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We develop a theory for acoustic-phonon transmission through a periodic superlattice with a finite

number of periods. In particular, analytical expressions for the product of transfer matrices and phonon
transmission rate are derived for the phonon propagation normal to the layer interfaces. The results are

applied to the resonance phenomena of phonons in the triple-superlattice structure, i.e., the stack ABA
of the periodic superlattices A and B. The phonon transmission rate and the resonance condition in this

structure are also derived analytically. As a result, we show that the phonons in a frequency gap of the

A superlattice can be transmitted significantly through the AB A superlattice structure when they satisfy

the resonance condition. This happens even if the period of the A superlattice is infinity.

I. INTRODUCTION

Acoustic phonon propagation in synthetic superlattice
systems with various stacking order, such as periodic,
quasiperiodic, and random superlattices, has been investi-
gated both theoretically' and experimentally. For pho-
nons propagating in a periodic superlattice Brag g
reAection occurs when the periodicity matches with their
wavelength, yielding frequency gaps (i.e., stop bands) in
the phonon dispersion relation. Thus, the periodic su-
perlattice exhibits a filtering action on phonons in the
stop bands. By utilizing this property of phonons in the
superlattice, we can basically realize an elastic multilay-
ered system which may selectively transmit or reAect the
phonons ip some frequency window. This suggests the
potential of designing a variety of phonon optics devices
by using single- or multiple-superlattice structures.

Recently, the numerical study on the transmission of
phonons in the simplest multiple-superlattice system,
where a periodic B superlattice is sandwiched by different
periodic A superlattices, i.e., AB A superlattice structure,
has been reported. In this system, the phonons in a stop
band of the A superlattice (A stop band) can be transmit-
ted almost perfectly through the AB A system when their
frequency satisfies a certain resonance condition. This is
analogous to the resonant tunneling of electrons in
multiple-quantum-well systems. So far, almost all of the
phonon transmission calculation has been carried out nu-

merically based on the transfer-matrix method. This is
partly because in a real superlattice system the number of
periods is finite and the perfect periodicity, valid in an
infinite system, is absent. However, analytic expressions
for the transmission rate in finite size systems are desir-
able for studying the characteristic behaviors of phonons
in a complicated superlattice structure.

In the present study, we derive the general expression
for the phonon transmission rate in the finite-size super-
lattices by calculating the products of transfer matrices
analytically. The results are applied to the phonon
transmission in an AB A multisuperlattice system, and we
discuss the resonance condition and the enhancements in

phonon transmission in this system.
The outline of this paper is as follows. In Sec. II, we

develop the mathematical analysis of the transfer matrix
and the transmission rate in the periodic superlattice with
a finite number of periods. The numerical examples of
the phonon transmission in the single- and double-
superlattice structures based on our formula are also
presented. In Sec. III, we discuss the transmission of
acoustic phonons in the ABA multisuperlattice system.
Specifically, the phonon transmission rate and resonance
condition are derived by using the analytic expression for
the transmission rate in single periodic superlattices given
in Sec. II. The sharp enhancements in transmission are
predicted at phonon frequencies satisfying the resonance
condition. In Sec. IV, a summary and conclusions are
given.

II. MATHEMATICAL ANALYSIS OF TRANSFER
MATRIX AND PHONON TRANSMISSION RATE

We study a periodic superlattice with a finite number
of periods. A schematic picture of this system is shown
in Fig. 1. Here, we assume that the superlattice consists
of a periodic sequence of alternate stacking of A, and A 2

constituent layers. The thicknesses of the A, and A2
layers are denoted by d~ and dz, respectively, and D„

1 2'

(=d„+d„) is the thickness of the unit period of this

system.
We consider the case where the phonon wave vector is

parallel to the growth direction (z direction). For this
propagation configuration all three phonon modes are
decoupled from each other if the interfaces are a mirror-
symmetry plane. We consider such a simple situation
and treat only one mode of phonons. In the present
study, we adopt the -continuum model for the lattice vi-

bration, which is valid for sub-THz acoustic phonons in
most of the semiconductor superlattices. The solution to
the one-dimensional wave equation for this elastic contin-
uum is expressed in terms of a linear combination of the
transmitted and reflected waves:
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detector {y)
C;=

cf

Ci
(8)

A2

A,

A2

unit

period Using Eq. (6), we can combine Eqs. (4}and (5) and get

WA, (dA )=tA (dA }W (0}

where

t„(d„)=h„(d„)[h„(0)] (10)

substrate {x)

FIG. 1. Schematic picture of the periodic superlattice with
the N periods. The superlattice consists of a sequence of alter-
nate stacking of A1 and Az constituent layers. The thicknesses
of the A1 and Az layers are denoted by d & and d &, respective-

1 2'

ly, and D„{=d„+d„)represents the thickness of the unit
1 2

period.

ik,.z „—ik,.z
U,.(z)=c e ' +c;"e ', i =A„Az .

This means that %' changes to tA W after the propaga-
1

tion of a wave through the first layer. An explicit expres-
sion for matrix tA is

1
T

t„(dq )=
1 1

cosa&

coZ A slna1

1
sina&

COZ A
1

cosa,

where a, =kA d„. Similarly, we can define a 2X2 ma-
1 1

trix tA for the Az layer. Using t„and t„,we can now
2 1 2

relate Vf's right before and after the unit period consist-
ing of A

&
and Az layers,

(12)

ik,.z „—ik,,zS;(z)=icoZ;(c e ' —c;"e ' ), (2)

where Z; (=p;U;) is the acoustic impedance with the mass
density p; and the sound velocity v;, and co=k;v; is the
angular frequency.

The lattice displacement U;(z) and stress S;(z) should
be continuous at the interfaces of adjacent layers. To
write down these boundary conditions, it is convenient to
introduce a two-component vector

U;(z)
W;(z) S( )

(3)

Let us consider the first layer A, , sandwiched by the sub-

strate denoted by x and the second layer Az (see Fig. 1).
The boundary conditions require

Here, i is an index specifying constituent layers, c,.' and c;"
are the amplitudes of the transmitted and reflected waves,
respectively, and k; is the wave number. The stress asso-
ciated with the lattice displacement U, is expressed as

The transfer matrix T„ is given by

1

COZ A

—A —A2—A ) toZT =t t
A1 A

where

ZA1
A

= Cosa) cosaz sina( S1naz
Az

ZA
o A

= sina) cosaz+ cosa) sinaz,
ZA2

ZAz
g„=—sina, cosa2 — cosa, sina2,

A1

ZA2
P„=COSa& COSaz — S1na, S1naz,

(13)

(14)

(15)

(16)

and

Wq (0)=W„(0) (4)
with a2=k„d„. We note that

2 2

de (Tt„=}A,„p„—o.„g„=1 . (18}

WA (dA )=WA (dA } ~

By the definitions (1}and (2},W,.(z) can be written as

For the superlattice with N periods, we have to calcu-
late (Tz ) = Tz(N). To obtain the analytical expression
of T„(N), we first transform T„ into the diagonal matrix

TA

W, (z) =h;(z)C,

where

(6)
TA =5 'TAS=

e) 0

0 ez

ik,.z
e

h;(z)= a
1coZ; e

—ik,-z
e

—ik,.z—icoZ;e

where e& and ez are the solutions of the equation

e —(p„+A,„)e+1=0. (20)

Solving Eq. (20), we have the diagonal elements of T„:
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2 1/2Pa+~a . P~+~z
2 2

+i 1— for
Pa+~a

2

12 Pa+~a +
2 1/2

Pa+~a
1 for &1.

2

(21)

We explicitly express the transfer matrix TA(N) for the
following three cases.

(a) ~(@A+RA )/2~ ( l. In the frequency range satisfy-
ing this condition, we define 0~ by

Pa+~a
cosOg =

2

= cosO +i sin0 =e

and the corresponding matrix S is given by

i0~ —8~
A, &

—e X& —e

(23)

(24)

Hence, t. 1 2 can be written as With the use of Eqs. (19) and (24), T„(N) is calculated as

T„(N)—= (T„)
)NS

—
1

S„(N)+C„(N)

coZA LHASA(N)

1
0 „SA(N)

COZ g
I

Pw S„(N)+C„(N)
(25)

where CA(N)=—( —1) cosh(NOA) . (35)

sin(NO„)
S„(N)=

sin0„
(26)

(27)

Pg +A, g
cosh'~ =

2

Then, e, 2 can be written as

e, 2= coshO„+ sinh0~ =e

and T„(N) has the same form as Eq. (25), but with

sinh(NO„)
S~(N)=

ssnh8~

(28)

(29)

(3O)

C„(N)=cos(NO„) .

Thus, the elements of T„(N) has an oscillatory behavior.
(b) (p A +A, „)/2 ) l. In this case, we define O „by

1

W„(z)=h„(z)
Cx

(36)

The elements of T„(N) has an exponential behavior, as in
case (b).

Next, we calculate the phonon transmission rate by us-

ing the above analytical expressions for the transfer ma-
trix. In a typical transmission experiment of phonons
through a superlattice, a thin-film phonon detector
(denoted by y) is deposited on top of the superlattice
grown on a substrate x. High-frequency phonons are ex-
cited at the other face of the substrate by using a super-
conducting tunnel junction or by a laser excitation. Thus
both the incident and reflected phonons exist in the sub-
strate but there are only transmitted phonons in the
detector layer. Hence for an incident phonon with unit
displacement amplitude, we have

C„(N)= cosh(NO„) . (31)
in the substrate and

+|'~
e, 2= —coshe~ + sinhO~ = —e

and T„(N) has the same form as Eq. (25), but with

(33)

Thus, the elements of T„(N) has an exponential behavior
in this case.

(c) (p A + RA )/2 ( —l. In this case, we define OA by

Pa+~a
coshOg =

2

Then, e, 2 can be written as

t
Cy

W (z)=h (z) 0 (37)

W (NDA )= T„(N)W (0) . (38)

in the detector layer. The amplitudes of reflection c„' and
transmission c„are determined by the continuity condi-
tion for W at each layer interface. Using the transfer ma-
trix T„(N), this condition yields

sinh(NO„)
S (N)=—( —1)' +'

sinh0„
(34)

For simplicity, we write the elements of TA (N) as
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coZ cA)

1

Q)ZA
1

where

PA S„(N)+C„(N),

b =o qS„(N),
c =g„S„(N),

d = — S~(N)+C„(N) .PA

Accordingly, from Eqs. (36), (37), and (38), we find

(39)

(40)

(41)

(42)

(43)

transmission rate decreases exponentially with increasing
period N. Thus, the super1attice exhibits a strong filter-
ing action on phonons with frequencies satisfying the
condition

~ (p z +l„)/2 ~

& 1. These phonons correspond
to those in the forbidden gaps (stop bands) of the ideal
periodic superlattice with the infinite number of periods.
On the other hand, in case (a), the matrix elements have
the oscillatory behavior [cf., Eqs. (25)—(27)]. Therefore,
the transmission rate is finite and the phonons can be
transmitted through the superlattice. These phonons
correspond to those in the allowed bands in the ideal

j f'gVYaoi ')
) l t

)II

cr
X

Z b—
A)

2l

ZA) Z
c +i d+ a

X Z

Zyy b
ZA)

ZA) Zy'c +i d+ 'a
X X

"b+ 'c +i d — 'a
A) x Z

—ik ND
e (44)

(45)
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The energy transmission rate T and reQection rate R are
defined by 1.0

0. 8

Frequency (THz)

r~ & v

: (b)

Z b—ZA) Z
c + d+ a

X X

R —= /c" /'

From Eqs. (44) and (45), we obtain

Zy

2

(47)

(48)

OC 0. 6
~~
~~
~ 0. 4
Sg
CO

0. 2

'2

yb+ 'c +d — ya
A) x X

0.. 0 ~ I ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~

0. 0 0. 2 0. 4 0. 6

Frequency (THz)
0. 8 1.0

Z"b—
ZA)

2

ZA) Z
c + d+ a

X X

(49)

It can be easily seen that

T+R =1. (50)

From the expression (48), we find the following results.
In cases (b) and (c), i.e., ~(p„+A.„)/2~ & 1, all the matrix
elements of TA(N) increase exponentially (-e ") for
large N [see Eqs. (30), (31), (34), and (35)]. Therefore, the

FIG. 2. Frequency dependence of the L-phonon transmission
rates in (100) GaAs/A1As superlattices: (a) the pure A-type su-

perlattice (solid line) and the pure B-type superlattice (dotted
line) (N =M =35); (b) the AB superlattice structure (N =20,
M =15). The assumed unit periods of A and B superlattices
consist of (6 ML A1As)/(6 ML GaAs) and (9 ML A1As)/(9 ML
GaAs), respectively. The parameters used are as follows. The
thickness of one monolayer {ML) is 2.83 A in the [100]direction
for both GaAs (= A& =B&) and A1As (= A 1 =B,). The mass
density and longitudinal sound velocity are 5.36 g/cm and 4.71
km/s for GaAs, and 3.76 g/cm and 5.65 km/s for AlAs (i.e.,
p„=p~ =3.76 g/cm', p„=p~ =5.36 g/cm', v„=v~ =5.65

km/s, v„=v& =4.71 km/s).
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periodic superlattice with the infinite number of periods.
As a numerical example, we choose a (100)

QaAs/A1As superlattice and consider two periodic su-
perlattices A and 8, whose unit periods consist of (6 ML
A1As)/(6 ML GaAs) and (9 ML A1As)/(9 ML GaAs), re-
spectively. The number of periods in the A (B) superlat-
tice is N =35 (M =35). In Fig. 2(a), we show the frequen-
cy dependence of the longitudinal- (L-) phonon transmis-
sion rates in these periodic superlattices calculated from
Eqs. (39) and (48). We find a dip in the given frequency
range (0 to 1 THz) for both the A-type and 8-type super-
lattices. These dips are due to Bragg reflections of L pho-
nons in each periodic superlattice. The frequencies at the
center of these dips predicted by the first-order Bragg
conditions are 756 and 504 6Hz for the A-type and 8-
type superlattices. These values are in agreement with
the frequencies at the center of the dips in Fig. 2(a).

We can also study the phonon transmission in the mul-
tisuperlattice systems based on the above expressions for
the transfer matrix and the transmission rate in a period-
ic superlattice. For example, we consider the AB super-
lattice system, where the periodic superlat tice A is
stacked on another periodic superlattice 8. The relevant
transfer matrix in this double-superlattice structure is
still 2X2 and given by the product of the matrix T„(N)
[Eq. (39)] and the similar matrix T~(M) for superlattice
8, which is obtained by replacing the symbols A and N
with 8 and M. Substituting the components of the prod-
uct T„(M)T~(N) into Eq. (48) we can obtain the phonon
transmission rate in the AB superlattice system. For the
numerical example, the same A and 8 superlattices as-
sumed above (but with M =20 and N =15) are stacked.

detector (y)

WYXÃYYYXÃYPXXYXXXXXX/i

A,

A,

A,

B,

The transmission rate versus frequency in this system is
shown in Fig. 2(b). Two large dips in the same frequency
range as in Fig. 2(a) are found. Comparing with Fig. 2(a),
these dips can be well identified with the dips in the pure
A-type and B-type superlattices. Therefore, the main
features of the transmission rate in the AB superlattice
can be explained in terms of those in the pure A-type and
8-type superlattices. No prominent structure that is not
seen in the pure A-type and 8-type superlattices arises in
the double-superlattice system.

III. AB A MULTIPLE-SUPKRLATTICE SYSTEM

T„~„(Tq) (T——q) (T„)
= T„(N)T~ (M) T„(N) . (51)

The calculation of the matrix product of Eq. (51) is
straightforward. The explicit expression for T„~„ is,
however, lengthy and we have given in Appendix A the
matrix elements of Tzz~ for

Pw+~w pg +kg
2

)1 and (52)

The substitution of these matrix elements to Eq. (48)
gives the phonon transmission rate in the AB A superlat-
tice structure.

Figure 4 exhibits the calculated frequency dependence

In this section, we apply the analytical expression for
the transfer matrix given in Sec. II to a triple-superlattice
structure. The system we consider consists of periodic
superlattices A, 8, and A grown on a substrate. The
schematic picture is shown in Fig. 3. In this multiple-
superlattice system the sharp structures in phonon
transmission not attributable to the original pure A and
8 superlattices can be seen.

For phonons propagating through this ABA system
the relevant transfer matrix is

1.0 ~~~V~ ~ ~ ~

B,
Bt

A,

D, 0. 8

I &I

A, „dA,
I

FE/ÃEEEEEEEEZEEEEEEEEEEEÃEÃEEEÃEÃEEEXi

substrate (x)

FIG. 3. Schematic picture of the ABA triple superlattice.
The superlattice A (B) consists of a sequence of alternate stack-
ing of A, and A2 (B, and B2) layers. The thicknesses of the Al
and A2 (Bl and B2) layers are denoted by dz and dz (dz and

I 2 I

d~ ), respectively, and D~ =d~ +d~ (D~=d~ +d& )2' I 2 1 2

represents the length of a period of A (B) superlattice. The
numbers of the periodicity in A and B superlattices are N and

M, respectively.

OC 0. 6

+@~I

~ o ~ 4
CO

0. 2

0 0 I ~ ~ ~ I ~

0. 0 0. 2 0. 4 0. 6 0. 8 1.0

Frequency (THz)

FIG. 4. Frequency dependence of the L-phonon transmission
rate in the ABA triple superlattice. The A and B superlattices
are the same as for Fig. 2 but with N = 10 and M = 15.
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of phonon transmission in the ABA structure where A

and B superlattices are composed of 10 and 15 periods
(N =10, M =15) of GaAs/A1As multilayers. (For sim-

plicity, we assume that the substrate and the detector are
the same materials, i.e., x =y.) The most noticeable
feature is the appearance of three sharp enhancements in
transmission in the dip (0.716—0.797 THz) originating
from the Bragg reflection in the A-type superlattice. In
order to see the details in the former structure, the
transmission rate in the vicinity of the A-stop band is en-
larged in Fig. 5(a). These enhancements in transmission

I

correspond to the resonant transmission, and their origin
has been discussed only qualitatively in the previous
work.

Here, we discuss these resonant transmission quantita-
tively based on the analytical expression for the transfer
matrix derived in Sec. II. We consider the phonons with
a frequency satisfying the condition (52); that is, the as-
sumed frequency is in a stop band of the pure A-type su-

perlattice but in an allowed band of the pure B-type su-

perlattice. Therefore, the transfer matrices TA (N) and
Ts(M) for this frequency are given by

TA(N)=

Pa S„(N)+C„(N)

coZA (ASA(N)

1
c»A SA (N)

coZ g
1

Pa
S„(N)+CA(N)

(53)

Ts(M) =

~s Ps Ss(M)+ Cs(M)

coZs (~Ss(M)

1 c»st(M)
coZg

1

pg Ss(M)+ Cs(M)
(54)

where

SA(N)=

C„(N)= .

sinh(N8„) p A +A, A
for & 1

sinh8„

, sinh(N8„) pA+A, A
( 1 )X+1 for (—1,

sinh8~ 2

(55)

Pw+~a
cosh(N8„) for

2
&1

Pa+~a
( —1) cosh(N8A ) for (—1,

1.0

0. 8

0. 6

»re

~W

~ 0. 4
CO

0. 2

0. 0

; (a)

II

I
I
I
I

I
»»

I

I
I

~ I
~~ ~ ~ ~ I

0 .72

rQ»~r
r

I
\

\

i
~

3. 0

2 ~ 0

1.0

0. 0

- -1.0

-2. 0

0 .74 0 .76
Frequency (THz)

~ » ~ I ~ ~ I 3 0
0 .78

'
I

~
~

I,
~ ~

I
t

I

~ ~

I

I
r

I

r

Jaaa aa I» ~ aaam

sin(M8s )
Ss(M) =

sine~

Cs(M) =cos(M8& ),

(56)

(57)

(58)

where e„and 0~ are the real quantities defined by Eqs.
(28) [or (32)] and (22), respectively. By inserting Eqs.
(53)—(58) into Eq. (51), we can obtain the exact expres-
sion for TATA under the condition (52). (See Appendix
A. ) The transmission rate is calculated in the same
manner as given in Sec. II. The result for the present
case (Z„=Z», ZA =Zs, and ZA =Z& ) is

1 1 2 2

1.0

0. 8
4k

OC 0. 6
~W

r~
~ 0»4
Cl
CI

0. 2

0. 0

r

r

e w w w I
»

r

It
I

I

g
I

~ ~

I
~ I
~ ~

I I ~ ~ IJ

~ ~ ~

~
~

I ~

f ~

I

~ ~

I
I
t

I

r

~ ~ ~ I ~ ~ » ~ I » ~ ~ . I I ~ ~ ~ ~ I ~ ~ ~ » I aJ L» ~ I ~ ~

3. 0

2. 0

1.0

0. 0 Q

-1.0

-2. 0

-3. 0

T= 4
p2+ Q2

where

P =G 2~~" +G—

(59)

(60)

0 .72 0 .74 0 .76 0 .78
Frequency (THz)

FIG. 5. The L-phonon transmission rate (solid line) and the
function 6 (dotted line) within the A-stop band (at the lowest
frequencies) in the ABA triple superlattice: (a) N =10, M =15;
(b) N=20, M=15.
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2 sinhO&

~A 0A+ (os —gs) — D Ss(M),
2sinh 0~

Pa )(~a Pa )

(61)

(62)

Ss (M)
G+ =Cs(M)+ . D .

2 sinh8~
(63)

I A+~A
G+ =0 for &1, (64a)

Pa+~w6 =0 for (64b)

is satisfied, the transmission rate has a finite value

Here, cr„=(Z~/Z„)o „,g„=(Z„ /Z„)g„, os=(Z /
Zs )o.~, and ps=(Zs /Z„)gs; the upper sign corre

sponds to the case where (p„+A,„)/2) 1 and the lower
sign to (iM „+A, „)/2 ( —1. The expression for the
transmission in the general case (Z„AZ, Z„PZs, and

1 1

Z„AZs ) is presented in Appendix B. Hence, as the
2 2

number N of the A-superlattice period becomes larger,
both P and Q increase exponentially, and therefore the—4NH ~transmission rate becomes zero in proportion to e

2N8~
This is valid if the coefficients G+ of e in Eqs. (60)
and (61) are nonzero. However, if these coefficients are
zero, that is

IV. SUMMARY AND CONCLUDING REMARKS

In this study, we derived the analytic expressions for
the products of transfer matrices and the transmission
rate in the periodic superlattice with a finite number of
periods. The transmission rate based on our formula
coincides, of course, with that calculated by multiplying
the transfer matrices for a unit period successively by a
computer. We also have applied these exact expressions
to the phonon propagation in the AB A multiple-
superlattice system, and discussed the origin of the sharp
enhancements in transmission. We have showed that the
phonons in the stop bands of the A superlattice can be
transmitted through this system (with transmission rate
close to unity) when they satisfy the resonance condition
(even if the period of the A superlattice is infinity), other-
wise the transmission rate vanishes exponentially with
the size of the A superlattice.

The results of the present work suggest the possibility
of designing phonon optics devices such as a phonon
filter, phonon mirror, and phonon resonator. In the
periodic superlattice systems [Fig. 2(a)], we can also
modulate the phonon frequency of the forbidden gap by
changing the thickness of constituent layers. We can also
modulate the width of phonon stop bands by changing
the constituent materials, i.e., changing acoustic
mismatch between constituent layers, or by combining
different superlattices. The sharp resonant transmission
of phonons in a wide stop band will be used to generate
or detect monochromatic high-frequency phonons excit-
ed thermally in a crystal at low ambient temperatures.
The expressions for the transfer matrix and the transmis-
sion rate we derived in the present study will be useful to
get important insights into these future applications.

oA 0AT=4 os —gs —
q

D Ss(M)
2sinh 8&

—2

(65)

for a large N. Therefore, Eq. (64) should be called the
resonance condition in the ABA multisuperlattice struc-
tures. In Fig. 5(a), we show the frequency dependence of
G (relevant in the frequency range shown in Fig. 4). As

expected, we can find a good coincidence of the frequen-
cies at the sharp enhancements in transmission with the
frequencies satisfying 6 =0. The small deviation be-

tween frequency satisfying 6 =0 and the location of the
transmission peak arises from the finite number (N =10)
of the period assumed for superlattice A; that is, the—2NO~
terms of e " in Eqs. (60) and (61) have small but non-

vanishing contributions. If 1V becomes larger, the devia-
tion becomes zero. In Fig. 5(b), we show the same plot as
Fig. 5(a) for N =20. In this figure, the frequencies at the
transmission peaks are in excellent agreement with the
zero's of G

As shown in Sec. II, a single periodic superlattice acts
as a filter of phonons in stop bands. However, we find

that the phonons in the A stop bands can be transmitted
through the AB A system when they satisfy the resonance
condition (64), even if the period of the A superlattice is
infinity.
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APPENDIX A

A p g —2NOA+—1+ G+e
2 2 sinh0„

1 Pw+—A,
—p — D S (M), (Al)

2sinh 0

2N~A —2NOA

(T~s~ )i2=+ . (G+e "—G+e ")
2 sinh0~

+ Og
2sinh 0~

D SE(M), (A2)

The elements of the transfer matrix T„s„[Eq. (51)]
under condition (52) are calculated as

1 ~w Pa
(Tas~)i, =—1+ .

h&
G+e

2 2 sinhO~
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2N8~ —2N8~
(T~a~ 4t=+

2 sinh8A

+ ga
— D Sa(M),

2sinh 8A

1 A I A 2N8~
(Tlag )pp= 1 + . G~e

2 2smh8A

(A3)

Zy ZA)

z ~ z&~
A) X

2 sinh8A

Z ZB

z &a z 0a
B, X

2N8 ~
—2N8 ~G e A G e A)

+ 1 I+ ~a Px —2N8

—
)tt

— D S (M), (A4)
1 PA

2sinh 8

Zy ZA)

z " z ~
A) X

2 sjnh 8A
D Sa(M),

(B3)

APPENDIX B

In the general case (Z AZ, Zz Aza, and
1 1

Z„AZa ), the expression of the transmission rate [Eqs.
2 2'

(59)—(62)] are rewritten as

4(zy /Z„)T—
p2+ Q2

(B1)

where 6+ and D are defined in Eqs. (63) and (62), respec-
tively. (~~ —V~)(~a —

) a) ZB
+

Z Narra+ Z 0ao~2 B A)

(B4)

Further, the transmission rate (65) at the resonance fre-
quencies are rewritten as

where

Zy kA PA Zy

Zx 2 sinh8A Z

2 Zx 2 sinh8A Zx

2N8~
e

—2N8
A

(B2)

ZT=4 '
Z

Z ZB

z ~a —
z 0a

B} X

Z ZA

z ~~ z &~
A) X

2 sinh28„

—2

D Sa(M) . (B5)
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SIn the limit of small acoustic mismatch between the constituent

layers in superlattice A, Eq. (64) becomes Ca(M)=0. This
means that superlattice B is a quarter-wave layer as a whole
and Eq. (65) leads to T= 1 in this limit.

Here we note that the following equation holds at a frequency
in the A stop band (the first-order Bragg reflection) in Fig.
2(a):

—cosh8& =cos(a&+u&) ——'5 sina& sina&,

where 5 =(Z„—Z„) /Z~ Z„. Because 5 &&1 [5
1 2 1 2

=0.0283 for the L phonons in the (100) GaAs/A1As superlat-

tice], coshe„&1+—'5 or 1&e "&1+(V'2/2)5; i.e., e " is

close to unity.


