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The transport of magnetization and of spin-spin energy are calculated numerically for classical
gyromagnets, coupled by truncated dipole-dipole and nearest-neighbor exchange interactions, on sc, bcc,
and fcc cubic lattices. For the exchange case the results agree with previous theory, and also agree with
experiments on *He for diffusion of magnetization (but not of spin-spin energy). For the case of dipole-
dipole coupling, the results are in satisfactory agreement with previous theory for the angular average of
the Zeeman diffusion, but disagree with experiment. Calculations are also presented for a lattice con-
taining alternating moments of two different species: These show how the attenuation of diffusion by
foreign spins (“diffusion barrier”’) depends independently on the moment and gyromagnetic ratio of the

foreign species.

INTRODUCTION

Spin diffusion is the transport of some entity, usually
magnetization, by means of flip-flops between neighbor-
ing magnetic spins which remain physically fixed in
space. It is supposed that over long distances and times
the transport obeys a diffusion equation. The existence of
spin diffusion has not been in doubt since it was first in-
voked by Bloembergen' to explain nuclear spin-lattice re-
laxation in insulating crystals, which had been found to
be much faster than predicted theoretically.? It was pro-
posed that a few of the nuclear spins were rapidly relaxed
by neighboring accidental electronically paramagnetic
impurities, and that relaxation of the remainder depend-
ed on diffusion of magnetization to these sinks.

The order of magnitude of the effect is easily estimated,
but accurate theories are difficult. Redfield® showed that
the diffusion constant D, for magnetization (equivalent
to Zeeman energy in an external field) could be related to
the moments of a line-shape function. Later, with Yu,*
he extended the theory to include diffusion of spin-spin
energy (Dy) and presented numerical results for the case
of nearest-neighbor exchange coupling. Cowan, Mullin,
and Nelson have extended the moment theory to other
lattices.” For the longer-range dipole-dipole coupling the
theory is more difficult and requires heavier approxima-
tions: By a perturbation procedure Redfield and Yu ob-
tained a result for D, on a simple cubic (SC) lattice
equivalent to one of Lowe and Gade,® who had made
similar approximations in the context of a different
theoretical approach. Borckmans and Walgraef,” using
more elaborate methods of irreversible statistical
mechanics, also obtained results for the sc lattice which
are essentially equivalent to lowest order. Morita® has
given a memory-function theory with applications to ex-
change coupling and the XY model.

Experimental comparisons are available for bec *He,
where very strong exchange coupling leads to diffusion
sufficiently rapid to be studied by spin-echo techniques.’
The experimental values for D, (Ref. 10) are in good
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agreement with Redfield and Yu, but values for Dy (Ref.
11) apparently disagree by a factor of 2. For all other
cases—in particular the classic case of dipole-dipole cou-
pling in CaF,—the diffusion is much slower and has had
to be studied indirectly through the analysis of spin-
lattice relaxation in paramagnetically doped crystals.
The interpretation of such experiments is complicated by
the presence of a “diffusion barrier” near the impurities:
Two neighboring nuclear spins at different distances from
the impurity suffer different hyperfine shifts and are thus
inhibited from making energy-conserving mutual spin
flips. It has been shown!>!3 that the early part of the re-
laxation exhibits a #!/? behavior which can be related to
D,. Leppelmeier and Jeener!* took advantage of this sit-
uation to determine D, in U*-doped CaF,. However,
the large anisotropy they found for D, disagrees with
theory, and the anisotropy in 7', they observed is not
seen in numerous other relaxation measurements.

One attempt has been made'’ to measure D, in CaF,
by a direct tracer method, taking advantage of the large
equilibrium magnetizations and very long T available at
millikelvin temperatures. The experiment failed as a re-
sult of T, being much shorter than had been expected,
but could probably be successfully repeated with suitable
modifications.

It was in this context that we decided to explore spin
transport phenomena by numerical computation, i.e., by
what would be called molecular dynamics if the dynami-
cal entities were atoms or molecules rather than spins.
At first sight this might appear unpromising in view of
the fact that nuclei of spin 1—at least when considered
individually—would seem to display essentially quantum
mechanical behavior. A genuinely quantum approach to
the behavior of N coupled spins would require diagonali-
zation of matrices of dimension 2%: this would create a
hopeless situation for N sufficiently large to bring out the
“many-body” behavior that distinguishes irreversible
transport from local coherence.

However, a case can be made for treating the spins as
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classical gyromagnets. Van Vleck’s theory of line
shapes'® yields explicit formulas for the second and
fourth central moments M, and M, of the line in terms
of nuclear properties and lattice sums. Jensen and Han-
sen!” have extended this theory to My and M. In all
these formulas, the dependences on spin quantum num-
ber I as distinct from magnetic moment m and magneto-
gyric ratio ¥ can be seen by replacing y*#* (I +1)—m?
throughout. Table I shows the differences between spin
and the classical limit, i.e.,

I—w, #>0, VI(I+1)i=m/y=const (1)

for an sc lattice (e.g., CaF,) with the external field in the
various directions. For the [001] direction Fig. 1 shows
the free-induction decay (FID) calculated numerically for
classical spins by the methods to be described below, to-
gether with a representation of the experimental FID by
Abragam’s'® empirical fitting function

—(ar?/2) Sinbt

F(t)=e bt

(2)

in which a and b are determined by the second and fourth
moments. The curves agree fairly well to beyond the first
zero crossing, i.e., to what might be called the charac-
teristic time T, of the transverse relaxation.

Similar conclusions can be drawn from the approxi-
mate line-shape theory of Gade and Lowe,'® who found
some change between [ =% and I =1, but almost none as
I was increased further.

On this basis we conclude that classical calculations of
spin dynamics should yield results which, while not ex-
act, are likely of semiquantitative accuracy. The uncon-
vinced may regard the remainder of this paper as a possi-
bly instructive study of the way in which spin diffusion in
a hypothetical system of many classical gyromagnets de-
pends on coupling Hamiltonian, field direction, and lat-
tice structure.

Briefly put, the computational approach is as follows: a
finite crystal lattice is defined in which each spin j is la-
beled by three array indices (/,m,n) in terms of which its
crystal coordinates r=(x,y,z) are expressed. The Hamil-
tonian is expressed in terms of the interaction of each
spin j with its local field B; arising from all the neighbors
k

- . = k
=—;3m;B;; B;= 3 Bj. (3)
J kj
The truncated dipole-dipole interaction among like spins

TABLE I. Ratios of moments for classical spins to those for
spin % for various field directions. Values are a simple cubic lat-
tice, including 9° spins.

Orientation M, M, Mg My
[oo1] 1.000 1.038 1.134 1.336
[110] 1.000 1.019 1.068 1.170
[111] 1.000 1.008 1.028 1.073

0.8 -

M; 0.4 —

0.2 -

/__\\_
0.0 =

Time (reduced units)

FIG. 1. Free-induction decays for a simple cubic lattice with
B, on the [001] direction. The dashed curve is the result of nu-
merical simulations using the methods of this paper. The solid
curve is a representation of the experimental FID. Similar
agreement is obtained for other orientations.

in a strong external field, for example, would have

B;.‘=bjk(kai+mij—2mZkk) ’ (4)
bj, =—1; P;(cosdy ) .

Here (XYZ) and (ijk) refer to a laboratory coordinate
system with k parallel to the external field, and j,k rotat-
ing about the field at the Larmor frequency. 6 is the
angle between rj and k. An initial condition on m; is es-
tablished in which all spins are random in direction ex-
cept for certain constraints which are required by the
desired initial departure from a uniform infinite spin tem-
perature. The local fields at all sites are then calculated,
using cyclic boundary conditions. Each spin is now al-
lowed to precess for a suitably short time under the
torque exerted by its local field:

dm;/dt =ym;XB; . (5)

The calculation of local fields and precessions is repeated
ad libitum and at suitable intervals the desired macro-
scopic average quantities are computed. Typically such a
run is repeated a number of times, each time rerandomiz-
ing the unconstrained part of the initial conditions, to
suppress fluctuations arising from the finite size of the
system.

The calculations turned out to be heavier than we had
anticipated, and required many hours of CPU time on the
IBM 3090 system at the Cornell Supercomputer Center.
In this paper we concentrate on the physically interesting
of the methods used and the results. A detailed discus-
sion of computational matters having to do with algo-
rithmic stability, vectorization and parallel program-
ming, dynamic error control, etc., will be published else-
where.?0
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DIFFUSION ON AN SC LATTICE:
DIPOLAR INTERACTION

Zeeman energy

We now describe the calculation of spin diffusion in
somewhat more detail. For concreteness we will focus on
the diffusion of Zeeman energy in the classic case of
CaF,, where the only nonzero nuclear moments are those
of '°F, occupying 100% of the points of a simple cubic
lattice. Our object is to calculate the diffusion of the
magnetization density M parallel to a strong external

field By,
The general form of the diffusion equation is
OM(r,t) *M(1,t)
b _— D b
ot 2 Dy dudv ’ (©)

"V

where p,v are any Cartesian coordinates. The anisotropy
in D is of two kinds: The first is its familiar property of
transforming in the laboratory as a second-rank tensor.
Because of the high field, the diffusion with respect to ro-
tating coordinates has axial symmetry about Z: In the
cases we will be interested in, crystal symmetry will
guarantee axial symmetry with respect to laboratory
coordinates as well. The second is that the Hamiltonian
itself depends on the orientation of the field with respect
to crystal coordinates, as evident in the P,(cos8) factor in
(4). For any such direction, writing D in its principal axis
system, the Fourier transform of (6) is

0A4(k,z) _
T_E' —D, kLA(k,t), ™

where A denotes the amplitude of the magnetization
component with wave vector k. Defining

D=k *3kiDy ;.
u
(7) becomes
%z_m)kﬂk,t)- ®

This expresses the expectation that diffusion depends on
direction but not on wavelength. Of course this, as well
as satisfaction of a diffusion equation in the first place, is
an assumption to be tested experimentally or in micro-
scopic calculations.

Throughout we express all physical quantities in re-
duced units. The nearest-neighbor distance r;, and mag-
netic moment of one spin are taken to be unity. One unit
of time is then r3 /|ym/| and one unit of D is |ym|/r,.
For CaF, these amount to 35.1X107%s and
2.12X 1071 m?s™!, respectively. By definition the mag-
netization M, in units of m /r}, is the average magnetic
moment in volume AV:

M= - (10)
oAV
In our calculations the initial condition is generally one

in which the magnetization is uniform in two of the crys-
tal directions and follows a single cycle of a cosinusoid in

the third direction: If this is the z direction,
M(r,0)= A(0)cos(kz) (11)

with k =2m /N, where N is the number of layers of spins
in the z direction of the (finite) crystal. This is done by
setting mz;(0) between —1 and 1 with a biased pseu-
dorandom number generator arranged, for each crystal
plane along the z axis, to return values from a distribu-
tion appropriate to (11). my; and my, are then chosen to
be totally random except for the requirement that m,
have unit length. (A further adjustment has to be made
in certain cases; see below.) N is chosen by experience to
be large enough that the transport of magnetization
obeys a diffusion equation and is independent of N (see
above): typical values are 32 or 64. A(0) is taken to be as
large as possible, sometimes even approaching unity, to
minimize the statistical variations of magnetization.
However, care must be taken to make A4 (0) small enough
that the calculated D is independent of A(0). This corre-
sponds to the usual high-temperature (small polarization)
approximation that characterizes most experimental situ-
ations. Moreover if 4 (0) is too large, the generation of
harmonic magnetization waves occurs during subsequent
time development.

In practice the orientation of the field in the crystal
system is always taken to be the z [001] or x [100] direc-
tion, in which case diffusion occurs parallel or perpendic-
ular to the field, or the [111] direction, in which case the
diffusion front moves at an angle of 54.7° to the field. In
the last case we do not calculate the principal elements of
D parallel and perpendicular to the field. However, be-
cause of the cubic symmetry we know that the result cal-
culated is

D[111]=1Tr(D)=1D,+2D, .

An initial set of local fields at all spins is now comput-
ed. At each point only those neighbors within an “in-
teraction region” centered on that point were included.
The number of neighbors required to give stable results is
typically found to be 7°—1 to 63*—1, depending on cir-
cumstances.

The spins are now allowed to precess for a short inter-
val At in the local fields just computed. The precessions
could easily be treated as explicit finite rotations arising
from the explicit trigonometric integration of (5). Since
this assumes that the local fields are constant over At it is
tantamount to approximating by a Taylor series to first
order. If At is small enough to give accurate results the
computation becomes inefficient. Moreover this method
does not assure conservation of the total Zeeman energy,
which in fact is a constant of the motion. For example,
consider an isolated pair of spins, with one parallel to Z
and the other parallel to X. Their local fields will be
along X and Z, respectively, so that during the precession
m, decreases while mz, remains zero. It was found that
accuracy and efficiency could both be well served by an
explicit use of Taylor series. From (3)-(5), denoting the
nth time derivative by a superscripted (n),

B{"=3 by (mgpi+myj—2myk) (12)
k
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and

n
m;n+l):,y(mijj)(n)=,y 2 (;)mgn-—m)xrﬁm) X (13)
m=0

Given the initial conditions, derivatives up to m{" can be

calculated by recursion and new spin components calcu-
lated by Taylor series up to the nth order.

In (12) the summation is over all N —1 neighbors in the
system. Although the sum often can be restricted to an
interaction region containing a smaller number L of
spins, it still dominates the computing time. Fortunately
a large saving is possible by using the properties of
Fourier transforms, especially when a vector processor is
available. For the X component, for example,

N
Bl(\,")(rj)Z > b(rj—r, ymi(ry,)
k=1

(14)
(15)

=b(r))@my(r;)
=F NF[b(r))]F[mg(r;)])

where F denotes Fourier transformation and ® denotes
convolution. By using this procedure the computing time
is reduced by a factor of about L /log,N.

The calculation of local fields and updating of spin
orientations form the basis for an iteration over long
times. At suitable intervals the magnetization M(z) is
computed by summing over slices normal to the z axis
and fourier transformed to obtain A4 (#). According to (9)
this quantity should decay exponentially with time, so
that D could be obtained by curve fitting. A much more
direct procedure is possible because of our knowledge of
the microscopic state of the system at all times. This per-
mits us to calculate the time derivative of A(¢) directly
by summing the derivative of m; over slices and Fourier
transforming. Then from (9),

__ 3A(k,t)/dt
k2A(k,1)

Figure 2 shows results of a typical run for 4(0)=0.5

k (16)

1.00 T T T 0.4

0.75+ —0.3
< 0.50 +H0.2<
< =
T

0.25 — 0.1

0.00} | A A 0.0

0] 20 40 60 80

Time (reduced units)

FIG. 2. Output of a representative run calculating D, for the
[111] orientation of an sc lattice. The lower curve shows the de-
cay of the amplitude of a sinusoidal magnetization inhomo-
geneity with /=16. The upper curve traces the “instantaneous”
diffusion coefficient (see text). The fluctuations in the upper
curve grow with time (expressed in reduced units as defined ear-
lier) as the amplitude of the inhomogeneity decreases.

and the field in the [111] direction. A(t) shows the anti-
cipated exponential decay. After an initial rise from zero
in about one unit of time (7,) D remains approximately
constant apart from statistical fluctuations, which of
course grow relatively larger as 4 decreases. The initial
rise in D, and the corresponding but no so obvious zero
initial slope of A, are consequences of the time-reversal
symmetry of the dynamics and the initial condition
chosen. During this transient period of unit duration the
spin system approaches local thermodynamic equilibri-
um.

Effects of spin-spin energy on Zeeman diffusion

As already stated, the calculated diffusion constant
may depend on the initial amplitude A(0) if this is too
large. Then one might expect a plot such as Fig. 2 to
show a secular change in D, whose value at any time
D (t) would correspond to the initial value D,(0) for a
second run with 4,(0)=4,(¢). However, it is found
that D sometimes depends on A4(0), but not dynamically
on A(t). There must therefore be some conserved quan-
tity on which D depends. This quantity is the total spin-
spin energy. When M(r) is a function of z only, the aver-
age per spin of this quantity over the whole crystal is

_ 1 ] _—_1- ]
E, .= 2] z§1 m;(z)-B;(z)= 51 z§1 m;(z)-B;(z) ,

(17)

where, for example, m;(z) means the moment of a single
spin in the layer at z. (Recall that z is an integer.) The
average is over j (on the layer at z) and can be broken be-
cause m;(z) is initialized in a way that does not depend
on the moments of the neighbors &, and therefore not on
the local field B; which they exert on j. Remembering
that the initial averages of my; and my; are zero and us-
ing the fact that the spin density is unity to replace the
average of m; by M, we have

%F—%EMMZWF%ZMMEM%W”,

(18)

where 1 refers to an interspin vector within the interac-
tion region v centered on any j of layer z. Rewriting i,
as M(z+z; ), where zj; is the z component of r,

Eim=2b(rjk)(M(Z)M(Z +ij)> . (19)

If the interaction region has tetragonal symmetry it can
be shown that

E; = —Py(cosa) 3, rj *Py(cosBy A M (z)M (z +zy)),

(20)

where a is the angle between the z axis and the field and B8
is the angle between an interspin vector and z. (It can
also be shown that scaling the interaction region and the
wavelength of the magnetization profile by the same fac-
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_FIG. 3. Dependence of D,[001] on spin-spin energy E,,.
E;, is a constant of the motion, determined by the initial condi-
tion for the moments of the system.

tor does not change the spin-spin energy.)
_ Equation (20) shows that for the [111] orientation
E; =0, so the effect of 4(0) on D does not appear. For
the other orientations E;,, is proportional to [ 4(0)]? and
can be adjusted, for given 4(0), by introducing into the
initial condition a suitable correlation between the X
components of the spins. Figure 3 indicates the sensitivi-
ty of D,[001] to E,,,, varied by choosing 4 (0) between
0.0625 and 0.5 and the size of the interaction region be-
tween 7° and 63°. E, . —0 is appropriate to the usual ex-
perimental high-temperature approximation.

The results for diffusion of Zeeman energy are summa-
rized and compared with previous results in Table II.

Diffusion of spin-spin energy

The spin-spin energy, quite apart from its influence on
D,, has importance as an entity which undergoes
diffusion (Dg) on its own right. In the case of exchange
coupling (see below) an attempt has been made to derive
a value from experiments.!! This phenomenon can be
calculated by essentially the same means described above.
It was found that Dy depends on the distribution of mag-
netization even when E,, =0. To calculate Dy for uni-
form magnetization and vanishing E,,, the initial state
was assigned in such a way that alternate xy planes re-
ceived equal and opposite magnetizations, but the contri-
butions of the m,; to E,,, are compensated by the contri-

TABLE II. Diffusion of Zeeman energy on a simple cubic
lattice. The diffisuon always occurs along a fourfold axis of the
crystal. This is either parallel (D) or perpendicular (D, ) to the
external field, or else the field is in the crystal [111] direction.
In the last case symmetry requires that the diffusion coefficient
along any fourfold axis is the average over all directions with
respect to the field.

TABLE III. Diffusion of spin-spin energy under dipole-
dipole interaction on an sc lattice.
Dg,[001] Dpg[001] Dg[001]
0.19 0.63 0.34

bution of the my;, needed to create a distribution of
E,(z). It was found that Dg, by contrast with D, is in-
sensitive to 4. Because of the difficulty of establishing a
suitable initial distribution of E; (z) for the [111] orien-
tation, D[111] was not calculated for this case. Results
for the [001] orientation are given in Table III.

DIFFUSION OF HEISENBERG MAGNETS

Calculations similar to the preceding have been carried
out using an exchange Hamiltonian Hj =JI;-I; with J
nonzero only for nearest neighbors. For this case the lo-
cal field corresponding to Eq. (4) is

B=—L m, . 1)
y

Accordingly D is measured in units of r3J#~ "V I (I +1).
Of course there is no dependence on field direction.

Inasmuch as the best known experimental case of
exchange-mediated spin diffusion is in bee *He, we calcu-
lated diffusion for bce as well as sc lattices. Of course the
three array indices used to label a particular spin bear an
extremely simple relationship to Cartesian spin coordi-
nates on an sc lattice. While a similar but slightly more
complicated relationship can be written for other lattices,
such as bcc, it is easier to make use of the fact that an sc
lattice can be represented as four interpenetrating bcc lat-
tices. By suitable logic determining which combinations
of indices are to be omitted in calculating local fields, ex-
actly the same methods already described can be used to
calculate the behavior of four independent bcc crystals
simultaneously.

It was found that D, is sensitive to A4, so that quite
small values of 4 (0) (0.08) had to be used and consider-
able computing time incurred in order to get the desired
high-temperature limit. It is interesting that the convolu-
tion method for calculating the local fields is still faster
than direct summation, even though only six neighbors
contribute.

Our results for D, and Dy on sc and bcc lattices are
given in Table IV.

TABLE IV. Diffusion of Zeeman energy D, and internal en-
ergy D under nearest-neighbor exchange interactions for sc
and bcc lattices.

Dy D, D[001] D[111] Ref. Dy (sc) Dy (bce) Dg (beo) Ref.
0.35 0.14 0.21 0.22 This work 0.307 0.34 0.32 This work
0.24 0.26 6 0.296 0.328 0.34 4
0.33 0.11 0.19 0.18 7 0.35 0.75 11
0.20 0.036 14 0.397 0.32 8
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FIG. 4. Attenuation of D, (in the reduced units discussed in
the text) for spins j on an sc lattice when alternate spins f are of
a foreign species having a different magnetic moment m, but
the same magnetogyric ratio: y,=v;. In the limit m;—0 the
result corresponds to an fcc lattice of a single species. The extra
points at m,=1 correspond to ¥ ,=6.7 y; and 67 y;: The fas-
ter precession of the foreign spin results in partial averaging of
the “diffusion barrier”” which they produce for the spins j.

CRYSTAL CONTAINING TWO SPIN SPECIES

Spin diffusion depends on energy-conserving flip-flops
between neighboring spins, which can occur in a strong
external field only when both spins have the same Larmor
frequency. A foreign moment m, can influence the
diffusion among spins m; of the original species by shift-
ing the local field at m; and thus “detuning” it to a de-
gree from potential flip-flop partners m;. We have calcu-
lated this effect for a simple cubic lattice in which alter-
nating spins are of different species. The local field at j
was computed in the usual way except, for those neigh-
bors of the opposite species, Eq. (4) was replaced by

B/=b;/(—2myk) . (22)

The initial condition was chosen so that the total spin-
spin energy vanished. While y; and m; were set equal to
unity as before, the two new adjustable parameters y,
and m, were introduced and played appropriate roles in
Egs. (22) and (5). Note that the angular momentum of ei-
ther species is m /y. D as a function of m, is summa-
rized in Fig. 4 for y,=1. The diffusion of the normal
species is inhibited, as indicated. [Note that even for
m ;=1 the species are distinct since (22) rather than (4)
was used to calculate the local field.] Also D, shows a
strong dependence on field direction except when m ;—0,
when it becomes quite small, comparable to our results
for an sc lattice. These results are consistent with a study
by Andrew, Swanson, and Williams,?! who found nearly

TABLE V. Diffusion of Zeeman energy of spins j in an sc
crystal in which alternate spins are of a foreign species f. The
interactions are dipolar.

my D[oo1] D[111]
=mj 0.050 0.14
= 0.176 0.166

isotropic diffusion for single-species sc and fcc lattices,
but a strong anisotropy for alkali halide lattices. The re-
sults are summarized in Table V. Note that the limit
m;—0 corresponds to a face-centered lattice of a single
species.

The figure also shows two points at m ;=1 for y ,=6.7
and y=67. The partial restoration of diffusion is a re-
sult of the increased rapidity of precession of the foreign
species, which partly averages out the contribution of the
local field caused by f at j. This is related to the “self-
decoupling” phenomenon which has been observed in the
form of line narrowing for low-y species in solids where
they have high-y neighbors.'?

CONCLUSIONS

The computed numerical values of diffusion coefficients
agree quite well for the most part with previous results
from approximate analytical theories based on quantum
spin dynamics and from experiment. This circumstance
can be taken as independent corroboration of the earlier
results or as a vindication of the use of classical mechan-
ics for the calculation of macroscopic averages of spin be-
havior in many-body systems. The one conspicuous
disagreement involves a particularly difficult and indirect
experiment on diffusion of spin-spin energy in *He: We
suspect it is the experiment or its interpretation which is
at fault there.

The relatively satisfactory comparisons with previous
work give us some confidence in the results for which no
previous theory or experiments exist.
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