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Classical antiferromagnets on the Kagome lattice
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We examine the classical antiferromagnet on the Kagome lattice with nearest-neighbor interactions
and n-component vector spins. Each case n =1,2, 3 and n ) 3 has its own special behavior. The Ising
model (n = I) is disordered at all temperatures. The XY model (n =2) in the zero-temperature
(T 0) limit reduces to the three-state Potts model, which in turn can be mapped onto a solid-on-

solid model that is at its roughening transition. Exact critical exponents are derived for this system.
The spins in the Heisenberg model (n =3) become coplanar and more ordered than the XY model as
T 0. Thus we argue that the Heisenberg model has long-range antiferromagnetic order in the limit

T 0. For n) 3 the system appears to remain disordered for T 0.

(a) (b)

F1G. l. (a) A section of the Kagome lattice. (b) Spins on the
Kagome lattice fully ordered in the so-called J3 x J3 pattern.

An antiferromagnet with only nearest-neighbor interac-
tions on an ideal Kagome lattice [Fig. 1(a)] is a highly
frustrated system. Physically, this system may be approx-
imately realized in' SrCrq —,Ga4+ -019 and in the pro-
posed J7&& J7 phase of the second layer of 3He on graph-
ite. The c/assical antiferromagnetic spin Hamiltonian
we consider here is

H=gS; Sj,
&ij )

where the sum is over all nearest-neighbor pairs on the
Kagome lattice and we consider unit-length n-component
vector spins and also three-state Potts spins. Here we de-
scribe our main results; a more detailed report is in

preparation. '
For Ising spins on a Kagome lattice, the correlation

functions may be exactly mapped onto those of the honey-
comb lattice Ising model via star-triangle and decimation
transformations. " The entire antiferromagnetic range,
T ~ 0, on the Kagome lattice maps onto T) 2/ln2 on the
honeycomb lattice, which is well within the disordered
phase. In fact, the largest eigenvalue of the susceptibility
matrix g(q) is strictly independent of the momentum q at
all T, ' as was noted to order 1/T" in the high-tem-
perature expansion for Ising spins by Harris, Kallin, and
Berlinsky.

For fixed length XYspins, the Hamiltonian (1) may be
written as

H =icos(8; —8, ) .
(ij )

(2)

Up to a global spin rotation, every spin in a ground state
of (2) has 8, =0, or + 2tr/3 —these are the three states of
the corresponding three-state Potts model. The energy of
fluctuations, 0; =0, +8;, about a ground-state configura-
tion [8, ] is

for every ground state. The free energies of each ground
state plus its fluctuations differ at order T- in the T 0
limit, so every ground state is given the same Boltzmann
weight in this limit. Thus, T 0 correlation functions of
the LY model are identical to those of the three-state
Pot ts model.

The ground states of the XY model (2) have long-range
order in w, —=exp(i38, ). Since the system is two dimen-
sional this long-range order does not survive for T &0.
However, a Kosterlitz-Thouless (KT) critical phase with—

g (T)
power-law correlations, (w;*wt)-ri ",is stable at low

temperatures, with ri„,(T) increasing continuously with T.
The KT phase transition should occur when ri (T)
reaches —,

'
and the vortices of w unbind, " unless it is

preempted by a first-order phase transition at a lower tem-
perature. Upon encircling a vortex of w the angle 0
[mod(2n/3)] winds once. Thus one may call them —,

' vor-

tices of S. Note that the KT phase transition is not to an

antiferromagnetic phase, but to a less obvious sort of or-
der; quasi-long-range order in exp(i38).

At T=O, the XY model has the same properties as the
three-state Potts model and thus has an entropy of
5=0.126k& per site. In any ground state of the Potts
model the three Potts states are all represented on every
triangular plaquette of the lattice. There is an exact map-

ping of each Potts ground state onto a configuration of a
solid-on-solid (SOS) or roughening model. ' This SOS
model has a "height" variable zh located at the center of
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each hexagonal plaquette, h, of the Kagome lattice. The
height variables zI, are points on a triangular lattice in a
two-dimensional height space. (Note the height is thus
the position of a two-dimensional surface on a four-
dimensional lattice. ) Height variables on adjacent hexa-
gons of the Kagome lattice are restricted to be adjacent
points of the triangular lattice in height space. The map-

ping from the SOS to the Potts model is given by consid-
ering two height variables on adjacent hexagons separated
by a given Potts spin on the Kagome lattice. The three
possible orientations of the height-space bond connecting
the pair of heights map onto the three Potts spin states.
This gives a unique mapping of each allowed height state
onto a Potts ground state. To make the reverse mapping
unique we need only fix the heights on one pair of adjacent
hexagons.

Now consider the long-distance correlations of the SOS
model and a corresponding coarse-grained height z. For a
rough two-dimensional surface the mean-square height
difference grows logarithmically:" ([z(r;) —z(r~)] )
= rr lnr;, , where r;j =

~
r; —r, ~. Also consider operators (or

order parameters) that are periodic in height space, such
as pQ —e' '. If the surface is rough we have

(yg(r;)yg(r, )) =exp[ ——
~Q~ &[zg(r;) —zq(rt)] )j

(4)

where zq=z Q/[Q( and rtq=cr)Q)'-/4. For an operator
consisting of more than one yq, the smallest ~Q~ deter-
mines the long-distance decay exponent g. Three physical
operators that are linear combinations of yg's are (i) the
restriction of the heights zI, to lie on the triangular lattice,
(ii) the staggered chirality, and (iii) the staggered magne-
tization in the J3XJ3 pattern illustrated in Fig. 1(b).

Each triangle of the Kagome lattice Potts antifer-
romagnet has two types of local ground state: one in

which the spins rotate clockwise going around the triangle
clockwise, and one in which the spins rotate counterclock-
wise. These two types have positive and negative chirality,
respectively. The total staggered chirality is the chirality
of the right-pointing triangles [see Fig. 1(a)] minus that
of the left-pointing triangles.

Baxter put on a field conjugate to the total staggered
chirality, calculated the free energy of the Potts ground
states, and found an essential singularity in the free ener-

gy at zero field. Interpreted in standard scaling terms, '

this means that the staggered chirality is a marginal
operator, with correlation exponent g, . =4. The local
staggered chirality is a periodic function in height space
that is of one sign in the interior of right-pointing triangles
(in height space) and of the other sign in left-pointing tri-
angles, so it has the same periodicity and the same small-
est ~Q~ as the height space lattice itself. Since the restric-
tion of height to the lattice has the same smallest ~Q) as
the staggered chirality, it is a marginal operator also.
Thus our SOS model is at its roughening transition.

In order to check this picture we have measured the
correlations in the three-state Potts model at T=O. We
use a path-flipping algorithm ' to equilibrate the system.
The algorithm finds a continuous path of nearest-neighbor
bonds in the Kagome lattice along which only two Potts

states are present, alternating along the path. All spins
adjacent to the path are necessarily in the third state. The
path is then "flipped" by interchanging the two states
along the path. Paths of all lengths are found.

The staggered magnetization in the J3XJ3 pattern of
Fig. 1(b) is periodic in height space with a unit cell that
contains three sites of the triangular lattice; since its
smallest ~Q~ is 3 times smaller than that of the staggered
chirality, its correlation exponent should be g„, = 3

=
rt, ./3. The simplest measurement of g„, seems to be the

finite-size scaling of the mean-square staggered magneti-
zation density, ((mt~'-), as measured in simulations by
Broholm et al. ,

' who estimated rt„, =1.4~0.3. With the
path-flipping algorithm, we can obtain more accurate
data. The results for linear sizes up to L =384
(192& 192X3 spins) are shown in Fig. 2. Significant devi-
ations from the naive expectation (~m ~' )—L -are
seen. Since we believe we are at the ordering (roughen-
ing) transition there should be logarithmic corrections due
to the marginal operator present (i.e., the discreteness of
the height lattice). Thus we have fit to the forms

()m )'&=AL '(InL/a)",

=AL 3[1 +b/(InL/a)], (s)
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FIG. 2. The mean-square staggered magnetization density
with the expected power-law dependence L ' removed vs

linear system size L for the three-state Potts model at T=O.
Both scales are logarithmic. The (indistinguishable) fits to (5)
are shown. For this figure only, mixed boundary conditions that
are periodic in one direction and free in the other were used to
facilitate equilibration at T=O; fully periodic boundary condi-
tions were used in Figs. 3-5. Where not shown in Figs. 2-5, the
error bars are smaller than the points.

which both fit quite well, as illustrated in Fig. 2. We have
also measured chirality correlations, but their spatial de-
cay is so rapid that a useful measurement of rt, . did not
seem feasible.

For Heisenberg spins our simulation results agree quali-
tatively with Chalker, Holdsworth, and Shender, ' indi-

cating that coplanar ground states are selected as T 0.
Consider the five spins on two adjacent triangles of the
Kagome lattice as shown and numbered in the inset in

Fig. 3. At low temperatures, the three spins on each trian-
gle are, nearly, all in one plane in spin space and at mutu-
al angles of 2tr/3. Thus a measure of the deviation from
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FIG. 3. For n-component spins, the deviation from coplanari-

ty, R, as defined in (6). The excess energy per bond over the

ground state e is proportional to the temperature T for e — 0.
Inset: Two adjacent triangles of the Kagome lattice illustrating
the site numbering used in Eq. (6).

coplanarity is

R=—3 —(l(S~ —S3) (S4 S5) I) .

Our results (Fig. 3) for n =3 are consistent with the ex-
pectation that R —e ' '-for e 0, where e is the excess
energy per bond over the gound state. This implies that
for n =3 coplanar ground states are selected for T 0.

The theoretical arguments' '" that suggest that for
n =3 coplanar ground states are selected for T 0 have
not addressed n & 3. We have investigated this issue by
measuring R for n =4, 5, and 9. We find the equilibration
times are much faster than n =3, and that even adjacent
triangles do not appear to be going coplanar in the T 0
(e 0) limit, as is shown for n =4 in Fig. 3. Thus the
mechanism that selects the coplanar states is for some
reason only operative in the n =3 system.

For Heisenberg systems with periodic boundary condi-
tions we measured the correlations of the spins in heat-
bath Monte Carlo simulations. Equilibration times grow
very rapidly as T 0, so we used an extrapolation tech-
nique to estimate the T=O correlations. In addition to
the usual unclipped correlations (S; S~), we have mea-
sured "clipped" correlation functions, (f(S;.Sj)), with

f(x) = ——,
' for x & C and f(x) =1 for x & C. This treat-

ment is based on the assumption that at T =0 the spin
configurations are coplanar, so S;-S~ can only take the
values ——,

' and l, as in the LY and Potts models. For
T 0 we thus expect the clipped and unclipped correla-
tion functions to agree. We plotted the correlation func-
tions versus the fraction of S; S~ between 0 and 0.5 (this
fraction is a measure of the number of noncoplanar spins
and should vanish for T 0) and extrapolated from the
two lowest temperatures (typically P= I/T =100 and 200)—
to T =0. An example for distance r;~ =4 along a nearest-
neighbor direction is shown in Fig. 4, along with the value
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FIG. 5. Spin correlations on a size I =24 Kagome lattice vs

distance r in a straight line along a nearest-neighbor direction.

The open circles are three-state Potts at T=O, solid triangles

are P =50 Heisenberg, solid squares are P =200 Heisenberg,

and the error bars indicate the range for Heisenberg correlations

at T=0 obtained by the extrapolation method illustrated in Fig.

4.

F IG. 4. Spin correlations for Heisenberg spins on a size
I =24 Kagome lattice. Plotted are the results for distance
r;, =4 vs fraction of S,'S; between 0 and 0.5. The solid dot on

the axis is the T=0 Potts result, open circles are unclipped spin

correlations, triangles are clipped at C= 3, squares are clipped
ut C= —,

' (see text). The shaded region on the axis indicates the

naive range of extrapolations of the correlations to T=O, where

the fraction is zero.
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for the T =0 Potts system of the same size.
In Fig. S we show some of our results for unclipped spin

correlations in a size L =24 (432 spins) system. One can
still see the high-temperature pattern at the rather low
temperature of P =50, with the correlation function alter-
nating with a period of 2 sites. By P=200 the low-

temperature pattern [with a period of 3 sites; see Fig.
1 (b)] is established, with correlations quite similar to the
three-state Potts model at T =0. The extrapolated corre-
lations of the T=O Heisenberg model clearly exceed the
T=0 Potts results. While there must be systematic
corrections to our simple extrapolations, we find that at
every distance (at this lattice size) at least one of the un-

clipped or the two clipped correlations at P =200 exceeds
in magnitude the corresponding Potts value, and is mono-
tonic at low temperatures, indicating that the extrapolated
correlations are qualitatively correct. Results from other
system sizes from L =12 to 84 support this conclusion.
Thus we find that the low-temperature Heisenberg model
shows significantly stronger short-range order than the
three-state Potts or XY models.

The coplanar ground states of the Heisenberg system
that are apparently selected for T 0 are equivalent to
three-state Potts model ground states. But, unlike in the

LY case, the coplanar Potts ground states are not all given
the same Boltzmann weight. The relative Boltzmann
weight is determined by the nonlinear interactions be-
tween the soft modes of the Heisenberg model, '
which are different for each inequivalent Potts ground
state. In the T=O Potts model where all the states are
weighted equally, the system is at its ordering (roughen-
ing) transition. Since the weighting of the states is

changed in a direction that enhances the order, the system
should have long-range order. (Note in a more ordered
state the surface in the SOS representation is less rough. )
Because of this we argue that in the T 0 limit the
Heisenberg antiferromagnet on the Kagome lattice has
true long-range antiferromagnetic order in the J3XJ3
pattern of Fig. l (b). More extensive simulations to fur-
ther test this proposal and perhaps obtain a quantitative
estimate of the staggered magnetization are in progress.
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