
PHYSICAL REVIEW B VOLUME 45, NUMBER 13 1 APRIL 1992-I

Optically induced quasiparticle density profiles in superconducting thin films
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We present numerical solutions of the coupled phonon-quasiparticle rate equations, with quasiparticle
(qp) and phonon diffusion included, for a superconducting thin film illuminated by a temporally pulsed
and spatially inhomogeneous optical intensity pattern. We consider optical intensities in the form of
both a finite circular spot with a Gaussian cross section and a sinusoidal interference pattern. Thereby
we demonstrate that spatially well-defined qp density profiles, including a qp grating, can be optically in-

duced on nanosecond time scales. For the qp grating we use the T formalism to calculate the resulting
conductivity grating in the film, and then calculate the grating diffraction peaks for incident microwaves.

I. INTRODUCTION

The possibility of using laser interference patterns to
"write" spatial information in a medium by modulating
the dielectric constant is a central idea in much of
modern nonlinear optics. In particular, optical index
gratings, the radiation-induced periodic spatial variations
in an active medium's dielectric constant, are responsible
for numerous active optical processes, such as phase con-
jugation, and are of enormous interest in nonlinear op-
tics. ' To date, research has focused on laser-induced spa-
tial structures that control infrared and visible wave-
length radiation using such nonlinear materials as atomic
vapors, photorefractives, optical Kerr media, semicon-
ductors, and liquid crystals. In this paper we discuss an
extension of the basic ideas of this field to superconduct-
ing thin films. We show how optical illumination can
spatially modulate a superconductor's quasiparticle (qp)
density and thereby modulate its complex conductivity,
thus causing it to diffract microwaves. Optical illumina-
tion can create gratings that not only diffract but can also
couple microwaves to guided waves in a dielectric sub-
strate supporting the film. In addition to the technologi-
cal applications of using lasers to thus modulate mi-
crowaves spatially and tempora11y, such interactions may
be measured to learn more about the underlying qp dy-
namics in nonequilibrium superconductors.

The theory presented here predicts that well-defined
quasiparticle spatial structures can be created in thin-film
superconductors with a laser interference pattern by us-

ing, for example, two degenerate laser beams that
coherently interfere with one another. The presence of
laser light gives rise to pair splitting that generates quasi-
particle population distributions (for example, gratings)
in accordance with the optical intensity pattern. ' These

qp spatial structures, in turn, establish conductivity vari-
ations within the superconductor, which are active below
the pair-splitting frequency, i.e., at microwave frequen-
cies. Since the conductivity variations are in both the
real and imaginary parts, both phase and amplitude index
modulations are established. We examine the steady-
state and transient dynamics of these structures and show
that they form quite rapidly, on the order of 0.5 ns for

Nb thin films. In particular, we demonstrate that the ex-
istence of periodic qp structures can be verified by
measuring the angle-resolved transmittance and
refiectance of diffracted microwaves Ior, more
specifically, millimeter (mm) waves]. We have calculated
that well-defined off-specular peaks appear, correspond-
ing to the grating diffraction orders. These peaks are
greatly enhanced when the mm waves are coupled via a
prism into the guided wave modes that exist within a
dielectric substrate supporting the superconducting film.
The peaks can be directly traced to the presence of the
optical index gratings: in the absence of the laser beams
no gratings are created within the superconducting film,
and all of the prism-coupled guided-wave energy is ab-
sorbed or is reradiated in the specularly rejected direc-
tion.

The basic physics underlying the optically induced for-
mation of index variations in superconducting thin films
is as follows. When light irradiates a superconductor,
pair splitting generates qp s, which are excited to high-
lying states, since optical frequencies are much higher
than the energy gap (1),). Within a few picoseconds, the

qp fall to the bottom of the conduction band (in a phonon
avalanche) where they eventually undergo recombination
to form Cooper pairs accompanied by phonon emis-
sion. ' For situations of interest to us, the superconduct-
ing thin film is irradiated by laser beams that form an in-
terference pattern. In regions where there is coherent in-
terference, the light intensity will be high and numerous
Cooper pairs will be split. In these regions, the qp and
phonon densities will be noticeably larger than their equi-
librium values and the effective electronic temperature
will be high. In regions where the beams interfere des-
tructively, few qp will be created and the qp and phonon
densities will be close to their thermal equilibrium values.
Here, the effective electronic temperature will be close to
that of the thermal bath that is in contact with the thin
films. Thus, the effective electronic temperature will be
spatially dependent in accord with the laser interference
pattern. Furthermore, the presence of a qp spatial pat-
tern implies the existence of a spatial modulation of the
conductivity for Ace(26. The qp and phonon diffusion
processes will smear out this spatial modulation, so that
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the quasiparticle, temperature, and conductivity patterns
will not be identical with the light interference pattern.

We review the basic model in Sec. II, and then in Sec.
III we present numerical results for the qp spatial and
temporal responses to two different optical intensity pat-
terns. First, we explore the response to light illuminating
the superconducting film in a finite circular spot with a
Gaussian cross section. This allows us to examine the
diffusion of qp s, from light to dark regions, as a function
of time. Second, we present our results for the response
to a sinusoidal intensity pattern, namely, the formation of
qp gratings. We then discuss the electrodynamics of
these qp gratings: we present our calculations for the
resultant conductivity gratings and the grating-
diffraction peaks of incident microwaves. We conclude
the discussion in Sec. IV.

II. MODEL

When the laser pulse width is long compared to the
time needed for the qp to fall to the bottom of the con-
duction band, the kinetics of quasiparticle and phonon
creation and decay are well described by the Rothwarf-
Taylor rate equations. In the scheme developed by Park-
er (and later extended to transient, spatially inhomo-
geneous, driving fields ' ), the qp and phonons establish a
new equilibrium distinguished by an effective temperature
T*, which is obtained from the qp density via the BCS
gap equation. Thus, to find the effective temperature
T'(r, t) as a function of position r and time t, we solve
first the coupled Rothwarf- Taylor equations (with
diffusion terms added) for the qp and phonon density,
n ~q(r, t ) and n h(r, t ). Specifically, we solve for
u =n

q~ /n
q~

and v =n „h /n ~h, where the superscripts 0
signify the qp equilibrium and the phonon density associ-
ated with the thermal reservoir. These equations take the
dimensionless form

Here, I (I h) is the laser-field-induced qp (ph) creation
rate per unit volume, and ri, =rz(1+b ). The validity of
the T' model requires that r„/rs && I (Ref. 8), in which
case, it does not matter whether we consider the laser as
indirectly producing a phonon current (from the phonon
avalance) or (as in Refs. 2, 3, 7, and the present work) we
take I h

=0 and I =P/( Vb, ), where the volume V ab-
sorbs laser power P, all of which is assumed to create
qp's.

We have carried out numerical solutions to the cou-
pled, partial, differential equations of Eq. (1), for the case
in which the optically induced drive current is a square
pulse in time (on at t =0 and off at t = t, ) and for two dis-
tinct spatial patterns, a circular spot with a Gaussian
profile and a sinusoidal grating.

Reference 3 showed that after a sudden switching on of
a laser pulse, the rise time to steady state for the qp is

Yii =ri, /(1+ Q)'~ . For the numerical work presented in
the next section, we have thus taken the temporal pulse
width of the optical drive to be t, =5~R to assure that the
system has virtually attained steady state before the laser
is switched off.

As for the spatial dependence, we considered first the
case in which the optical illumination falls within a circu-
lar spot on the plane of the film, its intensity depending
only the radial coordinate p=(x +y )'~, the distance
from the spot center (independent of z, the direction nor-
mal to the film surface, and of the angle about z). Then
in Eq. (1)

1 a a

where p=p/Lqp Specifically, we have investigated an
intensity profile with a radial falloff that is Gaussian with
a finite cutoff distance. Thus we have

Q(r, t)=Q(p, t)
u =(1+b) 'Q(F, "T)—u +v+V u, (la) =Q,e(t, —t)e(t)8(p, —p) exp( —p /25 ) .

0 2
R 2 Lp1+bu —(1+b)v+(1+b) V v

7 es L.p0

(lb)

In Eqs. (1), r„ is the equilibrium qp recombination time,
in terms of which we define the dimensionless time
variable 7= t /r„and a qp diffusion length
Lq =(D Pz )'~, which in turn defines the position vari-
able F=r/Lqp and V=LqpV The length scale for the
phonons is set by L~„=(D~„r~„}',where the phonon
lifetime is 1~h re,rs/(1e, +7s }. Here Dqp[ph] is the qp
(phonon) diffusion coefficient (of order vfrii [v hr h] in
terms of the Fermi and phonon velocities); vz is the pair-
breaking time; ~„ is the phonon escape time to the
thermal reservoir. In Eqs. (1), b =r„/rs. In deriving
Eqs. (1},the result of the condition for detailed balance,
2', /rs =n In h, was employed. Finally, Q is a dimen-
sionless drive current

Q=r~[I +I h2b/(1+b)]/n„

Here, the 8 functions (Heaviside functions) represent the
temporal pulse of width t, and the spatial cutoff at p, .
The finite spatial extent of the spot allows us to study qp
diffusion out of the illuminated region and thus to esti-
mate in general terms the effects of qp diffusion on the
smearing out of induced qp spatial profiles.

Secondly, we considered a one-dimensional grating,
where the pulsed laser interference pattern gives rise to a
space and time dependent I,which in Q becomes

Q(x, t ) = [Qo+ b Q cos(2rrx la ) ]8(t, —t )8(t ), (3)

where a is the spatial period and t, is again the temporal
pulse width.

In the work presented here, the laser-induced length
scales (5 for the Gaussian spot and a for the grating) are
taken to be on the order of millimeters, since we propose
probing the optically created qp structures with elec-
tromagnetic (EM) radiation of millimeter (mm) wave-
lengths. Such wavelengths correspond to probe frequen-
cies v close to but less than the pair-splitting frequency.
Thus, the length scales for the induced qp patterns will be
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much larger than the length scales associated with
any possible phase transitions to the multigap states
that may occur in nonequilibrium supercon-
ductors —transitions that are not described in the T* for-
malism. A reasonable assumption is that for moderate
driving forces and ambient temperatures (here
T/T, =0.5 and T*/T, +0.8), these spontaneous inho-
mogeneities can be avoided, and even if they are present,
their spatial scale is small enough that they will not
measurably influence the mm wave probe of the laser-
induced grating.

Once we have the solution for the qp density, n (p, t )

or n (x, t), then we find the corresponding T' by apply-
ing a generalization of Parker's technique (as described in
Ref. 3). The qp density at each point in space and time is
used to obtain the effective quasiparticle temperature
T*(r,t) by using the BCS expression for n „(in terms of
the BCS density of states) and the BCS gap equation.
The electronic distribution function is assumed to be a
Fermi-Dirac function, but characterized by T . This dis-
tribution function is then used in conjunction with the
Mattis-Bardeen' expression for the real and imaginary
parts of the conductivity, o.

, and 0.2. We are justified in

using a local theory of the electrodynamics, since the spa-
tial scale for the changing electromagnetic field parallel
to the film's surface, set by the Gaussian 5 or the grating
period a, is much greater than any length scale (e.g. , the
coherence length) of the superconductor.

III. NUMERICAL RESULTS

We now present results for the time evolution and the
spatial dependence of the qp density and the microwave
conductivity cr, which are induced by the two different
driving-optical-intensity patterns just discussed. The nu-
merical solutions make use of the method of lines with
cubic Hermite polynomials.

The numerical work was carried out for a film of Nb,
of thickness d, in contact with a reservoir whose tempera-
ture is maintained at T=0.5T, . The important phonon
trapping factor (1+b) requires the value of b=r„/r~,
which can be estimated from the expression"

So = 17.66QO/(1+ r„/r~ ), (5a)

so that for Q0=30.42, we have SO=25. 6, 8.81, and 1.07
W/cm for ~„/~~=20, 60, and 500, respectively. For
d ( skin depth,

So = 5.045 X 10 Qo d /( 1 + r„/r~ ), (Sb)

so that for QO =30.42 and d =50 A, we have SO=3.65,
1.26 and 0.153 W/cm for b =20, 60, and 500.

The recombination time rz (which is also the rise time
to steady state under a constant driving field character-
ized by Q) that here corresponds to the Q=Q0=30. 44 is

0.568 ns, 1.65 ns, and 13.6 ns for b =20, 60, and 500.
Corresponding to the time scales ~~, ~~, and ~~ there

are the following length scales for qp diffusion. Without
phonon trapping and at equilibrium,
L „=(1/3)'~ vFrz =0.012 cm. With phonon trapping
and r„/rs =20, 60, and 500, we have (1) at equilibrium,
L„=(1/3)'~ vFrz =0.25, 0.73, and 6.0 cm and (2) at
steady state under the illumination of Qo =30.42,

L„z=(1/3)' vFrz =0.045, 0.13, and 1.07 cm.

A. The circular spot with Gaussian profile

We have solved the coupled partial differential equa-
tions of Eqs. (1) with the driving force Q given by Eq. (2).
The initial conditions are u(p, t=O)=v(p, t=O)=0.
There are two boundary conditions, the first of which is

where the volume V absorbing the optical energy (all of
which is assumed to go into creating qp's or phonons of
energy 2b, ) is expressed as the area A of illumination
times the depth d'. Here d' is either the skin depth (say
350 A) or the film thickness d whichever is smaller. The
exact integral over the density of states gives
n

qp
3 23 X 10 ' cm, and from the BCS gap equation

6(T)=1.478 meV, while the peak power fiux per unit

area or peak optical intensity is P0/A =S0. Then for
d ) skin depth, we obtain for S0, in W/cm,

r„/r~ = ( 4d /gv „)/rs, (4)

where the phonon coupling factor g
' goes from 1 to

100, so that ~„/~z goes approximately from 20 to 2000
for a 0.1-pm film or from 1 to 100 for a 50-A film. We
have chosen values of ~„/~~ of 20, 60, and 500.

For qp's of energy equal to A(T) and for T=O. ST„
the equilibrium recombination time ~z is
=—1.02~0= 0. 152 ns (calculated according to Ref. 12,
where ~0 is a characteristic time given in Table I of Ref.
11). Then the phonon-enhanced recombination time, in
the absence of laser illumination, ~z is 3.18 ns, 9.25 ns,
and 76 ns, respectively, for ~„/~~ =20, 60, and 500.

Values for Qo [see Eqs. (2) and (3)] of 30.42, 60.84, and
725.87 were employed. Corresponding to Q=QO there
are a qp current I0 and a laser power absorbed by the

film P0, according to the relation

a

Bp P Pp

a
U =0

~P P Po

Here po ())p„ the laser cutoff) is an arbitrary point
where the currents (J= DVn = pDdn —/Bp) are —said
to vanish and which is set simply by choosing larger and
larger values until the solutions change by less than a
specified amount. The second boundary condition is

aa" =P P
—0

a
a

U =0,
P P=P

as required by symmetry, since Vu (or Vv ) [=pB/r)p(u
or v ) ]=0 at the origin (also, a nonzero derivative at the
origin would imply the presence of a 6-function-like point
source at the origin, which does not exist here). We have,
moreover, from L'Hopital's rule
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lim V2(u or v) =28 /t)p (u or v) .
p~o

We solved the coupled partial differential equations,
Eqs. (1), under the assumption that the laser is switched
on at t =0 and off at S~z and that the laser spot size is
determined by a cutoff distance of pp 6Lqp 0.072 cm.
The Gaussian power falloff within the spot is determined
by 5=2.77L „.

Figure 1(a), for r„/rs =20 and Qo =30.42, shows the
time evolution of the qp density nq at five different

points in space, i.e., at five distances from the beam
center. By the time of the beam switchoff t, the density
n inside the spot has essentially reached a constant,

qp
steady-state, value. This steady-state density is less than
the steady-state value for the case of uniform illumination
for the same Q. For example, at p =0 and t =t, (where

Q =Qo ), we have n
q&

/n qz
——4.5 as compared to

n q'z /n qz
=(1+Qo) = 5.6 under uniform steady-state

(ss) illumination (Ref. 3). The reduction in n is due to

qp diffusion from high- to low-density regions, and,
hence, from within the illuminated spot to outside it.
The curves labeled p/Lqp 9 and 12 are for points out-
side the spot. Here we see that nqp continues to grow for
a while after the time of the beam shutoff, due to the
diffusion of qp's from inside to outside the spot. Figure
1(b) shows nq as a function of distance at five times: the
curves labeled t/~z =0.5 and 2.5 are at t & t„' the curve
t /ra =5 is at t, when the system has nearly attained its
steady-state condition; and t/rit =6.5 and 9 are for
t) t„ i.e., after the beam shutoff. For times t ) t„ the
figure shows the qp density decaying toward its equilibri-
um value as the qp's recombine and diffuse. The figure
also shows the shape of the distribution changing from
near Gaussian, for t & t„when it closely follows the laser
illumination pattern, to nearly a Hat line for t & t, as the
qp's diffuse from the center toward the tail of the distri-
bution.

%e now consider what happens if we increase
b=r„/r~ [for example, by using thicker films —bigger
d —or slower heat transfer —smaller g, as in Eq. (4)],
while keeping Q constant (Qo =30.42). From Eq. (5a) we
see that this situation means that the optical intensity S is
being lowered as b is increased [if we are changing d to
change v.„,then we must have d ) skin depth for Eq. (5a)
to apply and for the above statement to hold]. Under
these conditions, since Q remains constant, the qp density
that would correspond to the steady state under constant
uniform illumination remains the same, n

qp
/n

qp=(1+Q)'~ . This constancy of the qp density occurs
even though we are decreasing the input power and pho-
ton flux that produce the qp's, since this decrease is com-
pensated by the phonons' remaining in the film a longer
time to split more pairs. This compensation is seen in
Figs. 2 and 3 for the cutoff Gaussian beam as b increases
frotn 20 to 60 to 500, under constant Qo. As b increases,
the value of n„(f roevery time step) becomes smaller at
and near the spot' center, p=0, but it becomes larger in
the tail of the distribution (p&p, ). The lower photon
flux creates fewer qp's, but the longer phonon escapetime
(lifetime) yields tnore qp's. The latter phenomenon in-
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FIG. 1. Quasiparticle density normalized to its equilibrium
value, for Nb film at T=0.5T, with ~„=20~&. In response to
an optical pulse (cutoff at t, =5~R ) in a circular beam with a
Gaussian profile (5=2 77L qp and cutoff at p 6L qp ) and a
driving amplitude go=30.42. (a) As function of time normal-
ized to the rise time ~R, at five positions p/Lq~ =0, 3, 6 (cutoff
point), 9, and 12. (b) As function of position (radial distance p)
normalized to the equilibrium diffusion-length Lqp at five times
t /~R =0.5, 2.5, 5 (cutoff time), 6.5, and 9.
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FIG. 2. Same as Fig. 1(b) except that r„/rz =60.

creases the effective qp lifetimes rz and r~ and thus in-
creases the qp diff'usion lengths L and L (see the
values given above). The increase in qp lifetime, and ac-
companying increase in diffusion length, explain why on
going from Fig. 1 to 2 to 3 we see the qp distribution be-
come broader (lower in the center and higher in the tail).

Next we examine our results for the case in which

r„/rz is increased, while the laser intensity S is held con-
stant. From Eq. (5), we see that this means that Q (and
Qo) is being raised as v;, /~~ is raised. Now the photon
fiux stays constant and so does its production of qp's,
while at the same time the phonons are living longer,
splitting more pairs, and increasing the effective life and
diffusion length of the qp's. The steady-state density un-
der uniform illumination thus increases [as (1+Q)' ].
For the case in which r„/r~ =500 and Q =725.9, we
have nqp/nqp 27 under uniform illumination, and we
have nq„(p, t) as depicted in Fig. 4 for the time-pulsed
Gaussian beam. The peak laser intensity by Eq. (5a) is
then So =25. 6 W/cm, exactly the same as when
r„/rz =20 and Qo=30.42 in Fig. 1. Comparing Figs. 1

and 4, we see that the qp density is higher in Fig. 4 for all
time steps and all positions, as expected —due to the
longer effective qp lifetimes. On the other hand, the
value of n „atp =0 and t = t, (near its steady-state value)
is a larger fraction of the spatially uniform steady-state
value for the case in Fig. 1 [n (O, t, )/nq&=0. 8] than in

Fig. 4 [nq&(0, t, )/n" =0.46]. The ratio of the qp density
at p=8LD„ to that at p=O (at t =t, ) is larger in Fig. 4
than in Fig. 1—0.36 versus 0.32. Therefore, while nqp is
everywhere greater in Fig. 4 than in Fig. 1, the distribu-
tions in Fig. 4 compared to those in Fig. 1 show relatively
more qp's having drifted from the spot center to the tail
due to the effect of the longer qp diffusion length (be-
tween Fig. 1 and 4& Lqp changes from 21L to 501Lqpp
and Lq~ changes from 3.75L to 18.6Lqz). Thus, if we
keep the laser intensity constant and we increase r„/rz,
we increase the overall qp density, but we get relatively
more smearing of the qp distribution due to diffusion.

Finally, since we are solving Eqs. (1) simultaneously for
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Pl pg /l
qp

0 0
P1 ph P1

qp

(1+r„/rs )
~B

(6)

Comparing this approximate expression to the exact nu-
merical results obtained from solving the coupled
differential equations simultaneously (Figs. 1 and 5), we
find excellent agreement.

B. One-dimensional sinusoidal grating

Next, we solved the coupled partial differential equa-
tions for the qp's and phonons for the case in which the
laser interference pattern, which drives the system, is
sinusoidal along one direction in the plane of the film,
represented by the Q(x, t) in Eq. (3). Again we have a Nb
film at T=0.5T, . We chose the spatial period a=0.2
cm. This period is of the correct order of magnitude to
diffract mm waves, and, furthermore, is long enough to
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the qp and phonon density, for the sake of completeness
we illustrate a solution for the phonons in Fig. 5. Figure
5 for the phonons represents the same system —in fact,
the same numerical simultaneous solution —as Fig. 1 for
the qp's.

In Ref. 3 we introduced an approximation scheme for
solving Eq. (1) by eliminating the phonon variable from
the qp equation, under the assumption that the phonons
adiabatically follow the qp's. This process leaves a single
differential equation for the qp's and an algebraic equa-
tion for the phonons in terms of the qp density. If we use
the condition for detailed balance in that algebraic equa-
tion [Eq. (2.17b) of Ref. 3], together with I h =0, we ob-
tain the expression

r 2

prevent diffusion from washing out the induced qp grat-
ing (a=16 6Lqz), while being short enough so that
40—60 grid points in the equation solver yield conver-
gence. Again, the optical pulse is turned on at t =0 and
off at t =t, =5vR.

To begin, we let b,Q =0.1QO, which defines a low grat-
ing contrast (peak-to-valley intensity difference), and with

Q0 =30.42, we let v;, /rz increase from 20 [Fig. 6(a)] to
500 [Fig. 6(b)]. This situation is analogous to what we did
for the Gaussian beam, in going from Fig. 1 to 3. In-
creasing r„/r~ with Q fixed means decreasing the laser
intensity (as described above), and thus decreasing the qp
production by incident photons, while the increased pho-
non lifetime simultaneously increases pair breaking by
phonons. Thus we see little change in the total qp densi-
ty in passing from Fig. 6(a) to 6(b); in 6(b) there are fewer

qp s in the high-intensity areas and more in the low-
intensity areas due to the increased qp diffusion lengths

qp
and L

qp
We therefore get lower contrast qp gratings

in this manner. Now on going from Fig. 6(a) to 6(c), we
keep the optical power S constant by changing Qo from
30.42 to 725.9 as we change r„/r~ from 20 to 500 (analo-
gous to Figs. 1 and 4 for the Gaussian beam). The con-
stant input power combined with the increased phonon
lifetimes and the consequent increased pair splitting
mean that there is a much higher overall qp density in
Fig. 6(c). The contrast, however, is reduced due to the
increased qp diffusion lengths.

To increase the contrast of the qp grating we returned
to r„/r~ =20 and Q0=30.42, and now we increased the
optical contrast by letting hQ =Qo. The solution depict-
ed in Fig. 7 reveals that the qp density exhibits a well-
defined periodic grating structure that achieves a max-
imum value of nearly 7.5nqp at the time that the laser is
switched off. Even after a single 7&, i.e., 0.5 ns after the
laser is turned on, a significant qp grating is generated.
After the laser pulse is switched off, the grating is seen to
decay rapidly by qp recombination and thermal diffusion.
As with each of the gratings (Figs. 6 and 7), by the time
t =97R, the grating no longer exists.

We point out that this analysis is for a stationary grat-
ing. In a real experiment, the laser interference
pattern —even when created with a single laser line—
will have nonstationary components of the form
cos (2mx/a 2mtbv) corresp—onding to a grating velocity
of ahv, due to the finite linewidth hv. Such a grating
will still appear to be stationary on the time scales of in-
terest as long as the time required for its motion to smear
out the grating pattern, 5t =1/4hv, is much greater than
the grating formation time, which as we have already
noted is given by VR. We thus require that Xv&1 j'~R,
and, since 7R is on the order of nanoseconds, we require
approximately that hv&10 Hz. This linewidth for a
laser of 1-pm wavelength is well within experimental lim-
its.

C. Conductivity gratings and microwave diffraction

FIG. 5. Phonon density normalized to the equilibrium value
of the thermal reservoir. The same system as in Fig. 1. As a
function of position, at five time steps, the same as in Fig. 1(b).

Now, we discuss the millimeter wave electrodynamics
of this qp grating in a superconducting Nb film. The
presence of a qp grating implies the existence of both
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phase and amplitude conductivity gratings, viz. , both the
real and imaginary parts of the complex conductivity fol-
low the periodic spatial modulations of the qp structure.
We find the complex conductivity as described in Sec II;
for each point in time and space we use n (x, t) to find

the effective temperature T* and then use the Mattis-

Bardeen equations to find o(x, t ) =o.,(x, t ) —ioz(x, t ).
Corresponding to the qp grating depicted in Fig. 7, the

results for the fractional changes in conductivity,
ho, (x, t ) liT i and her&(x, t ) jcrz are shown in Fig. g, at the
frequency of v=357. 4 GHz ( =b, /h ). Here, the changes
ho. ,- are between the initial equilibrium values o.

, and the
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values under laser illumination, 0; (x, t ). The conductivi-
ty gratings display the same overall spatial and temporal
behavior as the qp grating. We see from these figures
that the in-phase conductivity grating [ho, (x, t)lo, ] is
over 16 times deeper than the out-of-phase grating
[b cr2(x, t ) lo 2]. This is to be expected, as the excess qp
population will most strongly influence o.

&, for frequen-
cies below the pair-splitting frequency.

As a means of probing the laser-induced optical index
grating, and hence probing the dynamics of the qp
diffusion, the direct diffraction of mm waves by the grat-
ing could be measured. Our calculations reveal, however,
that the grating diffraction peaks in the reflection and
transmission of 357.4-GHz radiation are very weak
(though perhaps just measurable) due to the very shallow
penetration of mm waves into the film, which limits their
interaction with the grating. We, therefore, propose
enhancing this EM interaction with the superconductor's
grating by exciting guided waves (GW) in a dielectric
substrate. The GW's repeatedly reflect off the supercon-
ductor as they propagate parallel to the film, increasing
the effective interaction length with the film. From ele-
mentary theory we have calculated the dispersion curves
of fourteen transverse magnetic (TM) GW modes at 357.4
GHz in a 2-mm-thick film with a dielectic constant of
e, = 10 that is bound by a perfect conductor and by vacu-
um. The branches of the GW dispersion curve lie be-
tween the vacuum light line co =ck and the dielectric light
line co=ck/Qe, and hence do not couple to vacuum
modes. Coupling of incident mm waves to the GW's via
the superconductor grating occurs with the same
strength, i.e., same limitations, as the direct diffraction of
the mm waves. Thus, we have considered coupling into
the GWs with a prism coupler, represented by the semi-
infinite dielectric overlayer of eb =20 depicted in Fig. 9.
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FIG. 8. The real (a) and imaginary (b) parts of the conduc-
tivity grating, at v= 357.4 GHz, as functions of position for five
difterent times. Induced by the same sinusoidal optical interfer-
ence pattern (a =02 cm, Qo =b Q =3042) and for the same su-
perconductivity film (Nb at T/T, =0.5 with ~„/~~ =20) as pro-
duced the qp grating in Fig. 7.

FIG. 9. Schematic of the system used to diffract mm waves
from an optical index grating induced in a Nb film. The mm
wave is incident on the Nb film at angle 0 from a medium
characterized by dielectric constant eb, representing a prism.
The Nb film is on a substrate characterized by e„which sup-
ports TM guided waves. The reflected specular beam and
diffracted beam of order n =1 as well as the transmitted-
diffracted beam of order n = —1 are depicted.
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The prism is a stronger coupler than the grating, strong
enough to overcome the limited penetration through the
film. Once the GW is excited it can then interact with
the grating along its entire propagation length, out cou-
pling through the grating diffracted orders back into the
prism as well as into the lower vacuum.

To analyze the scattering of incident EM waves from
the four-layer system depicted in Fig. 9, we developed an
exact coupled-mode theory (based on the single-interface
work of Glass and Maradudin' ), which we plan to de-

scribe in a forthcoming publication.
A p-polarized wave incident from medium eb (the

prism) onto the film at angle 8 can resonantly excite a
TM GW in medium e, when the component of its wave
vector parallel to the film, K;=(Qebco/c) sin8, equals
that of the GW, KTM. This GW can reradiate directly
back through the prism with a reflectance angle equal to
the incidence angle, or it can undergo nth-order grating
diffraction and reemerge in the prism at a reflectance an-
gle 8", given by (Qeb~/c) sin8"=E, +2m n /a (for
n =+1, +2,...). If ~E;+2nn/a~ &. co/c, the grating can
couple the GW into the vacuum, i.e., a transmitted wave
of diffraction order "n" will appear (where no transmis-
sion can appear in the absence of the grating). We now
present our results for diffraction from the conductivity
grating depicted in Fig. 8 at the time t =57~, the pulse
cutoff time, when the system has nearly reached its
steady-state configuration.

Figure 10 shows the intensities of (a) the reflected-
diffracted wave of order n = + 1 and of (b) the
transmitted-diffracted wave of order n = —1 as functions
of the incident angle 8 (intensities relative to that of the
incident wave, i.e., the grating efficiencies). The large
peak in Fig. 10(a) and the peak in Fig. 10(b) are precisely
identified by their position (8=13.5') to correspond to
the prism excitation of the TMl mode. For the small
peak in Fig. 10(a) (8=-13.35'), E, (KTM so that there is

no direct prism coupling into the GW; however, we find
that K, +2~/a =KTM . Thus, the grating is coupling the

1

incident wave into the GW and then the prism is directly
out coupling it. This is still an n =+1 grating process,
but since the grating coupling to the GW occurs first, it
suffers from the same limitation as the direct grating
diffraction (without a prism). In fact, this peak is similar
to those obtained from direct grating coupling.

The dependence of the peak heights on the film thick-
ness d confirms the picture just described. The direct
grating coupling of an incident wave into a GW depends
on the overlap of the EM field with the conductivity grat-
ing, and this overlap is limited in space to the penetration
depth k of the incident wave. If A, »d, then making d
smaller has little effect on the coupling. When k be-
comes comparable to d, then decreasing d begins to de-
crease the grating interaction. This is the behavior ob-
served in the small n =1 reAectance peak. On the other
hand, for prism coupling across the superconducting film
into the substrate's GW's, the smaller d the stronger the
prism coupling. The increase in the GW excitation with
shrinking d far outweighs the small effect of d on the sub-
sequent grating-diffracted reradiation. This effect is seen
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FIG. 10. The grating efficiency as a function of the angle of
incidence for (a) the n =+1 diffracted beam in the reflected

direction and for (b) the n = —1 grating-diffracted beam in the

transmitted direction, for 357.4 GHz waves incident on the

four-layer geometry depicted schematically in Fig. 9. The Nb

film is of either 40- or 50-A thickness. The optically driven con-

ductivity grating within the Nb film is the one plotted in Fig. 8

at t = 57&, corresponding to the qp grating in Fig. '7.
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in the increase of the large peak in Fig. 10(a) and of the
peak in Fig. 10(b) as a function of decreasing d.

IV. SUMMARY AND CONCLUSIONS

We have calculated the qp spatial profiles in a thin-film
superconductor in the presence of a nonuniform optical
intensity field, allowing for qp diffusion. The importance
of qp diffusion is clearly demonstrated by the qp struc-
tures that are predicted to form in the presence of a cir-
cular spot of optical irradiation with a Gaussian beam
profile. In slow systems where phonon trapping greatly
enhances the qp diffusion lengths, the qp structures may
be washed out to a large extent. These diffusion effects
can be determined as a function of time, within the
current theoretical framework, and if correlated with
real-time experiments, could yield valuable information
on qp dynamics in nonequilibrium superconductors. We
have also seen how, with the right choice of parameters,
the qp diffusion effects can be made small enough that the
induced qp structures can remain well defined while un-
der illumination. Thus the idea of optically patterning a
superconductor, for practical application, as is done in
the field of nonlinear optics, is plausible. Furthermore,
the time scales for the formation and dissipation of the qp
structures is a short one ( = nanoseconds), so that rapid
switching is feasible. The qp diffusion, which helps to
erase the qp pattern after the illuminating beam is
switched off, actually aids us by speeding up the recovery
time.

These conclusions, formed by studying the Gaussian
spot, led us to investigate the formation of optically in-
duced gratings in superconducting thin films. Our calcu-
lations indicate that well-defined qp grating structures
can be induced, under reasonable laser powers and
moderate temperatures ( T=O. ST, ), even in the presence
of qp diffusion. The qp structures in turn produce con-
ductivity gratings (phase and amplitude gratings) at mi-

crowave frequencies. In particular, the calculated mm
wave grating-diffraction efficiencies, ranging from 0.1 to
0.9%, should be detectable. By monitoring the time evo-
lution of the GW resonance peaks, one might directly
monitor the qp dynamics of an optically driven nonequili-
brium superconductor. This technique could provide a
method of exploring qp creation, diffusion, and recom-
bination, providing additional information on the time
and length scales involved in qp dynamics in convention-
al superconductors. We stress, particularly, the impor-
tance of the spatial information (involving qp diffusion in
a nonequilibrium superconductor) that might be thus ob-
tained. For example, the diffusion coefficients Dqp (ph)

might be determined. By contrast, past experiments,
from the early work of Testardi' to the recent work of
Johnson et al. ,

' have measured the time response of su-

perconductors under uniform illumination.
In well-studied systems where the fundamental physics,

at least of the equilibrium state, is thought to be under-
stood, experiments could serve as a check on the present
theory —especially on the limits of validity of the T for-
malism. In new and less well-understood superconduct-
ing systems, added information on the time scales and
length scales might supplement existing knowledge on
the basic interactions (e.g. , pairing).

Furthermore, this work demonstrates that creating op-
tical index gratings in superconductors may offer a way
of performing the functions of nonlinear optics, at mm
wavelengths, while exploiting some of the unique proper-
ties of superconductors (e.g. , low losses and high speed,
with lower power requirements than in semiconductors
due to the smaller gap).
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