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The anisotropic BCS gap equation is applied to a tight-binding model of layered high-temperature su-

perconductors. The possible solutions have s-, d-, and mixed s- and d-wave symmetries using nearest-
neighbor intralayer singlet pairing interaction of the same strength in the x and y directions. The transi-
tions from d- or s- to mixed s- and d-wave solutions result from pitchfork bifurcations. In the case of
slightly different pairing strength in the x and y directions, perturbed pitchfork bifurcations emerge,
leading to a dramatic change in the physical properties of the superconducting state.

I. INTRODUCTION

Recently, the classical BCS strategy has been employed
for the study of high-temperature superconductors by a
number of authors. ' In these studies the BCS effective
Hamiltonian has been applied with pairing mechanisms
different from the usual phonon-mediated interaction
found in the classical low-temperature superconductors.
Many proposals for the origin of the electron-electron or
hole-hole interaction have been put forward. ' ' ' To
name a few we mention coupling to local spin
configurations on the Cu sites, ' charge-transfer excita-
tions, electron-electron attraction originating from cou-
pling between electrons and excitons or plasmons, a pure-
ly electronic mechanism, ' ' spin-polaron pairing, "'
image-charge-mediated pairing, ' a bisoliton mecha-
nism, ' combined spinon and holon pairing, ' etc. Also,
for non-phonon-mediated pairing, the BCS strategy can
be applied. ' "' The numerous investigations'
based on the BCS Hamiltonian in the study of high-T,
superconductors justifies a more detailed study of the
non1inear properties of the BCS gap equation. '

We shall adopt the BCS method to a particular simple
tight-binding model of layered high-T, superconductors,
assuming a single-band structure and nearest-neighbor
unretarded hole-hole interaction within the layers of
CuOz. The pairing interaction is treated phenomenolog-
ically without reference to a specific microscopic mecha-
nism. The gap is parametrized into two gap variables
describing gap anisotropy in the x and y directions, re-
spectively. In this case the BCS gap equation reduces to
a two-dimensional nonlinear algebraic equation for the
gap variables which depend on parameters such as the
absolute temperature, chemical potential or filling, in-
teraction strength, and band variables.

Here we shall study various bifurcation phenomena in
the above two variable-gap equations and their implica-
tions on measurable quantities such as the electronic
specific heat and spin susceptibility. The transition from
the normal to the superconducting state is due to a pitch-
fork bifurcation in the gap equation. In Ref. 16 further

transitions resulting from pitchfork bifurcations have
been found, converting solutions with s- or d-wave sym-
metry into solutions with mixed s- and d-wave sym-
metries. Here we shall explore perturbations of these
latter pitchfork bifurcations following from slightly non-
symmetrical pairing interactions in the xy plane; i.e., the
pairing interactions in the x direction deviate from the
pairing strength in the y direction. This asymmetry in
the pairing strength is expected because the lattice con-
stants in the Cu02 planes are not equal, ' leading to a
small difference in the pairing strength in the x and y
directions.

In Sec. II we present the BCS model for the asym-
metric pairing interaction. Section III discuss pitchfork
bifurcations in the BCS gap equation. Section IV con-
tains numerical results in the case of the asymmetric pair-
ing interaction compared with the symmetric case. The
dramatic consequence of this symmetry breaking is
demonstrated by calculating the electronic specific heat
and spin susceptibility. Finally, Sec. V concludes our
study.

II. MODEL DESCRIPTION

Assuming tight-binding Fermi-liquid states, subject to
an unretarded pairing interaction, we take as our starting
point the Hamiltonian ' '

0= g t, a, a —gg, a, &a &aj ~a, ~ .
l, J, O

The operators a, (a,- ) creates (annihilates) quasiparticle
holes with spin 0. at site i. The t, term describes the

hopping of quasiparticles within and between layers, and

g; - denotes the pairing strength between quasiparticles at
sites i and j. Denoting the overlap integrals between
nearest neighbors within planes by t,. =t& =t2 = —A /2,
those between next-nearest neighbors by t, - =t3= ~B,
and, finally, those between planes by t, - =t4= —Ac, the
quasiparticle dispersion reads
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cz = A I
—2[cos(k„a„)+cos(k a ) ]

+4B cos(k„a„)cos(ka„)—2C cos(k, a, ) —p, ],
(2)

where p is the chemical potential. The model structure
and hopping terms are depicted in Fig. 1(a), and Fig. 1(b)
shows the pairing strength between neighboring sites. In
Eq. (2) we assume a unit cell with lattice constants
a„,a~, a, and k a =n mIN, N—(n, ~N„a=xy, z.
The individual lattice sites should be thought of as hybrid
states of Cu d states and 0 po. states. An example could
be the oxygen and copper diamond states described in
Ref. 19, considering only one band. Representative
values of the lattice constants are a„=3.82 A, ay 3 89
A, and a, =11.68 A. These values are for the crystal
structure of YBa2Cu307. ' As a„is slightly di8'erent

from a, we may expect that the hopping probability and
pairing interaction in the x and y directions also differ
slightly. In the dispersion relation (2), we have assumed
identical hopping probability in the two directions within
the planes (t& =t2), but the pairing interactions in the x
and y directions we shall assume asymmetric and com-
pare the results with the symmetric case. The parameters
A, B, and C in the dispersion relation (2) can be fitted to
band-structure calculations' ' ' or to angle-resolved

photoemission data. ' Typical bandwidths found from
band-structure calculations vary between 2 and 5 eV,
whereas the photoemission experiments state values of
magnitudes 0.2—0.5 eV for widths of bands crossing the
Fermi surface. The bandwidth of the spectrum in Eq. (2)
is A ( 8+4C } and, by knowing C together with a typical
experimental value for the bandwidth, then gives A. In
the following we shall choose a value of A which is in ac-
cord with the photoemission experiments, and the values
of B and C are taken from Ref. 7; i.e., we choose

A =0.05 eV, B =0.45, C=0. 1 .

Note that the above values of A and C correspond to a
bandwidth of 0.42 eV.

Restricting the pairing interaction to nearest neighbors
within the planes [see Fig. 1(b)], the pairing potential V in
Fourier space reads

V(k, k') =2g„cos[(k„—k„')a„]+2g~cos[(k—k')a ],
(4)

where g„and g denote the strength of the hole-hole in-

teraction in the x and y directions. Adopting the BCS
strategy, the Gibbs free energy evaluated for the BCS tri-
al wave function is given by

G(b~)= —g s&
—E~+25&F& ——in[1+exp( PE&)]—

z g Q V(k, k')F~Ff,
k k

Here N is the number of lattice points, 6k is the usual gap
function which is assumed to be complex, and the aster-
isk denotes complex conjugation, while

a„
(a)

gy

F& =
2

tanh( —,
' pE& ), E& = (E&+b &)'

k

E& is the quasiparticle excitation energy, and P= 1/k~ T,
where kz is Boltzmann's constant and T denotes the ab-
solute temperature. The gap parameter 5k searched for
is the one minimizing the Gibbs energy at fixed chemical
potential corresponding to a grand canonical system.
Accordingly, we are looking for the stationary points of
the Gibbs energy. Introducing Az =5&exp(ipse) and

minimizing with respect to the modulus 5k and phase yk
of the gap parameter, we get

5&=—g cos(qr~ —
q& }V(k,k')5&, tanh( —,pE~ ),1 1

k N k k 2Ek'

(7a)

&x

FIG. 1. (a) Hopping probabilities between nearest and next-

nearest neighbors and between planes. (b) The pairing interac-
tion strengths between sites within the xy plane.

1 . , 10=—g sin(q)q —y„.) V(k, k')5~ tanh( —,'PE„.) .
k'

(7b)

In Eqs. (7) we have split the equation BGIB5&=0 into its
real and imaginary parts. BG/Oak=0 for all yk and 5k
provided the pairing potential satisfies the symmetry rela-
tion V(k, k') = V(k', k), which we shall assume in the fol-
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lowing. In this case yz is arbitrary, and from Eq. (7b) it
follows that yk equals a constant y independent of the
wave vector k. Thus, in the general complex case, the
gap parameter can be written in the form 6&=5&exp(iq&).
Noting that the cos term in Eq. (7a) equals unity and
multiplying by exp(iy) in (7a), we get the usual BCS gap
equation

hq= —g V(k, k'}Fg1

k'

We note that the arbitrary phase p does not enter in the
Gibbs energy, meaning that by varying y the Gibbs ener-

gy cannot be lowered further. Therefore, without loss of
generality, we can restrict Eq. (8) to the case of a real gap
parameter 6k. Similarly, the bifurcation phenomena to
be treated here will not be influenced by restricting the
gap parameter to real values.

We shall concentrate on solutions of (8) corresponding
to singlet pairing, b,q=b q. As a result of the choice (4)
of the pairing potential, the solutions of the gap equation
are guaranteed to be of the form

(degree of doping) is expected to be known rather than
the chemical potential p. However, from a mathematical
point of view, this makes only sense when considering the
physically correct solution with the lowest Gibbs energy.
When studying bifurcation phenomena with several dis-
tinct solutions, it will only make sense to solve the gap
equation (10) at a given p. This follows from the fact that

and 4 are the stationary points of the Gibbs free en-
ergy evaluated at fixed p, and hence the Gibbs energy can
be directly compared for different solutions.

III. BIFURCATIONS
IN THE BCS GAP EQUATION

Returning to the gap equation (10), we observe that,
according to the implicit function theorem, the gap pa-
rameters h„and 5 can be written as functions of (T,p)
in a neighborhood of a solution point, provided the Jaco-
bian

6&=26,,cos(k„a„)+26,cos(k a ) . (9) (12)

Substitution of Eqs. (4), (6), and (9) into (8) gives a set of
coupled nonlinear algebraic equations determining the
gap parameters 6 and 6:

b,,——g„gcos(k, a„)F&=f, (5„,b, ) =0,1

k

b, ——g icos(k a )F„=f2(b,„h)=0.1

N

(loa)

(lob)

The solutions of (10) are the stationary points of the
Gibbs free energy, and if more than one stationary point
exists, the physical relevant solution is the one with the
lowest Gibbs energy. We note that if (b,„,b,») is a solu-
tion of (10), then so is ( —b,„,—b, ). Furthermore, the
solutions of the gap equation (10) are classified as follows:
The cases 6 =6 and 6 = —b are denoted s- and d-
wave pairings, respectively. A11 other cases where
~b,, ~X ~b» ~

are denoted mixed s- and d-wave pairings.
In solving the gap equation numerically, 3 and k~ are

set equal to unity; this means that energies are measured
in units of A, while temperatures are measured in units of
A /kz. Using the parameter value A =0.05 eV from Eq.
(3), we obtain 2/k~=580 K. At a given p and for a
specific solution of (10), the filling p of dopant holes in the
band is determined by h =h =h „=h~=0 and h „h~~&0, (13)

taken at this solution point, is regular. As T and p are
varied, the Jacobian J may become singular and a bifur-
cation may occur. Because of the symmetry properties of
the BCS gap equation, the appearance of pitchfork bifur-
cations are expected as T and p are varied. In particular,
by changing T, the transition from the normal state
(b„=b,

»
=0) to the superconducting state (b,„&0and

6»%0) is a pitchfork bifurcation with a transition tem-
perature denoted by T, .

In order to identify strictly the pitchfork bifurcation at
T„one can use the Liapunov-Schmidt reduction pro-
cedure to transform the two-dimensional gap equation
(10}into a one-dimensional equation h (x, T) =0, which is
equivalent to x —Tx =0. An explicit expression for
h (x, T) cannot be found in the case of the BCS gap equa-
tion (10), but in principle arbitrarily close approximations
to h (x, T) can be computed numerically from the
Liapunov-Schmidt procedure. We shall not go through
the steps of this reduction procedure, because it is a little
lengthy and for the identification of a pitchfork bifurca-
tion we do not need h (x, T) explicitly. What we need is a
theorem from Ref. 24 stating that if h satisfies

p= —,
' g 1 — tanh( ,'PE&)—

k k

Here we interpret p as the density of carrier holes relative
to the Mott insulating phase. A relatively small value of
p then corresponds to a high density x =1—p of elec-
trons, leading to an approximately cylindrical Fermi sur-
face, in agreement with angle-resolved photoemission ex-
periments. For a given filling p, Eqs. (10) and (11)can be
solved self-consistently for 6, 6, and p. From a physi-
cal point of view, this sounds appealing, as the filling p

at a bifurcation point, the number of solutions of
h (x, T)=0 jumps from one to three as T crosses T, from
above. The subscripts x and T succeeding the comma
denote partial derivatives with respect to the state vari-
able x and bifurcation parameter T, respectively. Using
results from 24 and 25, the partial derivatives of h can be
determined directly from f, and fz as follows. At
T=T„where the solution (b,„,b, )=(0,0) bifurcates,
one of the eigenvalues, say, A, of the Jacobian (12) van-

ishes, while the other eigenvalue A.2 is less than zero. Let
P be the matrix diagonalizing the Jacobian J at
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(h„,b, )=(0,0) and T=T„i.e,

0 0
P 'JP=0~

2
(14)

Instead of (b,„,b, ), we introduce new gap variables
( w „wz) according to

'w)
p —1

W2
(15)

and in terms of (w „w2), the gap equation (10) becomes

O=F~(wi, wz, T)=f,(h„,A~, T),
O=Fz(w»w2, T)=fz(A„,E~, T) .

(16a)

(16b)

From 24 and 25 the partial derivatives of h (x, T) at the
bifurcation point T = T, and x =0 are determined by

h „=F,

h z-=F&, r ~

3
F~ F2

R2

(17a)

(17b)

(17c)

1
h, xr =Fi,~, r — Fi,~, ~ F2, z-

2

(17d)

where the partial derivatives on the right-hand side are to
be calculated at (b,„,b, )=(0,0) and T=T, . By con-
struction, h and h „areboth 0 at the bifurcation point.
Performing numerical diff'erentiation of Eqs. (17) using
the parameter values in Eq. (3), g, =g~ =3.0 and
p= —2.3, the following values of the derivatives in Eq.
(13) have been found at the bifurcation point
T=T, =0.541: h „~= —6.6X10 ', h ~= —1.5
X 10 ', h =3.60, and h ~=0.81, showing that
within numerical errors Eq. (13) is fulfilled and accord-
ingly the bifurcation at T, is a pitchfork bifurcation of
the above-mentioned type. The relevance of showing that
we have a pitchfork bifurcation is connected to perturba-
tions of the bifurcation diagram. The qualitative picture
of the perturbed pitchfork bifurcation is known and sim-
ple, whereas a more degenerate bifurcation gives a more
complicated bifurcation diagram in the perturbed case,
even though this additional degeneracy in the unper-
turbed case possesses the same bifurcation diagram as the
pitchfork bifurcation.

0.3
Y 0.2—

0.1—

0.0—

—0.1—

—0.2—

—0.3 I I I I I

—0.3 —0.2 —0.1 0.0 0.1 0.2 0.3

0.3

0.2—

about these solution points as parameters are varied, con-
tour plots of the Gibbs energy prove useful. Figure 2
shows two contour plots of the Gibbs energy at JM= —2.0
and T=0 using the tight-binding parameters in Eq. (3).
Figure 2(a) displays a situation with symmetric pairing
interaction g„=g=1.20, and Fig. 2(b) shows a situation
with asymmetric pairing interaction g = 1.20 and

g =1.18. In physica1 units, g„=1.20 corresponds to

g = 1.2A =0.06 eV. Similar values of the pairing
strength, ranging from 0.043 to 0.065 eV, have been used
in an analogous model in Ref. 11 dealing with a spin-
polaron pairing mechanism. The tight-binding spectrum
applied in Ref. 11 corresponds to Eq. (2) with B =C =0
and A =0.0896 eV. Our choice of parameter values is
then consistent with the spin-polaron pairing mechanism
suggested in Ref. 11. In Fig. 2(a) four local minima, four
saddle points, and a local maximum at (b,„,b, )=(0,0)
are present. The local minima are all stable degenerate
physical solutions. The saddle points and local maximum
are unstable equilibrium points. In Fig. 2(b) the asym-
metric case (g, =1.20 and g~ =1.18) is shown. The main
result of the symmetry breaking is to increase the depth
of two of the four local minima, leaving two stable physi-
cal solutions with lower energy. The contour plots pro-
vide a quick overview of the possible solutions, their sta-
bility, and physical relevance with respect to the require-
ment of lowest energy. Furthermore, initial guesses for
numerical procedures used to solve the gap equation are

IV. NUMERICAL RESULTS

In this section we shall investigate multiple solutions of
the gap equation (10) and their properties as the parame-
ters p and T are varied. In particular, we shall be in-
terested in pitchfork bifurcations and perturbations of
the pitchfork bifurcations due to asymmetric pairing in-
teraction in the xy plane. The inAuence of the nonlinear
properties of the gap equation on the transition tempera-
ture and superconducting density of states will be dis-
cussed.

The gap equation solves for the stationary points of the
Gibbs energy, and in order to get global information

0.1—

0.0—

—0.1—

—0.2—

—0.3
—0.3 —0.2 —0.1 0.0 0.1 0.2 0.3

(b)

FIG. 2. Contour plots of the Gibbs free energy at p= —2.0
and T=0. (a) Symmetric case g„=g~=1.20. (b) Asymmetric
caseg =1.20 andg„=1.18.
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0.2—

0.1—

0.0—

-0 1-

-0.2 I I I I

—2.5 —2.0 —1.5 —1.0 —O.S 0.0
P

(o)

easily found from contour plots of the Gibbs energy.
In Fig. 3(a) we follow all the equilibrium points as the

chemical potential is varied in the case of symmetric pair-
ing interaction with g =g =1.20. Both 6 and 6 are
shown as function of p. Solid lines denote local stable
points, and dashed lines are unstable ones. As p is in-
creased from —2.5 to 0.0, we observe first a pitchfork bi-
furcation at p= —2.45 separating the normal state from
a s-wave superconducting state. At p= —2.25 two unsta-
ble saddle points with d-wave symmetry emerge from a
pitchfork bifurcation. The next pitchfork bifurcation
happens at p= —2. 12, where a transition from s-wave
pairing to a mixed s- and d-wave pairing takes place.
This is an example of a second-order phase transition
with a nonzero order parameter both above and below
the transition point. ' The mixed s- and d-wave solu-
tion turns into a pure d-wave solution at p= —1.80, also
as a result of a pitchfork bifurcation. Just before @=0,
the gap gradually vanishes.

The results from Fig. 3 resemble the Landau theory of
phase transitions for systems with two order parameters
and with free energy equal to a fourth-order polynomial
in the order parameters. In this polynomial only terms
of even degree are present. Accordingly, we can view the
bifurcation diagrams in Fig. 3 more easily by following
the equilibrium points directly in the (b„,5» ) plane. For
p less than the first bifurcation point at p= —2.45,
(b„,b,» ) =(0,0) is a global minimum of the Gibbs energy.
After the bifurcation the center point (0,0) turns into a
saddle and two minima are created (s-wave solutions),

which move away from the center along the line 6
At p= —2.25 the center saddle bifurcates into a local
maximum and two saddles are created moving along the
line b,„=—b» (d-wave symmetry). At p= —2. 12 the
two local minima turn into saddle points and around
each of these new saddles two local minima are created
[see also Fig. 2(a)]. The two saddles move toward the
center as p is increased and collide with the center at
p= —1.45. The four local minima move from the first
and third quadrants into the second and fourth quadrants
(the mixed s- and d-wave solutions) and collide with the
saddles in the second and fourth quadrants, creating two
minima (the pure d-wave solutions). The minima defining
the d-wave solutions move toward the center and collide
with the center just before p =0.

Figure 3(b) displays the gap parameters b„and b, as
function of p in the asymmetric case with g =1.20 and

g =1.18. For clarity, not all fixed points are shown.
The points which are not displayed are found by a sym-
metry operation about the line b, =0. The figure resem-
bles Fig. 3(a) except for the perturbation of the two pitch-
fork bifurcations separating the transitions between the
s-wave, mixed s- and d-wave, and d-wave solutions.
These two transitions become smooth or continuous for
the asymmetric pairing interaction as we follow the two
local minima in Fig. 2(b) corresponding to the lowest
Gibbs energy. The other two local minima, with slightly
higher Gibbs energy and with the two saddles close by

24, 25each of them, emerge from a saddle-node bifurcation.
The saddle-node bifurcations are marked by arrows in
Fig. 3(b). The result of the asymmetric pairing interac-
tion is to go from a sharp second-order phase transition
to a smooth change from one phase to the other.

In Fig. 4 we show the transition temperature T, versus
the filling p of dopant holes for the symmetric case (solid
line) and asymmetric case (dashed line). Because of the
very small difference between the coupling strength in the
y direction in the two cases, only a very small difference
in T, is observed. The qualitative behavior of T, versus p
is in agreement with experimental results except from
the fact that superconductivity in our model sets in al-
ready at p =0. Comparing experimental data of T,
versus hole concentration with our calculated T, versus

p, an offset of p=0.07 should be added to compensate for

0.2—
0.20—

0.0—
0.15—

0.10—

—0.2 I I

0.05—

—2.5 —2.0 —1.5 —1.0 —0.5 0.0
P 0.00 I I I

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Bifurcation diagram showing h„and A~ vs p at
T =0. (a) Symmetric case g„=g„=1.20. (b) Asymmetric case

g =1.20 and g~=1.18. The arrows mark the saddle-node bi-
furcations.

FIG. 4. Critical temperature T, vs p for the symmetric case
g„=g~

= 1.20 (solid curve) and for the asymmetric case

g = 1.20 and g~
= 1.18 (dashed curve).
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the initial Mott insulating phase. The model in Eq. (1)
does not contain Coulomb repulsive terms, and accord-
ingly the model is metallic for all densities p. The fact
that T, ~O as p~0 in Fig. 4 is a pure mathematical
property of the solutions of Eq. (10). Around p= 0.35 the
transition temperature attains its maximum value
T, =0.2, corresponding to a physical transition tempera-
ture of 116 K, which is a representative value for high-
temperature superconductors.

Figure 5 depicts the density of states in the symmetric
case for p= —0. 1, —1.0, —2.0, and —2.3 corresponding
to the normal d-wave, mixed s- and d-wave, and s-wave
states, respectively. The density of states for the asym-
metric case deviates infinitely little from the symmetric
case and is therefore not shown. Blowups of the regions
around c,k=0 are shown in Fig. 6. The d-wave and mixed
s- and d-wave states show no gap, whereas the s-wave
state at p= —2. 3 shows a gap of this size 0.3A =15
meV. This value is somewhat lower than the value 6=24
meV obtained from the photoemission measurements re-
ported in Ref. 27. However, closer to the pitchfork bifur-
cation separating the s-wave and mixed s- and d-wave

phases, we expect a larger gap.
Figure 7 shows the bifurcation diagram for the sym-

metric pairing interaction at p= —1.9 by varying the
temperature T. The solid lines are the stable fixed points,
and the dashed lines denote saddle points. Figure 7 clear-
ly reveals two pitchfork bifurcations separating the nor-
mal, d-wave, and mixed s- and d-wave states.

In the asymmetric case with g„=1.20 and g =1.18,
the pitchfork bifurcation separating the mixed s- and d-
wave phase from the pure d-wave phase disappears (Fig.
8). The transition between the two phases becomes
smooth, and in addition a saddle-node bifurcation
emerges close to the previous pitchfork bifurcation. Note
that the pitchfork bifurcation at the transition tempera-

0.20-
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0.15-
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0.05-

p=—0.1 0.6-
N(E)

0.4—

0.2—
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-0.6-0.4 -0.2 0.0 0.2 0.4 0.6

E

0.0
—0.6-0.4 -0.2 0.0 0.2 0.4 0.6

E

FIG. 6. Blowup of the regions around the Fermi energy in

Fig. 4.

ture T, between the normal and superconducting states
remains a pitchfork bifurcation in the case of asymmetric
pairing interaction.

The abrupt change in the gap parameters in the sym-
metric case and the smooth change of the gap parameters
in the asymmetric case will have a dramatic effect on
measurable quantities such as the electronic specific
heat

and the spin susceptibility

dS 1 dEkC=T = k~P g E—q+P Eksech ( ,'PEq)—
k

(18)

0.8-
N(E)

0.6- =-0 1

0.8-
N(E)

0.6-
g= —,'p P g sech ( —,'PE&) .

k
(19)
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-4.0-2.0 0.0 2.0 4.0 6.0 8.0
E

04-
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0.0
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E

S denotes the entropy. This is illustrated in Figs. 9 and
10, showing C versus T and y versus T, respectively, for
p= —1.9. The solid lines depict the results with sym-
metric pairing interaction, and the dashed lines show the
results with asymmetric pairing interaction. When the
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FIG. 5. Superconducting density of states for the symmetric
case g„=g„=1.20 at T =0 for p = —0. 1 (normal state),
p= —1.0 (d-wave solution), p= —2.0 (mixed s- and d-wave
solution), and p = —2.3 (s-wave solution).
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FIG. 7. Bifurcation diagram showing 6 and b,~ vs the tem-
perature T at p = —1.9 in the symmetric case g„=g~= 1.20.



7366 P. N. SPATHIS, M. P. SOERENSEN, AND N. LAZARIDES

0.3— 02—

X

0.1—

0.1—

—0.1—

I l I I
i

I 1 I 1
0.0 I

I
1 I I I

I

0.0 0.1 02 0.0 0.1 02

FIG. 8. Bifurcation diagram showing h„and Ay vs the tem-

perature T at p= —1.9 in the asymmetric case g, =1.20 and

g = 1.18. The arrows mark the saddle-node bifurcations.

FIG. 10. Spin susceptibility g vs T at p= —1.9. (a) Sym-

metric case g„=gy 1 20 (solid curve) (b) Asymmetric case

g, = 1.20 and g = 1.18 (dashed curve).
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FIG. 9. Electronic specific heat C vs T at p= —1.9. (a) Sym-
metric case g =g =1.20 (solid curve). (b) Asymmetric case
g =1.20andg =1.18 (dashed curve).

gap parameter changes abruptly as a result of a pitchfork
bifurcation, the specific heat makes a jump and the
derivative with respect to T of the spin susceptibility
makes a jump. When the gap parameter varies smooth-
ly from one phase to another, C and y also vary smooth-
ly.

Reference 29 provides a review of recent experimental
measurements of the specific heat versus temperature for
high-T, superconductors. Some experimental samples re-
veal two well-resolved peaks, whereas certain other sam-

ples show only one peak. In the context of the BCS mod-

el, this fact can be related to whether the sample show a
transition from mixed s- and d-wave superconductivity to
pure s- or d-wave superconductivity, or the chemical po-
tential has a value allowing only a pure s- or d-wave sym-
metry in the BCS gap equation. Furthermore, Ref. 29 de-
velops a generalized Ginzburg Landau theory with two
order parameters to describe successfully the two peaks
appearing in the specific heat of certain samples of high-
T, materials. The phase transitions in Ginzburg-Landau
theory are evident from contour plots of the free-energy
functional. These contour plots show the same phenome-
nological features as the Gibbs free energy from BCS
theory. Accordingly, the Ginzburg-Landau description
is in fully accord with the BCS model, also in the case of
two order parameters.

Finally, we wish to comment on the possibility of hav-

ing an on-site interaction term in the pairing potential
V(k, k') in Eq (4).. Preliminary calculations show that
on-site attractive interaction favors s-wave pairing and
repulsive on-site interaction favors d-wave pairing. For
weak on-site repulsive interaction as well as for weak at-
tractive interaction, mixing occurs between simple s-wave
states with DI, = b,o= constant and extended states (b„XO
and b,~&0). As the on-site pairing parameter is varied,
bifurcations take place as well. As detailed study of the
role of the on-site pairing interaction is currently in pro-
gress.

V. CONCLUSION

The nonlinear properties of the BCS gap equation have
been investigated in the case of anisotropic nearest-
neighbor pairing interaction in the planes of a high-T, su-

perconductor using a tight-binding description of the
holes. The dependence of the gap-state variables on the
auxiliary parameters T and p has been mapped out, and
the solutions of the gap equation have been classified ac-
cording to s-wave, d-wave, and mixed s- and d-wave sym-
metries.

In the symmetric case with identical pairing interac-
tion in the x and y directions, pitchfork bifurcations
separate the normal, s-wave, d-wave, and mixed s- and d-

wave superconducting phases as the bifurcation parame-
ters T and LM vary.

In the asymmetric case with slightly different pairing
interaction in the x and y directions, the pitchfork bifur-
cations separating the s-wave, mixed s- and d-wave, and
d-wave superconducting phases are perturbed, and
saddle-node bifureations replace the original pitchfork bi-

furcations, leading to smooth transitions between the

pure s- and d-wave states and the mixed state. The pitch-
fork bifurcation separating the normal state from the su-

perconducting state is not affected by the above symme-

try breaking.
The electronic specific heat and spin susceptibility re-

veal singularities close to a bifurcation point. A pitch-
fork bifurcation manifests itself as a discontinuity in the
specific heat and as a discontinuity in the slope of the
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spin susceptibility. Perturbing the pitchfork bifurcation
removes these discontinuities.

The appearance of two singularities in the specific heat
is in accordance with recent experimental facts. As the
chemical potential is varied, the singularity resulting
from a transition from one superconducting state to
another may disappear. This could explain why some
high-T, superconductors show only one peak in the
specific heat, while others show two peaks. Finally, the
qualitative features of the BCS Gibbs free energy exactly
resembles the features of the Ginzburg-Landau free-
energy functional depending on two order parameters.
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