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EfFect of one-dimensional modes on the Lamb-Mossbauer recoilless factor
and second-order Doppler shift of Zn + in a ZnF2 crystal in the temperature range 0—55.3 K
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A model for the acoustic-phonon distribution function of Zn ions in single-crystal ZnF2 is suggested
that not only explains successfully the recently observed anisotropic mean-square displacements and
second-order Doppler shifts in the temperature range 0—55.3 K but also takes into account the chain
structure in ZnF2 formed by distorted F -ion octahedra, with Zn + at the center of each octahedron,
having different interchain bindings along the crystallographic c axis and perpendicular to it. The effect
of one-dimensional modes is found to be significant in a11 the reported studies.

Recently Steiner et al. ' have reported the measured
values of the Lamb-Mossbauer recoilless factor (LMF)
and the second-order Doppler (SOD) shift in ZnF2 using
the high-resolution 93.3-keV Mossbauer transition of

Zn in the temperature range 4.2 —55.3 K. The mea-
sured values of the LMF are markedly anisotropic yield-
ing quite different values of the mean-square displace-
ments (MSD's) of Zn parallel and perpendicular to the
main component of the electric field gradient (EFG) ten-
sor. The main component of the EFG tensor is perpen-
dicular to the crystallographic c axis. Thus, (xj ) are
MSD's parallel to the c axis and (x~~ ) perpendicular to
it. From their measurements it is clear that at a given
temperature (x

~~

) is larger than the corresponding value
of (x~). Such an anisotropic behavior of the dynamics
of Zn + can be related to the crystal structure of ZnF2.
Though the unit cell of ZnF2 is tetragonal with

0
a =b =4.7034 A and c/a =0.6662, it can also be visual-
ized as consisting of chains of distorted fluorine-ion oc-
tahedra with Zn + ions occupying the centers of the oc-
tahedra, i.e., each Zn + is surrounded by a distorted oc-
tahedron. Further, the chains along the c axis are tightly
packed in comparison with those perpendicular to it.
This is also corroborated through the measured values of
the compressibility along the c axis and perpendicular to
it, which are quite different from each other, the latter
being twice that of the former. Thus, unlike another
study' we suggest that the dynamics of Zn + is influenced
by (i) one-dimensional (1D) modes, i.e., chain modes and
(ii) by different degrees of binding of the chains parallel to
the c axis and perpendicular to it. In what follows, we in-
vestigate such a proposition.

The observed temperature-dependent MSD's of a Zn
atom, in its hcp crystal, along the c axis and perpendicu-
lar to it are also quite different from one another ' but
such an anisotropic MSD can be related to the presence
of planar modes in a zinc crystal similar to that in a
graphite crystal, as has been shown recently by us. ' The
motion of Zn + in ZnF2, on the other hand, would con-
tain 1D modes quite similar to those present in polymeric
crystals like polyethylene, polytetrafluoroethylene,
etc. ' We therefore suggest the following phonon fre-

quency distribution function (FDF) for the motion of
Zn + inZnF, :
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where M is the mass of the vibrating unit, kz is the Bolt-
mann constant, 5=v; /vp;, Op; =h vp. /kg,
O;=hv;/kz, f3=Op,-/T, and F2=0;/T. The total
SOD, 5T, is given by

Av, 0 v vp;

g;(v)= 8;, vo; ~v~v;
0, v)v;

where i represents the directions parallel and perpendicu-
lar to the main component of the EFG tensor, A; and 8,.
are constants and can be determined using (i) the con-
tinuity of the two distribution functions at v and (ii) the
total number of modes along any direction is equal to X.

Since we are interested in low-temperature values
(0—55.3 K) of the MSD and mean-square velocity, which
is related to the SOD shift, we have ignored the disper-
sion factor in the suggested phonon FDF.

Using Eq. (1), one can obtain the following expressions
for the MSD, (x; ) (Refs. 10, 5, and 6) and SOD, 5r;
(Ref. 5) in a given direction i:
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It is easy to see that the MSD in a given direction has two
components, (i) three dimensional (3D) and (ii) one di-
mensional (1D). The total recoilless factor in a given
direction is therefore the product of 3D and 1D recoilless
factors.

Making use of Eq. (2) we have evaluated (x~~ ) and
(x~ ) for various sets of 8o; and 8, . We find that the
observed (x) ) and (xt) in the temperature range
4.2 —55.3 K (Ref. 1) can be explained reasonably well, as
shown in Fig. 1, using the two characteristic tempera-
tures in a given direction (8,

~~

= 100 K, 8
)

= 350 K )

and (8,~
= 200 K, 8 t = 350 K ), respectively. It may

be noted that 8,
~~

is almost half of 8,~. 8o; represents
essentially the interchain binding and therefore the
chains perpendicular to the c axis are loosely bound in
comparison with the binding of the chains in the c-
direction in agreement with the observed behavior of
ZnFz. The upper limits of intrachain vibrations remain
the same in the parallel and perpendicular directions, i.e.,
8 =Q~ = 350K

However, the extent of the presence of linear modes is
much larger in g~~(v) than in gz(v). In Fig. 1 we have
also plotted the contributions of 3D and 1D modes for
the two MSD's. In both the cases the contribution of 1D

modes denoted by curves 1 and 4 for (x
~~

) and (x t ), re-
spectively, is significant, being larger for (x~~ ). Howev-
er, the temperature dependence gets reflected essentially
in the 3D modes shown by curves 2 and 3 for (x ) and
(xj ), respectively. Thus, we can conclude that in the
dynamics of Zn + in the ZnF& crystal, one-dimensional
modes play a significant role.

We may add that the calculated values of the
temperature-dependent anisotropic parameter, B
=k ((x~~ ) —(x~ ) ), where A'~k~ is the magnitude of the
momentum of the Mossbauer y radiation, are also in
reasonable agreement with the corresponding experimen-
tal results. ' Further, the calculated values of specific heat
based on our model for 11~T 30 K are in somewhat
better agreement with the corresponding experimental re-
sults' than those given by the isotropic Debye tempera-
ture 8,&=270 K. However for T) 30 K, the specific-
heat values given by 8, =270 K are larger than our cal-
culated values, but are quite smaller than the correspond-
ing experimental data' as has also been observed earlier. '

In Fig. 2(a), we have plotted b,soD, which is the
temperature-dependent SOD shift relative to its value at
4.2 K along with the experimental results of Steiner et
al. ' in the temperature range 4.2 —55.3 K. The calculated
values have been obtained using expressions (3) and (4)
with the same set of characteristic temperatures utilized
earlier in MSD studies. As is clear from the figure, the
calculated values are in reasonable agreement with the
corresponding experimental results in the entire tempera-
ture range. In Fig. 2(b) are shown the details of our cal-
culations comprising 3D and 1D contributions at
different temperatures to 5T, i.e., SOD, given by the
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FIG. 1. Comparison of the calculated values of temperature-
dependent MSD's of Zn + in the ZnF& polycrystal parallel to
the crystallographic c axis, (x ~ ), and perpendicular to it, (x

~~
),

with the corresponding experimental results (Ref. 1), , in the
temperature range 0—55.3 K. Curves 1 and 2 represent, respec-
tively, the one- and three-dimensional contributions to (x~~ ).
Curves 4 and 5 represent the same for (x, ).

FIG. 2. (a) Comparison of the second-order Doppler shift
relative to its value at 4.2 K of Zn + in the ZnF~ polycrystal
with the corresponding experimental results (Ref. 1), f, in the
temperature range 4.2 —55.3 K. (b) Details of the calculations of
second-order Doppler shift, 6T, in the temperature range
0—55.3 K. Curve 1 shows total SOD shift. Curves 2 and 4
represent, respectively, the total one- and three-dimensional
contributions to curve 1. Curves 3 and 5 represent, respectively,
the total one- and three-dimensional contributions to the SOD
shift along the c axis.
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center shift of the Mossbauer radiation. While curve 1

represents the total 5T, curves 2 and 4 represent, respec-
tively, the total contributions of 1D and 3D modes to 5T,
i.e., total 1D and 3D contributions from all directions.
The contribution of 1D modes is dominant, being —85%
of the total 6T. In the figure are also shown curves 3 and
5, depicting the total 1D and 3D contributions along the
c axis. It is therefore obvious that even along the c axis
and perpendicular to it, the contributions of 1D modes
are quite significant.

From our study, we conclude that it is possible to sug-
gest a dynamical model common to both the MSD and
SOD shift of a Zn + ion in the ZnF2 crystal, which not
only goes beyond the Debye and extended Debye model
but also successfully explains the recently observed
temperature-dependent MSD and SOD shift and is also
consistent with the chain structure of the ZnF2 crystal.
In all the studies, the effect of one-dimensional modes
turns out to be quite significant.
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