortex viscosity should be propor-
tional to I/R and hence should vanish in the underdamped
limit (R ee). By inspecting the phase configuration we
learn that in the wake of the vortex the island phases are
oscillating at the plasma frequency co~. In previous experi-
ments on vortex motion in underdamped arrays" this was
already suggested as a possible source of the unexpectedly
high viscosity. Most of the energy appears to be
transferred to the junction just behind the vortex. An esti-
mate of the viscosity can be made by assuming that every
time the vortex moves one cell an amount of energy of the
order of a few times E~ is transferred to the lattice. This
leads to a viscosity g of the order of a few times
F.,/(a~ro„). Equating the force i+o/a due to the current
to the drag force gi we find a velocity of v the order of
aru„i/i, , in agreement with the simulations. We also
checked in our simulations whether the vortex keeps on
moving for some distance if the current is stepped from a
certain value to zero, because of a vortex "mass. " What
we observed, however, is that a vortex moving with its
maximal velocity t -aru„(see below) retraps after cross-
ing at most one junction. This is consistent with the above
picture since with a vortex mass M, , -@oC/a (Refs.
l-3) the maximal kinetic energy is of the order of a few
times E~ and is lost in crossing just one junction. On the
other hand, in the square array we find a retrapping
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FIG. 2. Vortex velocity vs current in a 100X10 square array
for dilferent values of p, The arrows indicate whether the
current was increased or decreased.

i/i,
FIG. 3. Vortex velocity vs current in a 10 junction wide tri-

angular array for diA'creat values of P, The length of the array
was 20 junctions for P, =6.25 and 25, and 40 junctions for
P, = IOO.
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FIG. 4. Snapshots of the supercurrent in part of the central
row of junctions in the IOOX IO square array for p, =25. The
current has just been stepped from i/i, =0.625 to i/i, =0.65.
The time interval is 4/ca„. The division on the vertical axis is i,
and the curves are shifted by successive increments of 3i, along
the current axis. Time increases from top to bottom.

current slightly below the depinning current, like in exper-
iments. "" We do not find a clear signature of this kind of
hysteresis in the triagonal array. However, for the triago-
nal array we find at higher currents a small hysteretic loop
for large P,. (P, =25, 100). At the velocity where the up-
ward jump occurs, i =0.3aco„, the vortex moves roughly
two cells per plasma oscillation period. Behind the vortex
a pattern of oscillations commensurate with the lattice is
built up, leading to a phase locking of the vortex velocity
to the plasma frequency. This phase locking is suddenly
broken if the current exceeds the value i/i, =0.3. F.or
smaller P, . (P,. =6.25) a less pronounced structure re-
mains.

One could argue that the nonvanishing viscosity is

someho~ caused by the nonanalyticity of the piecewise
linear approximation of the Josephson current (see Fig.
1). However, calculations using the correct Josephson
current and a Runge-Kutta integration method ' give, for

P, =25 and an 8 x 8 lattice, results for the current-velocity
characteristic which differ only a few percent from results
obtained with the present method. Because of the too-
small lattice size it is hard to draw conclusions from those
calculations pertaining to an infinite lattice size, but the
validity of our approach is certainly supported by them.

Another interesting feature in the simulations is the
creation of vortex-antivortex pairs behind the moving vor-
tex above a critical value of the current. This phenom-
enon was also observed in the simulations of Ref. 5. It can
qualitatively be understood as follows. The oscillations
behind the moving vortex can be interpreted as a sequence
of bound vortex-antivortex pairs. When the vortex moves
faster, the distance between the bound vortices increases

and at some point the unbinding force iso/a due to the
current exceeds the binding force 2nE~/r. Estimating
r-2~v/ru„and v-aru„i/i, we find the right order of
magnitude i -ace„ for this critical velocity. In Fig. 4 we
show a time evolution for P, . =25 of the Josephson
currents in part of the central row of junctions of the
square array just after the current has been raised above
the value where the vortex-antivortex creation starts.
Clearly observable are the oscillations behind the vortex
which develop into an antivortex moving into the opposite
direction and a vortex of the same sign chasing the initial
vortex. A cascade of such processes will occur and even-
tually switching of the whole row into the normal state.

In the simulations it was important to have su%ciently
long arrays, so that the oscillations could die out before
the periodic image of the vortex reached them. This was
particularly important for large P, For the square array
we could exploit the symmetry about the central row of
junctions. For the triangular array this symmetry is ab-
sent and the computations took a considerably longer
amount of time (other factors also increased the computa-
tion time). We therefore adjusted the length of the array
to p, . The width of the array was 10 junctions both for
the square and the triangular array, which turned out to
be sufficient for our purposes. The computations were
done on SU N4c systems. The calculation of each
current-velocity curve took a few hours to a few days of
CPU time.

The important conclusion we draw from our simula-
tions is that there is no ballistic vortex motion in the clas-
sical regime. In the quantum regime, however, ballistic
motion of vortices could still be a possibility. Because of
the single frequency co„ involved an amount of energy
A&op is required to excite the lattice. If the kinetic energy
of the vortex is below this value excitation of the lattice is
impossible and the vortex moves without damping. It
seems unlikely, considering the large ratio between
Josephson and charging energy, that this would be the ex-
planation for the experimental observations. Another ex-
planation could be that the measurements do not reflect a
single vortex property but some collective behavior, i.e.,
the interaction between the vortices plays an important
role. Further experiments should decide this.
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