1 APRIL 1992-I

Thermoelectric power of $Nd_{2-x}Ce_xCuO_4$ crystals

X.-Q. Xu, S. J. Hagen, W. Jiang, J. L. Peng, Z. Y. Li, and R. L. Greene*

Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742-4111

(Received 25 September 1991)

We report the in-plane thermopower S of $Nd_{2-x}Ce_xCuO_4$ (0.01 $\le x \le 0.22$) crystals for $4 \le T \le 300$ K. In the weakly doped ($x \sim 0.01-0.025$) samples S is large and negative at high temperature, consistent with electron doping of the CuO₂ planes, and approaches zero at low T. Crystals of superconducting and highly doped compositions ($x \ge 0.15$) show a small positive thermopower, with dS/dT < 0. The thermopower of these samples is therefore surprisingly similar, in sign and T dependence, to that of the hole-doped cuprate superconductors.

A controversial problem in superconductivity has been the nature of the charge carriers in the electrondoped cuprates $R_{2-x}M_x$ CuO_{4-v} (R = Nd, Sm, Pr and M =Ce, Th), where $x \approx 0.15$ produces superconductivity at temperatures as high as ~ 25 K. Initial observations^{1,2} of negative thermoelectric power and the Hall coefficient in $Nd_{2-x}Ce_{x}CuO_{4-y}$ appeared to confirm that Ce contributes electronlike carriers to the CuO₂ planes, as expected if Ce^{4+} is formed. Thus it appeared that high- T_c superconductivity can occur in cuprates for both electron and hole doping of the CuO₂ planes. However, there has lately been some question as to whether this is correct: Recent reports of a positive Hall effect and thermopower^{3,4,5} suggest that the dominant carriers are in fact positively charged, as in other superconducting cuprates. We recently reported⁶ that the Hall coefficient R_H in well-characterized crystals of $Nd_{2-x}Ce_xCuO_4$ is negative for $x \leq 0.2$ and decreases in magnitude as the Ce concentration increases until $R_H > 0$ for $x \approx 0.2$. This is consistent with electron doping in the CuO₂ planes, but raises questions as to the intrinsic sign of the thermopower S. We present here a study of the in-plane S in crystals, which shows how S varies systematically as Ce concentration x increases. We find that in wellcharacterized superconducting crystals there is a sign difference between S and the Hall coefficient R_H , demonstrating that the effect of Ce doping is more complicated than the simple donation of electron carriers.

The sign of the carrier-diffusion thermopower in a metal is often taken to indicate the sign of the charge carriers. However, this thermopower, obtained from the Mott formula⁷

$$S = -\frac{\pi^2 k_B^2}{3e} T \left[\frac{\partial}{\partial E} [\ln \sigma(E)] \right]_{E_F}, \qquad (1)$$

is sensitive to properties of the relaxation time $\tau(\mathbf{k})$ and Fermi surface, and so interpretation of S is difficult in many cases. Thermopower in the high- T_c cuprates has been a persistent problem:⁸ the flat or weakly Tdependent S is atypical of metals, and in many cases even the sign of S is sample or temperature dependent. Nevertheless, thermopower is a fundamental probe of electronic properties and electron-phonon interactions; reliable thermopower data are necessary for a full understanding of the electronic state in the superconducting cuprates.

We grew $Nd_{2-x}Ce_xCuO_4$ crystals using a directional solidification technique; details of growth and characterization appear in Ref. 9. The measured crystals were typically $\sim 2 \times 1 \times 0.02$ mm.³ X-ray diffraction showed them to be single phase, with the CuO₂ planes parallel to the broad faces. Sample quality was also tested by dc magnetization and resistivity measurements: The T_c for the superconducting samples is typically ~ 24 K, and the magnetic transition widths are ~ 1 K.

We used a slow ac method to measure the thermopower. With one end of the crystal epoxied to a copper sink, a metal-film resistor attached to the other end generates a slowly oscillating temperature gradient (~0.5 K/mm) parallel to the crystal *ab* plane. Two Chromel-Constantan thermocouples glued to the crystal measure this gradient, and a pair of Au leads detect the sample voltage. [The gold leads were in turn calibrated against Pb foil (>99.999% pure) by using the Pb data of Roberts.¹⁰]

Figure 1 shows ρ and S vs T for two nonsuperconduct-

FIG. 1. In-plane resistivity ρ and thermopower S vs T for two Nd_{2-x}Ce_xCuO₄ crystals with $x \approx 0.01$ (solid circles) and $x \approx 0.025$ (open squares).

<u>45</u> 7356

ing crystals with $x \approx 0.01$ and 0.025. Both samples show insulating behavior in ρ at low T. The large thermopower ($|S| \sim 100 \,\mu V/K$) of these samples is negative over the full temperature range $T \leq 300$ K, consistent with electron doping. At low T, S approaches zero and ρ shows a weak upturn. Magnetoresistance measurements¹¹ at low T show that this rise in ρ is due to localization of a two-dimensional conducting system, not to the appearance of any energy gap.

Figure 2 shows the resistivity ρ and Hall coefficient R_H of two $x \approx 0.15$ crystals ($T_c \approx 24$ K). Both have metallic resistivity, but at low T the slopes $d\rho/dT$ decrease and the resistivity of sample A flattens just above T_c . The room-temperature resistivities are $600 \ \mu\Omega$ cm (sample A) and $300 \ \mu\Omega$ cm (sample B), and the resistivity ratios of the two crystals are $\rho(300)/\rho(T_c) \approx 2$ and 6, respectively. For both samples we find $R_H < 0$, although crystal B shows a weak trend toward positive R_H at low T. We previously reported⁶ that increased Ce doping x strongly suppresses the resistivity in $Nd_{2-x}Ce_xCuO_4$ crystals and drives R_H to positive values. The transport data therefore suggest that, while both crystals have nominal composition $x \approx 0.15$, sample B may in fact have slightly higher Ce content.

Figure 3 shows S vs T for crystals A and B and for an overdoped $(x \approx 0.22)$ nonsuperconducting crystal. The small magnitude of S is typical of metals, and the T dependence is similar for all samples. S is nearly linear at high T, with negative slope $dS/dT \sim -0.01 \ \mu V/K^2$. This linear S does not extrapolate to zero for $T \rightarrow 0$, however, because of a positive offset of $2-4 \ \mu V/K$. In the superconducting crystals, S falls abruptly to zero at T_c , while for higher doping, S shows a peak at $T \sim 50$ K and then falls to zero as $T \rightarrow 0$. Although S > 0 was observed in ceramic samples by Lim *et al.*,³ the negative slope of S is not visible in their data. This negative slope, which causes a zero crossing of S in some samples at T < 300 K, may have led some groups² measuring S at T = 300 K to report S < 0, while others found S > 0.

FIG. 2. Resistivity and Hall coefficient vs T for two superconducting Nd_{1.85}Ce_{0.15}CuO₄ crystals.

FIG. 3. In-plane thermopower S vs T for the superconducting samples A and B and for a highly doped $(x \approx 0.22)$ crystal.

The clear trend in our data is that increased Ce doping drives the in-plane thermopower from large negative to small positive values. In the low-doped crystals of Fig. 1, S is very similar in its large magnitude and weak Tdependence to that of hole-doped $La_{2-x}Sr_xCuO_4$, Bi₂Sr₂CaCu₂O₈, and YBa₂Cu₃O₇ at low carrier concentration.⁸ The negative sign of S in Fig. 1 is qualitatively consistent with a negative R_H and appears to verify that Ce doping contributes electrons to the CuO₂ planes. However, in the superconducting material ($x \approx 0.15$), we find positive S, in apparent conflict with the negative R_{μ} . Thus the simple relation between carrier charge and the sign of the thermopower and Hall effect does not hold in $Nd_{2-x}Ce_{x}CuO_{4}$. This is unlike the hole-doped cuprates, for which both S and R_H are generally positive (although excess doping¹² can cause S < 0).

It is interesting to compare the $x \approx 0.15$ data of Fig. 3 to the in-plane thermopower reported in the hole-doped cuprates. In Bi₂Sr₂CaCu₂O₈ and Tl₂Ba₂CaCu₂O₈, S has a small positive offset (~few μ V/K) and a negative slope $dS/dT \sim -0.03 \ \mu$ V/K². In YBa₂Cu₃O₇ the thermopower is also small and (generally) positive, with weak T dependence. Despite a qualitatively different means of doping, the thermopower in Nd_{1.85}Ce_{0.15}CuO₄ is nearly identical in magnitude and T dependence to that of these hole-doped cuprates. Therefore, although R_H indicates that electronlike carriers are present in Nd_{2-x}Ce_xCuO₄ and holelike carriers are present in, e.g., Bi₂Sr₂CaCu₂O₈, the thermopower reveals a similarity of the electronic states in the two materials once the superconducting composition is attained.

Understanding S therefore presents a similar problem in the hole- and electron-doped superconductors. In the p-type cuprates, the small and weakly T-dependent thermopower has been variously attributed to phonon drag, strong electron-phonon coupling, two-band behavior, and correlation effects.⁸ Phonon drag, or enhancement of thermopower due to interaction between carrier and phonon heat currents, could account for some of the curvature in S near 100 K in the superconducting samples. However, if the negative slope dS/dT is due to diffusion thermopower (linear in T) of *n*-type carriers, phonon drag is probably not responsible for the overall positive offset in S. This is because phonon drag generally decreases as 1/T at high temperatures,⁷ while in Fig. 3 the thermopower is very nearly linear. That is, the offset in S is essentially T independent. Also, the size of a phonondrag contribution should *decrease* as the carrier density and impurity-scattering rate increase. However, we find the positive offset growing with Ce content. Thus it appears unlikely that the thermopower of $Nd_{2-x}Ce_xCuO_4$ represents a simple sum of diffusion and phonon-drag components.

Kaiser and Mountjoy¹³ have argued that strong electron-phonon (e-ph) coupling can account for unusual thermopower in the cuprate superconductors. In the presence of strong e-ph coupling, the slope of the diffusion thermopower [Eq. (1)] S = AT is enhanced, $dS/dT \gg A$ at low T, but approaches A again at higher T. Therefore holelike carriers with strong e-ph coupling but small A would cause a large increase of S to positive values at low T and a flat, weakly T-dependent behavior at high temperatures. To explain S > 0 (but dS/dT < 0) in this picture then requires that both electronlike and holelike carriers exist, where the electronlike carriers have weaker e-ph coupling but a larger A, giving dS/dT < 0 at high T.

Rather than attempt to evaluate such a model for S in $Nd_{2-x}Ce_xCuO_4$, we consider whether two-carrier effects in general could cause the unusual transport behavior of this material. If two bands have conductivities σ_1 and σ_2 (with $\sigma \equiv \sigma_1 + \sigma_2$), the thermopower and Hall coefficient are given by the weighted sum⁷

$$\begin{split} S &= (\sigma_1/\sigma)S_1 + (\sigma_2/\sigma)S_2 , \\ R_H &= (\sigma_1/\sigma)^2 R_{H1} + (\sigma_2/\sigma)^2 R_{H2} . \end{split}$$

While it is arguable whether the complicated T dependences of S, ρ , and R_H could all be accounted for in a realistic two-band model, a more immediate difficulty is simply understanding how two bands would arise. Local-density-approximation band-theory calculations¹⁴ indicate that metallic conduction is due to a freeelectron-like O 2p - Cu 3d level in the CuO₂ planes. However, no other bands cross the Fermi level in these calculations; the only states approaching E_F are an O p_z band (connecting oxygen atoms in the z direction) and an O $p_x - p_y$ band connecting oxygen atoms in the Nd₂O₂ interlayer. Both bands lie ~ 0.4 eV below E_F for x = 0. If one of these bands actually crossed E_F , it could contribute carriers: For example, recent photoemission data¹⁵ indicate that in $Bi_2Sr_2CaCu_2O_{\nu}$ a band with BiO_2 character crosses the Fermi level, generating an electronlike pocket to supplement the CuO₂ plane holes.

However, there is presently no spectroscopic evidence for a second band in $Nd_{2-x}Ce_xCuO_4$. The nature of the conduction levels and the effects of doping in $Nd_{2-x}Ce_xCuO_4$ remain controversial, but the x-ray photoemission data¹⁶ appear to confirm that the Ce dopant enters the 4+ state, thus donating electrons to the system. X-ray-absorption¹⁷ and electron-energy-loss¹⁸ spectroscopies show that the donated electrons enter states of largely Cu 3d character lying in the CuO₂ planes: There is presently no firm evidence for additional conduction states. Therefore two-carrier models for transport must be regarded as speculative.

An interesting possibility for explaining the nearconstant S in the hole-doped cuprates is a correlated electronic system in the O2p-Cu 3d levels. The thermopower is then T independent, as given by the Heikes¹⁹ formula $S = -(k_B/e)\ln[(1-f)/f]$ [with a term $-(k_B/e)\ln 2$ if the carriers have a spin degree of freedom]. Here f is the filling fraction of the upper or lower Hubbard band in the CuO₂ planes, so such a thermopower in Nd_{2-x}Ce_xCuO₄ would change from negative to positive as Ce was added. If a second electronlike band were also present, it would contribute a negative diffusion thermopower to this correlation term and result in S > 0with dS/dT < 0.

We therefore speculate that S in Nd_{2-x}Ce_xCuO₄ contains contributions both from a highly correlated system in the CuO₂ planes and from electronlike carriers residing (possibly) in the Nd₂O₂ layers. At low doping the CuO₂ planes generate a large, negative, *T*-independent thermopower. Increasing the Ce content (i.e., *f*) to optimize superconductivity raises this correlation contribution to a small positive value, while the diffusion thermopower of the electron band contributes a negative slope to *S*. Both R_H and ρ are dominated by the higher conductivity of the electronlike carriers, and so $R_H < 0$ is observed, and ρ vs *T* shows a more conventional curved profile than the $\rho \propto T$ seen in YBa₂Cu₃O₇, where only the correlated holes are observed.

In summary, we have measured the in-plane thermopower S of crystals of the *n*-type superconductor $Nd_{2-x}Ce_xCuO_4$ over a range of Ce concentration x. In the low-x samples, S is large and negative, consistent with electron conduction. However, in superconducting crystals, S is positive below ~200-300 K (but dS/dT < 0), in apparent conflict with the negative Hall coefficient. These data show that the Ce doping process is more complicated than the simple addition of electronlike carriers. However, a picture of the charge carriers that is consistent with both transport and spectroscopic data has not yet emerged.

- *Also at IBM Research Division, Yorktown Heights, NY 10598.
- ³Z. S. Lim, K. H. Han, S-I. Lee, Y. H. Jeong, S. H. Salk, Y. S. Song, and Y. W. Park, Phys. Rev. B **40**, 7310 (1989).
- ¹H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. **62**, 1197 (1989).
- ²S. Uji, H. Aoki, and T. Matsumoto, Jpn. J. Appl. Phys. 28, L563 (1989).
- ⁴M. E. López-Morales, R. J. Savoy, and P. M. Grant, Solid State Commun. **71**, 1079 (1989).
- ⁵Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, Phys. Rev. B **43**, 3020 (1991).

- ⁶S. J. Hagen, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. B **43**, 13 606 (1991).
- ⁷See, e.g., R. D. Barnard, *Thermoelectricity in Metals and Alloys* (Wiley, New York, 1972).
- ⁸For a review, see A. B. Kaiser and C. Uher, in *Studies of High Temperature Superconductors*, edited by A. V. Narlikar (Nova, New York, 1990), Vol. 7.
- ⁹J. L. Peng, Z. Y. Li, and R. L. Greene, Physica C 177, 79 (1991).
- ¹⁰R. B. Roberts, Philos. Mag. 36, 91 (1977).
- ¹¹S. J. Hagen, X. Q. Xu, W. Jiang, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. B 45, 515 (1992).
- ¹²P. J. Ouseph and M. R. O'Bryan, Phys. Rev. B 41, 4123

(1990).

- ¹³A. B. Kaiser and G. Mountjoy, Phys. Rev. B 43, 6266 (1991);
 A. B. Kaiser, *ibid.* 37, 5924 (1988).
- ¹⁴S. Massidda, N. Hamada, J. Yu, and A. J. Freeman, Physica C 157, 571 (1989).
- ¹⁵L. P. Chan, D. R. Harshman, K. G. Lynn, S. Massidda, and D. B. Mitzi, Phys. Rev. Lett. 67, 1350 (1991).
- ¹⁶A. Fujimori et al., Phys. Rev. B 42, 325 (1990).
- ¹⁷E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, Phys. Rev. B 40, 2617 (1989).
- ¹⁸M. Alexander et al., Phys. Rev. B 43, 333 (1991).
- ¹⁹R. R. Heikes, J. Chem. Phys. 26, 582 (1957); P. M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1975).