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Lower critical dimensions for superconducting long-range order in type-II superconductors
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It is shown that phase fluctuations destroy off-diagonal long-range order (phase coherence) in the
Meissner phase below two dimensions, below four dimensions in the conventional Abrikosov flux-lattice
phase, and below three dimensions in the limit of infinite Ginzburg ratio ~. The destruction of long-
range order in the flux lattice is due to phase changes induced by shear motions of the flux lines. The
phase coherence decays over a long length scale (of order millimeters) in three-dimensional systems.

I. INTRODUCTION

The form of the phase diagram of a type II supercon-
ductor in a magnetic field has again been of interest, since
the discovery of high-temperature superconductors. At
the level of mean-field theory there are just two phases
besides the normal phase. For fields H &H„(T) there is
the Meissner phase in which all flux is excluded from the
sample, while for fields H„(T)&H &H,2(T) there is the
mixed phase in which Abrikosov showed that the flux
lines penetrated the sample to form a regular flux-line lat-
tice. ' The thermal Auctuations about the mean-field solu-
tion are very much larger in high-temperature supercon-
ductors than in conventional superconductors because of
their much shorter correlation lengths and the effects of
these Auctuations have caused controversies. For exam-
ple, it has been argued that the fluctuations could lead to
the melting of the flux lattice to a Aux-line liquid state.

In this paper the effects of the fluctuations on the phase
coherence or off-diagonal long-range order (ODLRO) are
examined both in the Meissner and mixed states. It will
be shown that phase fluctuations destroy ODLRO below
two dimensions in the Meissner phase. In the mixed
phase, the phase fluctuations induced by the thermal ex-
citation of the shear modes of motion of the Aux lattice
are shown to destroy ODLRO below four dimensions. I
shall take the loss of ODLRO to be of physical
significance (even though it is not directly measurable)
and draw the conclusion that its loss implies that the
lower critical dimension of the Meissner phase is two,
and the lower critical dimension of the conventional
mixed phase is four. Hence, barring exotic possibilities
(see below), the only genuine phases in a pure bulk type-
II superconductor are the normal and Meissner phases,
just as in a type-I superconductor.

Previously the effects of phase fluctuations in the
mixed state were examined using the approximation
where the magnetic induction B is assumed to be spatial-
ly uniform. ' ' This is only valid within superconduc-
tors if the Ginzburg parameter v is infinite. Actually,
this limit has direct physical relevance to rotating neutral
superfluids such as He and possibly neutron star
matter. " The previous claims that three is the lower
critical dimension for ODLRO for this case are

confirmed, which removes doubts as to whether further
ad hoc approximations made in the original papers, such
as truncation of the order parameter g to the lowest-
Landau-level solution of the linearized Ginzburg-Landau
equation, were responsible for the unusual value for the
lower critical dimension.

Houghton, Pelcovits, and Sudb&' (HPS) also recently
pointed out that phase fluctuations apparently destroyed
ODLRO in the mixed phase below four dimensions, but
they regarded this as merely a consequence of studying
an inherently non-gauge-invariant quantity such as the
phase of the order parameter g and proposed instead a
gauge-invariant definition of ODLRO, which is not des-
troyed by the phase fluctuations accompanying shear
motions of the flux lattice. In Sec. II, I show that if the
definition of ODLRO employed by HPS is used in the
Meissner phase, ODLRO is apparently destroyed by Auc-
tuations in the transverse component of the superfluid ve-

locity in any dimension. Furthermore, in Sec. III, I will

argue that fluctuations of the transverse component of
the superfluid velocity also destroy ODLRO, as defined

by them, within the mixed phase in any dimension. As a
consequence of this, I have constructed another gauge-
invariant definition of ODLRO, and a gauge invariant
phase (which turns out to be the phase of P within the
conventional London gauge") and show that its fluctua-
tions do indeed destroy ODLRO below four dimensions
in the mixed phase. It is similar to the definition of
ODLRO given by HPS, but involves instead only the lon-
gitudinal component of the superfluid velocity.

If superconducting order (ODLRO) is absent in the
mixed state in two dimensions (films) and three dimen-
sions (bulk), what is it then that is being observed experi-
mentally in type-II materials? Since ODLRO is des-
troyed by the phase fluctuations associated with the
long-wavelength shear modes of motion of the Aux lines,
any pinning of the Aux lines by disorder, etc. , will inhibit
and slow the phase Auctuations. Once the Aux lines are
pinned, long-wavelength shear modes become impossible,
and the phase fluctuations responsible for the destruction
of superconducting order are removed. Hence, our cal-
culations are only directly relevant to situations in which
disorder, which is always present, can be regarded as a
weak perturbation. Furthermore, our calculations show
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that for bulk systems the decay of ODLRO takes place
over a length scale, which is typically of order millime-
ters. Thus, even in the complete absence of disorder
there will be few easily observed experimental conse-
quences of the loss of ODLRO. However, for thin films
ODLRO decays on the length scale of the average sepa-
ration of the flux lines. Its loss is likely to result in the
formation of a vortex liquid state.

It is possible that the absence of ODLRO below four
dimensions does not necessarily rule out a genuine phase
transition to a state lacking ODLRO but possessing, say,
a flux lattice or even hexatic order. The possibility of a
flux lattice without ODLRO has been envisaged by Fish-
er and Lee, ' but described by them as "exotic." There
is, of course, an example where the loss of ODLRO is not
accompanied by the absence of a phase transition, viz. ,
He films, which undergo, at low temperatures, a phase

transition to a state with no ODLRO but a nonvanishing
superfluid density. My chief aim in this paper is to
demonstrate the absence of ODLRO below four dimen-
sions. What happens in its absence is essentially left to
future studies.

The plan of the paper is as follows. In Sec. II, the
Ginzburg-Landau formalism is set up and the mean-field
equations written down. The equations that describe the
fluctuations about the mean-field solution are obtained in
a gauge-invariant form and solved for the Meissner
phase. A gauge-invariant phase is constructed, and a
gauge-invariant definition of ODLRO is given. Within
the Meissner phase it is shown that the thermal fluctua-
tions of the gauge-invariant phase cause a loss of
ODLRO below two dimensions, while fluctuations would
destroy ODLRO, as defined by HPS, in all dimensions.
It is concluded that the gauge-invariant phase defined by
HPS is unphysical. Section III starts with a discussion of
the two Goldstone modes associated with small displace-
ments of the flux line lattice, which are essentially the
transverse and longitudinal elastic modes of motion of
the lattice. The tilt modulus c44 of the flux lattice is ob-
tained exactly from the Ginzburg-Landau formalism. It
is then argued that ODLRO as defined by HPS is des-
troyed by the transverse components of the superfluid ve-
locity in any dimension within the mixed phase. I show
next that thermal excitation of the shear modes destroys
my definition of ODLRO only below four dimensions. In
Sec. IV, the case of infinite ~ is investigated. It differs
from the case of finite ~ in that in this limit there is only
one Goldstone mode, which is associated with the shear
elastic mode of the flux lattice and its dispersion curve is
found. Its unusual form is the origin of the destruction of
ODLRO below three dimensions in the infinite ~ limit.
Finally, in Sec. V, I discuss further the possible experi-
mental implications of the loss of ODLRO.
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The mean-field description of the superconductor results
when the free energy of Eq. (2.3) is minimized with
respect to f and A. The functions fo, Ao, and Qo which
give the minimum Fo of F are solutions of

——,V'f o
—fo+fo+foQo =o (2.4)

VXVX Ao= —foQo . (2.5)

There are three solutions of Eqs. (2.4) and (2.5). One
solution corresponds to the normal phase and has fo =0,
Qo=O, B=H. In the Meissner phase Bo=0, Qo=O, and
fo(x,y, z) =1. The solution of Eqs. (2.4) and (2.5) for the
mixed or Abrikosov flux-line lattice phase cannot be ob-
tained analytically, but the essential features of their solu-
tion are' that the fiux lines —the zeros of f—lie on the
vertices of a triangular lattice and are parallel to the field
direction H, i.e., the z axis. The magnetic induction
Bo(x,y ) is parallel to H and is largest at the cores of the
fiux lines, where fo(x,y)=0. The lattice constant l (the
spacing between fiux lines) in nonreduced units is given
by the flux quantization condition that the area of the
unit cell, &31 /2 equals ko/8, where ko is the fiux quan-
tum and 8 =Bo(x,y ), the bar indicating here and in what
follows a spatial average over the unit cell of the flux lat-
tice.

The component of the superfluid velocity field along
the z axis, Q, o is zero in the mean-field solution. Further-
more, from Eq. (2.2)

(2.1)

Here lengths are measured in units of the zero-field
penetration depth A, , magnetic fields in units of &2H„
the vector potential A in units of V2H, A, and the free-
energy density in units of H, /4m. . The magnetic induc-
tion B=VX A. The external field H will be taken to be
along the z axis. The Ginzburg ratio z=A, /g, where g is
the zero-field correlation length. Real high-T, materials
are highly anisotropic. This introduces interesting com-
plications, which are planned to be discussed elsewhere. '

The superconductor's order parameter g is a complex
scalar, which in terms of its amplitude f and phase 4
can be written P=f exp(i4). We shall work throughout
within a gauge invariant formalism. To this end it is con-
venient to introduce the gauge-invariant superfluid veloc-
ity

II. GINZBURG-LANDAU MODEL AND FORMULISM

A. The free-energy functional

The Ginzburg-Landau free energy for an isotropic su-
perconductor, written in reduced units is'

VXQo=VX Ao ——VXV@o
1

Bo(x,y )— g 5(p —R; ) z,
K

1

(2.6)
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where z denotes a unit vector along the field direction, R,
denotes the position of the ith site on the triangular Aux-
line lattice, and p is a two-component vector, p=(x,y).
The curl of a gradient is normally taken to be identically
zero, so how do the 5-function terms in Eq. (2.7) arise?
According to Stokes' theorem

The quadratic form of Eq. (2.15) can be diagonalized by
finding its real eigenvalues A. and their corresponding
eigenvectors by solving the equations

V—f, f—, +3fof, +f,Q +2f Q q=kf, , (2.16)
1

K

f Qo dl= fdS VXQo .
C

(2.8) V X V X a+foq+ 2fof ]Qo:Afoq . (2. 17)

Let the contour C encircle a flux line in the xy plane and
be shrunk down onto it. Equation (2.4) shows that near a
flux line (for convenience sited at the origin), fo(p) ~ A p,
and Qo is —I/ap and polar in direction. Hence, the left-
hand side of Eq. (2.8) equals —

2m le as the contour is
shrunk down, so the right-hand side, in order to be non-
vanishing, must contain a 5-function term as given in Eq.
(2.7). [Brandt' makes frequent use of Eq. (2.7) in his
work on non-local elasticity moduli. ]

From Eq. (2.5) it follows that

BBO = —f~oK, o
ay

aB, = —fos, o

(2.9)

(2.10)

so Eq. (2.7) can be rewritten as

V VB (x y) =Bo— +5(p —R) .
0 I

(2.11)

Because fo(x,y) and Bo(x,y ) have the periodicity of the
triangular lattice they have the Fourier expansions'

fo(xy)=+foe' p,
G

Bo(x,y)=B+ g boe' p,
6&0

(2.12)

(2.13)

where G denotes a triangular-lattice reciprocal-lattice
vector. Solutions of Eqs. (2.4) and (2.11) can be obtained
to any desired level of accuracy by retaining more
Fourier coefficients in (2.12) and (2.13). Fortunately, for
our analysis of the fluctuations about the mean-field solu-
tion, we have no need for an explicit solution of the
mean-field equations.

B. Fluctuations about the mean-field solution

This is a difficult task for the mixed phase, so we shall
start by solving these equations for the Meissner phase.

C. The Meissner phase

This phase has fo(x,y, z)=1 everywhere and Qo=O.
Within this phase no Aux lines are present, so
VXa=VXq. Equations (2.16) and (2.17) give rise to
four excitation branches: a hard mode associated with
amplitude variations and given by

1——V f, +2f, =if„q=O
K

(2.18)

[Eq. (2.18) can be solved by Fourier transforming; the
solution of wavevector k has eigenvalue A, =2+k /~ ]; a
longitudinal superfluid velocity mode in which q~~k for
which f, =0 and A, = 1, and two degenerate transverse
superfluid velocity modes (qlk) for which f, =0 and
X=1+k

At temperature T the thermal fluctuations about the
mean-field solution give the following expressions for the
propagators:

k~T
(f)(k)f)( —k)) =—

2 2+k /s
(2.19)

k, k k)k
(q;(k)q (

—k)) =—k~T ' + 5, — 1

1+k

(2.20)

correct to lowest (Gaussian) order. In Eq. (2.20) the term
k;k /k is associated with longitudinal fluctuations of Q
(i.e., with components of Q parallel to k), while the term
5, —k, k /k is associated with the transverse com-
ponents.

To analyze these fluctuations let us write

f=fo+f),
A= AD+a,

Q=Qo+q,

F=FD+F),
then to quadratic order

F, =f d r f, +3fo+—(Vf() +fo2—q
1

K

+4fof i Qo q+f fQo+(V X a)

(2.14)

(2.15)

D. Definition of a gauge-invariant phase

The phase 4 of the superconducting wave function is
not a gauge-invariant quantity: the free-energy F is in-
variant under the gauge transformation

A~ A'= A+ —Vy,
1

K

4~&'=N+y,

(2.21)

(2.22)

where g is an arbitrary function. Since it is our central
contention that phase Auctuations destroy ODLRO in
both the Meissner and the mixed phase in sufficiently low
spatial dimensions, it is important that we define the
"phase" with some care.

A gauge-invariant correlation function is
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C(r, r') (()'(r') exp ieI A.dl tP(r))
r

=(f(r')f(r)expia f Q.dl) .
r

(2.23)

This suggests as a possible definition of the phase
difference h4 between the points r and r',

i—rf (2.24)

While this is commonly used as a definition of a gauge in-
variant phase, and is the one used by HPS, ' it has unsa-
tisfactory features. In particular, the phase difference
defined in Eq. (2.24) varies continuously as the path be-
tween the points r and r' is altered, and moreover, its
thermal fluctuations will turn out to be infinite in all spa-
tial dimensions.

Our gauge-invariant phase 8 will be defined as the
solution of the equation

V 6= —irv Q, (2.25}

subject to boundary conditions, at the external boun-
daries and at the vortex lines (see below}.

A vector such as Q(r) can be written as a suin of its
longitudinal and transverse components, i.e.,

Q(r) =Q&(r)+Q&(r), (2.26)

where V QT=0, V XQL =0. Hence, the definition of the
phase via Eq. (2.25) depends only on the longitudinal
component QL of Q and not on the transverse com-
ponents QT [which are responsible for the infinite
thermal fluctuations in the HPS phase defined via Eq.
(2.24)]. In practice, one finds QI and Qr from the
Fourier transform of Q, Q(k), via

QL (k ) =k [k.Q( k ) ]/k

QT(k) =Q(k) —Ql (k) .
(2.27)

When vortices are present, as in the mixed phase, the
superconductor can be regarded for our purposes as no
longer simply connected topologically. 6(r) is no longer
single valued. In this situation it is very convenient to re-
gard each flux line or vortex as a little tube of zero diame-
ter at which boundary conditions have to be enforced. (I
am indebted to Dr. E. H. Brandt for this idea. ) For a
vortex in the mixed phase, one expects the phase to
change by 2m on integrating V8 along a path encircling
the vortex. Mathematically this feature can be imposed
as fo11ows. Points on the ith flux line, defined as a zero of
f(r), are specified by the three component vector
r; =(x;(z),y;(z), z }. We shall impose the "boundary con-
dition" that

ve= —~Q, +ve, ,

where V 8G=0 and

VBG(r)=2mVX Q fdr, gexp[ik. (r, —r)]/k
k

(2.29)

1 dk 4~
exp[ik (r, —r)] .

Ir —r; I (2~)
(2.31)

V8G is determined by the geometry of the flux lines. It is
clearly periodic in I. and can be shown to be consistent
with the internal boundary conditions of Eq. (2.28) on
taking the curl of both sides of Eq. (2.30). We have
adopted periodic boundary conditions when dealing with
vortices as they result in considerable simplification.

The phase difference 66 between two points r and r' is
defined then as

we= f've dI . (2.32)
r

Notice that 66 is independent of the path between the
points r and r' provided the different paths do not encir-
cle a flux line.

The phase defined via Eq. (2.25) actually coincides with
the phase of the order parameter f within a particular
choice of gauge —the London gauge. In this gauge,
V A=O. Combining (2.2) and (2.25) it can be seen that
V 6=V 4. Hence, 6=4 as both 8 and 4 have to satis-
fy the same boundary conditions.

The existence of ODLRO can be investigated by
finding how the gauge-invariant correlation function

G( r, r') = (f(r)f(r') exp' 6(r, r') ) (2.33)

= ( g(r)g*(r') )—:(f(r)f(r') expel@(r, r') )

(2.34)

[provided (2.34) is evaluated in the London gauge], varies
as the separation ~r —r'~ tends to infinity. If it tends to
zero as the separation increases to infinity, ODLRO is ab-
sent. Since the only practical way to perform explicit cal-
culations within a gauge-dependent field theory such as
that of Eq. (2.1) is to fix a particular gauge at the outset,
it is very convenient that our definition of ODLRO via
Eq. (2.34) can be studied directly by calculating the prop-
agator of the order parameter field g in the commonly
used London gauge.

(2.30)

where k = 2m ( n„,n, n, ) /I. and n„,n, n, are integers.
Equation (2.29) reduces to an equation for the phase
given by Brandt' on using the relation

V XVe(r) =2m. g fdr;5(r —r, } . (2.28) E. ODLRO in the Meissner state

Then if one integrates Ve(r) around any contour in a
plane whose normal is locally parallel to the flux line, it
follows from Stokes theorem [see Eq. (2.8)] that the phase
mill increase by 2m. if the contour encloses the flux line.

The general solution of Eq. (2.25) for periodic external
boundary conditions in the presence of vortices can be
written as Xexp [

—
—,
' ( [6(r)—6(r') ] ) ] . (2.35)

The calculation of G(r, r ) within the Meissner state is
straightforward. Writing f=f0+fi, Eq. (2.33) becomes,
as 6(r) is single-valued in the Meissner state and
i().6(r, r') path independent,

G(r, r')= [f0+(f, (r)f, (r') ) ]
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The second term in the first set of square brackets in
(2.3S) can be evaluated from Eq. (2.20). As ~r —r'~ tends
to infinity, its contribution to G(r, r ) is exponentially
small. It follows from Eq. (2.25) that

k 6(k)=i~k.q(k), (2.36)

so

—,
' ( [6(r)—6(r') ] ) =a g [1—cosk (r —r')]

k

k, k
X (q, (k)q (

—k)),
k

1.e.,

~&82~ 2k ~ [1—cosk (r —r')]—K
k

(2.37)

on using Eq. (2.20) and summing over repeated indices.
For d &2, the right-hand side of Eq. (2.37) varies as

~
r —r' ~, as can be seen by simple power counting, but

for d )2 tends to a constant. Thus, we conclude that for
d (2, ODI.RO is destroyed by phase fluctuations within
the Meissner phase and that two is probably its lower
critical dimension. Because the phase fluctuations seem
to be always more iinportant than amplitude fluctuations
in reducing ODLRO, I shall henceforth only study
( 68 ). ODLRO will be deemed to be present if ( b,8 )
remains finite as the separation of r from r' increases to
infinity. I know of no formal proof that two is actually
the lower critical dimension of the Meissner phase, but it
is probably a consequence of the theorem of Mermin and
Wagner' and Hohenberg. '

It is interesting to contrast Eq. (2.37) with the corre-
sponding expression for the fluctuations in the phase
defined by HPS via Eq. (2.24). Let us set r=(0, 0, 0) and
r'=(0, 0, h ) and integrate along the z axis between these
points. Since in the Meissner phase QO=O,

h
b,4= —a f dz q, (0,0,z), (2.38)

0

and so ( b,4 ) =0 and

(b4 )=a f dz f dz'(q, (z)q, (z'))
0 0

=2m g (1—cosk, h )(q, (k)q, (
—k) ) /k, (2.39)

k

=~ k~ T g (1—cosk, h ) 1+ 1

k Z

(1+k )

(2.40)

on using Eq. (2.20). After evaluating the integral over k,
one finds that the second term in the curly brackets in
Eq. (2.40), which arises from the transverse component of
the superfluid velocity, gives a contribution to ( b,@ ),
which increases linearly with h ( = ~r

—r'~ ) as h ~~, in
all dimensions. Thus, if the HPS definition of a gauge-
invariant phase is adopted, then one would deduce that
ODLRO in the Meissner phase is destroyed by thermal
fluctuations in all spatial dimensions. We conclude that
in a bulk system, as opposed to a circuit, their phase is
without physical significance.

III. THE MIXED PHASE

+c„[(a„u„—a, u, )'+(a„u, +a, u„)']] .

(3.1)

cI is the compression modulus, c44 measures the energy
cost of tilting the flux lines, and c66 is the shear modulus
of the flux lattice. (c4~=2HB and ci =2B aH/aB in

our reduced units' ).
The two excitation modes associated with the elastic

free energy F,~
are revealed by Fourier transformation:

F„=—,
' gu;(k)[cL k, k, +5,, (c66k', +c44k, )]u, (

—k),
k

(3.2)

where (i,j )=(x,y). Hence,

PT
(u, (k)u (

—k))=ksT
C66k J +C44k+

PL+
2

C))kg +C44k
(3.3)

A. Elasticity theory

The determination of the excitation modes of the
mixed phase requires the solution of the eigenvalue equa-
tions (2.16) and (2.17). Since the functions fo(x,y) and

Qo(x,y ), which appear in these equations, cannot them-
selves be determined analytically, it is only possible to ex-
tract information on the eigenvalues and eigenvectors in
a few special limits.

Because of the lattice periodicity of the functions
fo(x,y ) and Qo(x, y ) appearing in the eigenvalue equa-
tions, it follows from Bloch's theorem that the eigenvec-
tors must be of the type exp(ik r)E&(x,y), where
k = ( k„,k», k, ) = (ki, k, ) and Ei,(x,y ) has the periodicity
of the triangle flux lattice. The simple z dependence
derives from the translational invariance along the field
direction. The eigenvalues k will depend on the branch
and the wave vector k. There are two Goldstone
branches, for which A, ~O as ~k~ ~0, which arise from
the invariance of the flux lattice free energy under arbi-
trary translations in the xy plane.

The Goldstone branches are just the elastic modes of
the flux lattice, which in the long-wavelength limit can be
described by the elastic free energy F,~

written down by
de Gennes and Matricon in 1963.' The position of the
ith flux line, defined as a zero of f(r), is a function r, (z ),
for a general displacement of the flux lines. A two-
dimensional displacement field u(R, ,z ) is given by setting
r;(z) =R; —u(R;, z). It is very convenient to work in the
continuum limit when this displacement becomes a func-
tion u(x, y, z). Only the long-wavelength limit of the ex-
citation modes will be correctly given by the continuum
limit. The excess elastic free energy F,~

associated with
small gradients of u is

F,i= —,
' f d r Ic (a„u„+a u ) +c [(a,u„) +(a, u ) ]
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where PT=(5," k—;k /ki), PL =k;ki/kz, and c&&

=ci +c«. Equation (3.3) shows that one mode of F,i is a
transverse branch in which ulkz and the other is a longi-
tudinal branch in which uiiki.

The elastic free energy of Eq. (3.1) can be derived from
the eigenvalue equations (2.16) and (2.17) by studying the
null (A, =O, k=O) eigenvalues and eigenvectors and then
performing a small k expansion of the Bloch functions
Ez(x,y ). The null eigenvectors are doubly degenerate be-
cause they correspond to arbitrary displacements of the
flux lattice in either the x or y directions. They are linear
combinations of

af, af,f, =u„ and u
Bx By

aQO aQoq= u~ and u~Bx O'
By

(3.4)

(3.5)

af, au„(z)
f, =u, (z) + R(x,y),ax az

aQ, au„(z)
q=u„(z) + V(x,y),

Bx Bz

(3.6)

(3.7)

where u, (z)=uocos(k, z). Equations (3.6) and (3.7) for
f, and q are then substituted into the eigenvalue equa-
tions and as A, -k, , the coefficients of au„(z)/az, i.e.,
terms of order k, must vanish Ljust as we have already
shown that the coefficient of u„(z) vanishes]. This leads
after some algebra to the following equations for R and
V,

+ —R+3foR+RQO+2fOV QO=O,
K Bx By

(3.8)

V X V X V +f0 V +2f0R Qo

BBp
0,0, —

Q„O
—

Q 0—
Bx '

By
(3.9)

These equations have solution R = V = V =0 and
V, =Q„o. Then, correct to order k„ the eigenvectors are

where here u and u are constants. This can be checked
by directly substituting Eqs. (3.4) and (3.5) into the eigen-
value equations and noticing their similarity to Eqs. (2.4)
and (2.5) after these equations have been differentiated
with respect to either x or y.

It is possible to obtain the local (elastic) moduli start-
ing from the eigenvalue equations (2.16) and (2.17). Each
elastic modulus is most easily obtained by consideration
of special cases. To obtain the tilt modulus c44 one sup-
poses k=(0, 0, k, ) and u =0. The Bloch function
E&(x,y ) can be expanded in powers of k, . To order k,
this is equivalent to setting

Bu BpVXa= — Bp, O, u„ (3.11)

The results given in Eq. (3.11) have an obvious interpreta-
tion in terms of the geometry of the tilted flux lattice. On
substituting Eqs. (3.10) and (3.11) into Eq. (2.15) for F&

one obtains

au„(z)
'

F, = fd'r 1 a 0 +f2Q2 +g2
K

'2
au„(z)c„f—d'r

2 az
(3.12)

Hence c44=2HB, on using an identity given in Ref. 24.
That c44=2HB has been known for many years. ' The
same technique can be used to obtain both c66 and c».
The appropriate special case for c66 would be

u„(y ) =u 0 cos( k y ), u =0. However, in this case I
could not find an explicit solution of the equations corre-
sponding to Eqs. (3.8) and (3.9)—only the right-hand
sides differ —but they could be solved numerically by
Fourier expanding R and V in reciprocal lattice vectors.
The appropriate special case for obtaining c

& &
is

u„(x ) =uo cos(k„x ), u~ =0.

B. Fluctuations of the phase de6ned by HPS

I have already shown that within the Meissner state
the HPS phase difference A4 defined by Eq. (2.24), when
the line integral is up the z axis between two points
separated by a distance h, is such that ( b,4 ) increases
linearly with h rather than tending to a constant, imply-
ing that with the HPS definition of the phase there is no
ODLRO —in any dimension. I shall now argue that a
similar result holds for the mixed state.

In the eigenvalue equations (2. 16) and (2.17), if q, de-
pends only on z, i.e., q, (z)%0 and q„=q~=0, then the
equations are solved if f, =0 and A. = 1, for in this case
V X a =V X q =0. Hence,

k~T
(q, (0,0, k, )q, (0,0, —k, )) =

Ps K
(3.13)

where the "superfluid density" p, =2fo2(x,y)/a2. This
mode is analogous to the longitudinal mode of the
superfluid velocity in the Meissner phase. It is not a
Goldstone mode as A. =1 as k, ~0.

The eigenvalue equations also simplify for the trans-
verse mode in which q, depends only on x and y, i.e.,
q, (x,y )WO and q„=O=q . In this situation the flux lines
move without tilting so VXq=VXa and the eigenvalue
equation becomes

af, aQ. ,f i ="x qx =ux
Bx ox

B2 B2+ q, +f0(x,y )q, =kf 02(x,y )q, ,
Bx By

(3.14)

aQ„au„
qy=ux qz Qxo ~

with f, =0. In the long-wavelength limit Eq. (3.14) leads
to
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k T
(q, (k„,k, O)q, (

—k, —k, O)) =
a(k„'+k,')+p, ~' '

(3.15)

where a is a numerical constant of order unity. By analo-

gy with Eq. (2.20) for the Meissner phase, one would ex-
pect on combining Eq. (3.13) and Eq. (3.15) that for gen-
eral small k,

(q, (k)q, ( —k)) =k~T
k,

PsK

ae, dx; dy, .

(r) =2mi g g J dz' k
' (z') —k

' (z')
k i dz

X exp[ik. [r, (z') —r]I/O

(3.17)

At low temperatures where displacements of the flux
lines are small it should be possible to approximate r;(z')
by (R„z'). Then as

dxi KBg J dz'exp(ik~ R, +k,z'), (z')=ik, u„(k)

k,+ 1—
(Xk +Ps K

(3.16)

(3.18)

with a similar expression for u (k). Equation (3.17),
when Fourier transformed, gives

It is then a straightforward matter to substitute Eq. (3.16)
into (2.39) where one finds once again that (b4 ) in-
creases linearly with h, implying the absence of ODLRO.
Note that if only the longitudinal term in Eq. (3.16) is
used in (2.39), then (b,4 ) only increases with h below
two dimensions, just as in the Meissner phase. The gen-
eral conclusion I draw is that the HPS definition of a
phase is always unsatisfactory because it includes the
transverse components of Q.

C. ODLRO in the mixed phase

We have just argued that the contribution to ( b,8 )
from the fluctuations in QL increase with separation
when d &2. However, the dominant contribution to
( b,8 ) comes from (b8G ), since I shall now show that
it starts to increase with separation for d &4. From Eq.
(2.30),

6(k) =i~B [k u„(k)—k„u (k)]lk (3.19)

( 8(k)6)( —k) ) =~ B k~ T
k~

k c66k ~+c44k,
(3.20)

on using Eq. (3.3). Equation (3.20) shows that phase fluc-
tuations are largely determined by the transverse (shear)
mode of the flux lattice. An expression equivalent to Eq.
(3.20) was given by HPS.

The gauge invariant correlation function defined in Eq.
(2.33) is, as

~
r —r'~ tends to infinity,

where 8G(r)=8Go(r)+8(r), and 860(r) is the
geometric phase in the undisplaced lattice. Notice that
within this approximation, 8(k) is single valued. The ap-
proxirnation should be valid for calculating phase
differences along paths that do not go close to flux lines.
Hence

G(r, r) = GM„(r, r')( expi[8(r) —8(r')] )

=GMF(r, r')exp —g [1—cosk (r —r')](8(k)0( —k))
k

(3.21)

where

(3.22)

where p =
~
r —r'

~

with z =z' and

c66
Lo 4AT

c44

i/2
0

with AT—
16~ k~T

2&&10' AK
T (3.23)

GMF(r, r') =f0(r)fo(r') expi[80(r) —80(r')] .

Power counting on the integral in Eq. (3.21) shows that
G(r, r') tends to zero as

~
r —r'~ ~ ~ in all dimensions less

than four, i.e., ODLRO vanishes below four dimensions.
The decay of G(r, r') is highly anisotropic and is most

rapid when r —r' is perpendicular to the applied field;
suppressing all constants and taking B=H, when

c66 « c44, one finds that in this limit

G(r, r') =GM„(r, r') exp( p ILo ), —

Lo is a measure of the decay length of ODLRO for d =3.
The experimental consequences of its large size (approxi-
mately millimeters) are discussed in Sec. V. For two-
dimensional systems, i.e., films, the destruction of
ODLRO is more rapid and can take place over a length
scale typically of order of the flux line spacing l.

IV. ROTATING NEUTRAL SUPERFLUIDS

The analogy between superconductors and rotating
neutral superfluids such as He has been reviewed by
Vinen. " In the formalism of this paper, all one has to do
to study this problem is to set V X A=Bz, where B is a
constant (related to the speed of rotation about the z axis)
and neglect the fluctuations of the vector potential entire-

ly. In the context of the superconductor problem this is

only valid in the limit of infinite K. However, the approx-
irnation of taking the B field just a constant and neglect-
ing the fluctuations of the vector potential has been wide-

ly us|„d over many years. The free energy of the system is
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F=fd r I@I + —,
'

l@l +
lK

2

—A g . (4.1)

a function of z only, P(z), then q„=q =0=f&, and (4.9)
reduces to

This is minimized by solving

a'
az2 (4.10)

(4.2}

where D„=r)„/i' A—„. This equation and its complex
conjugate are equivalent to the gauge invariant equations

1

z
V'fo fo+fo+foQo=0

K
(4.3)

V.(foQo)=0, (4.4)

where Qo= A —V@o/~. As before we shall expand
about the stationary point given by the solution of Eqs.
(4.3) and (4.4) by writing

which has solution P =Po cos( k,z ) and A, =k, .
Because there is a vortex lattice in the limit of infinite

~, one would expect there to be two Goldstone modes in
the eigenvalue equations (4.8) and (4.9), associated with
the invariance of the free energy (4.1) under arbitrary
translations in the xy plane. However, it has been known
for many years that the infinite ~ limit is very strange.
The tilt modulus c44 and the compressibility modulus cL
are infinite' and in fact there is only one Goldstone
mode' ' and that is associated with shear motions of the
vortex lattice.

For an arbitrary translation (u„,u ) the treatment
leading to Eq. (3.5) is unchanged, i.e.,

f=fo+f I

Q=Qo+q

F=FD+F),

q=(u V)Qo=V(u. Qo) —uX(VXQo)+O(VXu) . (4.11)

(4 5) For Eq. (4.11) to be compatible with the condition that q
be of the form given by Eq. (4.6), u has to be restricted to

but because A is fixed, q must be of the form
u= —PVQXz (4.12)

1q= ——VP,
K

(4.6)

where p is the phase change from the mean-field solution.
Note that V X VQAO. Equation (4.6) is the source of the
differences with the finite-~ limit. The free energy to
quadratic order is

(where P= 1/re in reduced units and 2rrP=&3l /2 in
nonreduced units), which corresponds to a shear motion
of the flux lattice. Thus, compressions are incompatible
with (4.6) and (4.11),and are not Goldstone modes.

The effective free energy associated with the long-
wavelength limit of the Goldstone mode follows by com-
bining Eqs. (4.10) and (4.12)

2

F, = fd'r f', +3fof', +——,(Vf, )'
F,rr= — d r p, +c&&P (VrQ)

1 3 r)Q 2 2 2

r)z
(4.13)

+foq'+4fof iQo q+f fQo (4.7)

1
, V'f f +3fof +f Qo+2—foQo q=~f (4.8)

V (foq+2fof iQo}=—fo4 .=A 2 (4.9)

One simple special solution of Eqs. (4.8}and (4.9) is if P is

The quadratic form Eq. (4.7) can be diagonalized by solv-
ing the equations

where p, =2fo(x,y)/~ and Vr=B /r)x +r) /By . The
shear modulus c66 can, in principle, be obtained from the
eigenvalue equations (4.8) and (4.9) using the same tech-
nique as employed in Sec. III A.

Having determined the form of the soft mode of this
system, we can now investigate how the thermal fluctua-
tions of the mode affects ODLRO. The phase e is once
more given by Eq. (2.29) with VOG specified by Eq.
(2.30). The fiuctuations of 6 are dominated again by
those of BG and it follows from Eq. (3.19) and Eq. (4.12)
that 8(k) =(k', /k')Q(k).

The existence of ODLRO can be investigated by study-
ing

G(r, r') = (g(r)f*(r') ) =GMF(r, r')( expi[8(r) 8(r')])—

=GM„(r, r') exp —g [1—cosk (r —r')](8(k)8( —k))
k

(4.14)
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From (4.13) one deduces that in the long-wavelength lim-

it

k~T k~
(e(l )e( —1))=

p, k, +c«P ki k
(4.15)

Power counting on the integral in Eq. (4.1S) shows that
G(r, r') tends to zero in all dimensions less than three.
Right in three dimensions,

G(r, r )=GMF(r, r }exp „,ln &
4rrP(p, c66 )'i

'4 '6'

up to numerical factors where p=~r —r'~ with z=z'.
Equation (4.16} implies that the lower critical dimension
for ODLRO in rotating neutral superfluids is three.

How do the results for finite ~ in a superconductor
crossover into the infinite ~ results? The answer to this
question was provided long ago by Brandt' ' in his
pioneering studies of the k dependence of the elastic
moduli. In the extreme nonlocal limit c44(k) =c44ki, /ki
when k & k&. The reciprocal effective penetration depth
kh=(l —8/H, z)' /A, , which tends to zero as shoo.
Substituting this expression for c~(k) into Eqs. (3.20) and
(3.21), one again recovers the result that three is the
lower critical dimension for the infinite ~ limit, without
recourse to the direct calculations of this section.

V. DISCUSSION

I have shown that phase fluctuations destroy ODLRO
[as given by Eqs. (2.29) and (2.30)j in dimensions d & 2 in

the Meissner phase and in dimensions d & 4 in the mixed
phase. ODLRO itself is not experimentally observable.
It would seem natural, however, to assume that the loss
of ODLRO would affect the nature of the mixed state or
result in its complete destruction. For the sake of simpli-
city we shall discount the exotic possibilities of Ref. 13
and assume that for dimensions d, 2&d &4, the only
genuine phases in a pure bulk type-II superconductor are
the Meissner phase and the normal phase, i.e., we shall
assume that the loss of ODLRO implies the destruction
of the mixed phase. In the H-T phase diagram, the
H, z(T) line is supposed, on this scenario, not to be a

genuine phase boundary but a crossover line at which
substantial diamagnetism first appears. For d=3, the
H„(T ) line is a real phase boundary.

Experiments on conventional supereonductors indicate
that in the region H„(T) & H &H, z( T) there is a state
very similar to the mean-field Abrikosov flux lattice state,
while for high-temperature superconductors there is a
vortex liquid state, at least near the H, z( T) boundary, but
at lower fields there is an irreversibility line. (This has
been interpreted as either due to the freezing of the flux-
line liquid into a crystalline state or the onset of a vortex
glass phase due to the consequences of the disorder or
just due to the onset of very long pinning times for the
Aux lines (for a review see Ref. 20). These facts concern-
ing conventional and high-temperature superconductors

seem to be incompatible at first sight with the scenario of
no mixed phase, i.e., a phase not separated by a phase
boundary from the normal phase.

I shall now argue that for d =3 the consequences of the
destruction of ODLRO will have few experimental conse-
quences. This is because the length scale Lp over which
ODLRO decays for d =3, is, except for H very close to
H,z(T), an enormous length compared to other relevant
length scales. It typically is of the order of a millimeter
for both the conventional and high-temperature super-
conductors. In samples smaller than this the effect of
the loss of ODLRO will be unobservable.

P~qt.b.eqmOre, , rea1 ~~perea~gV. e,teq~ ~pe, ~earn fqee, O

impurities, pinning centers, etc. , and Larkin ' showed
long ago that any disorder destroys the long-range crys-
talline positional order of the flux lines for all d &4. Only
positional short-range order survives, to a length scale
R„which is a complicated function of the elastic moduli
and the strength of the disorder, but which only in the
better samples will ever exceed Lp. When R, &Lp, the
loss of ODLRO due to thermal fluctuations will be unim-
portant compared to the consequences of the disorder.
For the purer samples, where R, »Lp, the effects of dis-
order will still be felt because the pinning of the flux lines
by the disorder will inhibit and slow the long-wavelength
shear modes whose thermal excitation is responsible for
the loss of ODLRO. A quantitative treatment of the role
of disorder is set aside for future study. In addition, the
debate as to whether fluctuations will melt the flux lattice
is not really affected by the loss of ODLRO, as lattice
thermal fluctuation length scales are much shorter than
Lp ~ The only consequence is that any melting would not
be a true phase transition but a crossover between two
vortex liquid states characterized by radically different
degrees of positional short-range order.

For d =2 (thin films) ODLRO is lost on much shorter
length scales, typically of the order of the separation of
the flux lines. I would expect, in this case, for there to be
only a vortex liquid regime in nonzero fields, unless the
exotic scenario of Ref. 13 arises from a crystal lattice
without ODLRO. Theoretical evidence for only a vortex
liquid regime is provided by the work of Brezin, Fujita,
and Hikami, whose large-order perturbative calculation
for d=2 (and a.~ ~) suggested that the normal phase
might be stable everywhere in a nonzero field.

Recently Ikeda, Ohmi, and Tsuneto have attempted
to analyze in a systematic way the fluctuations about the
mean-field solution without recourse to the approxima-
tion of retaining only the lowest Landau level. ' For the
limit of infinite w, their results are entirely consistent with
those in Sec. IV. To get to finite ~ they expand about the
infinite-~ limit in a series in ~ and obtain results broad-
ly consistent with those of Sec. III ~

The discussion of the lower critical dimensiori in this
paper has concentrated on the destruction of ODLRO by
perturbative mechanisms, i.e., the mean-field solution was
first set up and I investigated whether the fluctuations
about it destroyed ODLRO. However, it sometimes hap-
pens that nonperturbative contributions from topological
singularities are responsible for determining the lower
critical dimension. A simple example is provided by the
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Ising ferromagnet in one dimension, where the creation
of domain walls separating up and down regions of spin
costs a finite amount of energy, which results in the loss
of long-range ferromagnetic order at finite temperature.
Topological excitations of various kinds exist in super-
conductors and provide a possible additional mechanism
for the loss of ODLRO. Thus the energy cost of creating
a free vortex in the Meissner phase is finite in two dimen-
sions because of the screening currents, so at nonzero
temperatures free vortices will always be present and will
produce zero superfluid density. This gives an additional

argument for two being the lower critical dimension for
the Meissner phase. The role of topological singularities
in the mixed phase is complicated and their study is
planned to be undertaken elsewhere.
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