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Density and quasiparticle excitations in liquid He
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The recent interpretation of the phonon-roton excitations in superfluid He as a density mode at low

wave vector and a quasiparticle excitation at higher Q proposed by Glyde and Griffin is developed.
When there is a condensate, no( T ), the quasiparticle response of liquid He, becomes a component of the
observed density dynamic structure factor, S(g, to). The quasiparticle and density response functions

also share a common denominator, due to a coupling via the condensate. At low Q, the observed

S(g,cv) is confined predominantly to a single peak. The peak broadens with temperature but remains

well defined in normal He, where no( T)=0. This peak is interpreted as a density mode. At the maxon
and higher Q, S(Q, tv) has a sharp peak plus a broad component. The sharp peak is interpreted as the

quasiparticle component of S(g, co). As T is increased and no( T) is decreased, the intensity in the sharp

peak is reduced until it vanishes from S(Q, cv) at Tq. A simple model based on uncoupled quasiparticle
and density excitations with coupling via no(T) is proposed. For simplicity, all model parameters are
held independent of T. By allowing only nv(T) to vary with T, the temperature dependence of S(g, to)

can be quite accurately reproduced.

I. INTRODUCTION

In 1941 Landau' proposed two collective excitations in
liquid He which he called phonons and rotons. The pho-
nons were collective density (sound) modes having disper-
sion linear in the wave vector, Q. The rotons were a col-
lective rotation of the Quid having a separate dispersion
curve. In 1947, Landau joined the phonons and rotons
into a single collective mode dispersion curve continuous
in Q. Rotons and phonons were then interpreted as the
low- and high-Q regions of the same collective excitation.
This improved agreement with experiment and was con-
sistent with the continuous dispersion curve for excita-
tions in a dilute Bose gas derived microscopically by Bo-
goliubov. In this sense the present use of the name "ro-
ton" is a misnomer. The phonon-roton dispersion curve
is shown in Fig. 1.

Feynman and Feynman and Cohen proposed a mi-
croscopic explanation of the excitations introduced phe-
nomenologically by Landau. The excitations were collec-
tive density excitations at all Q. The excited state was
obtained by operating on the ground state with the densi-
ty operator,

Campbell, Chester, and Manousakis and Pandhari-
pande.

The phonon-roton dispersion curve has been accurate-
ly measured as a function of Q by inelastic neutron
scattering. The phonon-roton energy, which we denote
as co(Q), is defined as the position of the sharp peak in the
inelastic-neutron-scattering intensity. In addition to the
sharp peak, there is a broad component in the scattering
intensity at higher Q. Early experiments which focused
chieQy on low temperature are thoroughly reviewed by
Woods and Cowley.

A parallel microscopic theory of Bose fiuids based on
many-body theory was developed by Beliaev, '

Hugenholtz and Pines, " Gavoret and Nozieres, ' and
many others. ' ' In this theory both density excita-
tions, described by the dynamic susceptibility y, and
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While this described the low-Q, phonon region well, at
higher Q in the roton region the calculated excitation en-
ergy lay significantly above the observed value. The ro-
ton energy can be well reproduced by modifying the exci-
tation operator to include backQow and/or interaction
with two- or three-density excitation states. Thus, while
the density excitation picture works well at low Q, a more
complicated state is needed at higher Q. More recent de-
velopments of the method are reviewed and presented by
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FIG. 1. The phonon-roton dispersion curve in superfluid He
at SVP and low T with the inset showing the curve proposed by
Landau in 1947 (Ref. 2) (from Refs. 24 and 40) ~
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quasiparticle propagation, described by the single-particle
Green function 6, are studied. In the dilute-Bose-gas
limit, Hugenholtz and Pines" showed that g and 6 are
the same function confirming very directly Bogoliubov's
results. For a strongly interacting fluid, Gavoret and
Nozieres' showed that the density excitation of g and
the quasiparticle excitations of 6 have the same linear
dispersion curve, co(Q) =coQ, at low Q and T =0 K. The
finite-temperature formulation of this theory, particularly
by Griffin and Cheung' and Szepfalusy and Kondor, '

which emphasizes the coupling between the density and
quasiparticle excitations via the condensate and the dis-
tinction between normal and superfluid He, is the basis
of the present model. This theory is generally denoted
the dielectric formulation of Bose fluids.

In 1990, Stirling and Glyde' ' and Glyde and
Griffin proposed another interpretation of the phonon-
roton excitations observed in S(Q, co). In superfluid He
where there is a finite fraction, no(T), of atoms in the
condensate, the total dynamic susceptibility, g, has two
components; the single-particle Green function 6 with
weight in y depending on no(T) and the dynamic suscep-
tibility, g', of the atoms lying above the condensate. The
total g and 6 are also coupled via the condensate. ' ' At
low Q the fluid supports a sharply defined collective mode
which dominates S(Q, co). It is the zero-sound mode
characteristic of a strongly interacting fluid proposed by
Pines. ' The mode exists in both superfluid and normal
He. As Q increases, the mode broadens. ' At the

maxon Q (Q= 1. 1 A ), the zero-sound mode is broad.
At the roton Q, the observed scattering intensity in nor-
mal He is very broad, characteristic of an excitation
among weakly interacting atoms. The quasiparticle exci-
tation in superfluid He is sharply defined at all Q. In this
interpretation, ' the sharp peak in S(Q, co) at the max-
on, roton, and higher Q in superfluid He originates from
the quasiparticle excitation and disappears from S ( Q, co )

in normal He where no( T)=0. The quasiparticle may be
pictured as a renormalized atom that propagates readily
in the fluid, much as a He impurity can propagate freely
in superfluid He.

The purpose here is to develop the model of S(Q, co)

proposed by Glyde and Griffin based on the dielectric-
function formulation. The aim is to verify the density-
quasiparticle interpretation of excitations in superfluid
He by reproducing the temperature dependence of

S(Q, co) in superfluid and normal He. The model con-
tains initially uncoupled density and quasiparticle excita-
tions. For simplicity, we assume that the frequency and
half-width of each excitation is independent of tempera-
ture. This assumption is made to keep the model as sim-
ple as possible and to illustrate the fundamental depen-
dence of S(Q, co) on no(T). The temperature dependence
of S ( Q, co ) is obtained by allo wing the coupling via the
condensate to have a temperature dependence given by
no( T). Certainly, we expect the half-widths of each exci-
tation to depend upon T and the present model is intend-
ed to be illustrative only. Based on the dielectric-
function formulation' ' we propose that the uncoupled
density excitations are broad in both superfluid and nor-

0
mal He at Q ~ 1.1 A and that a continuous phonon-

quasiparticle (phonon-roton) curve results through cou-
pling via the condensate. Since our interpretation is
motivated by experiment, we outline some recent results.

In 1978, Woods and Svensson reported key measure-
ments of the temperature dependence of the neutron-
scattering intensity at wave vectors ranging from the
maxon to the roton region. At low T these showed a
sharp peak plus a broad component consistent with ear-
lier data. As T increased, the sharp peak in S(Q, co),
identified with the phonon-roton excitation at low T, lost
intensity until it disappeared from S(Q, co) entirely at
T = T&. In normal He, only broad scattering having no
sharp peak remained. These important measurements
suggested that the long-lived excitation observed in
superfluid He disappeared from S ( Q, co ) at T = T„. Un-
derstanding these results proved difficult.

Talbot et al. measured the temperature dependence
of S(Q, co) at the maxon and roton Q in He at 20-bars
pressure. These confirmed the basic finding of Woods
and Svensson; that the sharp peak of S(Q, co) disap-
peared from S(Qco) at T = Ti leaving only board scatter-
ing in normal He. The data are clearer at 20 bars be-
cause the position of the sharp peak and of the maximum
in the broad scattering remaining in normal He are
separated in energy, making it difficult to interpret the re-
sults as a simple broadening of the sharp peak with T.
The data of Talbot et al. at the maxon are reproduced
below in Fig. 5.

In order to establish whether the temperature depen-
dence of S(Q, co) was the same at all Q, Stirling and
Glyde' made measurements in the qhonon (Q =0.4
A ') and the roton regions (Q =1.925 A ') at saturated
vapor pressure (SVP). These showed that the tempera-
ture dependence was different at low Q. At Q =0.4 A
the intensity is confined largely to a single peak. This
peak broadens with increasing T, but a well-defined single
peak remains in normal He above T&. As shown earlier
by Woods, the peak position changes little with temper-
ature even above T&. In the interpretation of Stirling and
Glyde' ' and Glyde and Griffin the high- and low-Q
regions are quite different. At low Q, the sharp peak in

S(Q, co) represents scattering chiefly from the collective
zero-sound mode in the fluid density proposed by
Pines, ' Feynman, and Landau which survives in nor-
mal He. At the maxon and roton Q, the sharp peak in

S(Q, co) is interpreted as a peak of the single-particle
Green function, a quasiparticle excitation. 6 is coupled
into S(Q, co) via the condensate in superfluid He with
weight proportional to no(T). As T increases, this cou-
pling weakens and at T = Tz where no( T) =0, the quasi-
particle peak disappears from S(Q, co). The coupling via
the condensate leads to a continuous density-
quasiparticle excitation dispersion curve.

In Sec. II, we outline the dielectric formulation show-
ing that 6 appears as a component of S (Q, co), that y and
6 are coupled via the condensate and develop the model
of S(Q, co). The calculations reproducing the observed
structure of S(Q, co) at low T and its temperature depen-
dence in superfluid He are presented in Sec. III. The re-
sults are discussed and calculations of the corresponding
quasiparticle spectral function are presented in Sec. IV.
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II. DENSITY, QUASIPARTICLE MODEL
OF S(Q,co)

A. Density and single-particle excitations

The total density dynamic susceptibility is' ' '

X(g, r) = ——
& 'T~(g, r)p (Q, 0) &,

1
(3)

which is related to the observed dynamic structure factor
by28& 29

S(g,co)= — [n (co)+1]X"(Q—,co),1
(4)

where n (co) is the Bose function. In second quantization,
the Fourier component of the density operator is

p(Q}= X akak+g (S)
k

where ak is the single-particle operator creating a quasi-
particle having momentum k. In Bose condensation
theory it is necessary to separate the atoms in the conden-
sate from those N' lying above the condensate,
N =No+N'. We make the same separation for p(g),

In this section we sketch the dielectric-function formu-
lation of Bose fluids and develop an explicit model of
S(Q, co) based on it. We begin by showing that, in
superfiuid He, where there is a finite condensate (a Bose
broken symmetry}, the single-particle Green function
describing quasiparticle excitations is a component of the
dynamic susceptibility g. We then illustrate that g and 6
are coupled via the condensate. In the last part of this
section we propose a model to obtain explicit expressions
for the components of y for comparison with experiment.

The separation of y into a part containing G and a part
y' describing the atoms above the condensate was first
made by Hugenholtz and Pines. " The formal separation
for a strongly interacting fluid in the form we use was
first made by Gavoret and Nozieres. ' We follow closely
the development by GrifBn and Cheung and by
Szepfalusy and Kondor valid at arbitrary temperature. A
key feature is the explicit recognition that there is a finite
fraction, no =1VD/N, of the atoms in the zero-momentum
state. This means that the number operator 8'0 gives

No ~0 &
=a ota, ~0 & =No I0 &,

where No-10 ))1. Since No))1, we may ignore the
unity in the commutation relation, aoao —aoa0=1, com-
pared with No, and replace the single-particle operator ao
by a number '"

ao=aot =+N e''i

The replacement (2) constitutes the Bose broken symme-
try and in a homogeneous fiuid we may take /=0. We
now show that, when (2) is used, G is a component of X
with a weight proportional to no( T).

where terms involving k =0 are written separately and
the primed sum involves atoms above the condensate
only. In the second line of (6) we have used (2).
A =(a(i+a &) is a sum of single-particle operators and

Q Q
p'(Q) is the usual density operator describing atoms
above the condensate. Substitution of (6) into (3) leads to

X(g, r) =noG(g, r)—

+X'(Q*r) .

N
& 'T,Ag(r)pt (Q, O}+H.c. &

is the usual density dynamic susceptibility involving
atoms above the condensate.

When there is a condensate, the Hamiltonian contains
terms of the form" ((/Nu/V)gq ku (q)a~akak+~ having
three single-particle operators. Because of these terms,
the interference terms do not vanish and are also propor-
tional to the single-particle G. The Fourier transform of
X(g, r) is'

X(Q, co) =A(Q, co)G(Q, co)A(g, co)+X'(Q, co),

where the vertex function A(Q, co) takes the form

A(Q, co) =(no)'i [1+P(Q,co)] .

In A the unit term arises from the first term of (7) and
P(g, co) is a complicated function arising from the in-
terference terms. Parenthetically we note that the densi-

ty dynamic susceptibility in an anharmonic solid may
also be expressed in the form (8), as discussed further in
Sec. IV. In an anharmonic solid, 6 is the e single-phonon
Green function. There, the interference terms arise be-
cause of the odd anharmonic terms in K, notably the cu-
bic anharmonic term.

In superfluid He, the quasiparticle excitations of 6 are
coupled into y via the vertex functions A which are pro-
portional to no(T). We interpret the sharp peak in
S (Q, co) at the maxon and roton regions as a sharp peak
in G, a quasiparticle excitation. While (8) is illustrative,
we now go on to show that the density excitations de-
scribed by y and the quasiparticle excitations described
by G are strongly coupled via the condensate in
superfluid He. A model description of this coupling is
proposed to describe the temperature dependence of
S (Q, co).

B. Dielectric formulation

In the dielectric formulation of Bose liquids we write
the dynamic susceptibility as' '

The first term, proportional to no, is the single-particle
Green function

G(Q, 7-) = —
& 'T, AQ(r) Agt(0) &,

the second term is an interference term between the sin-

gle particle and density excitations, and the last term

X(g,.)=—N- &~+(g, )pt'(g, o}&

p( g) =aoag +a gao+ y ak ak+ g
k

"tt/No Ag+p'(Q), — (6)

X=X+Xu(Q)X+Xu (Q)Xu(g)X+

x =x
1 —u(Q}X
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Here y is the irreducible g, that part of g which cannot
be reduced to two parts separated by a single interaction
line, v (Q). Equation (9) may be regarded as the definition
of f. Equation (9) can be derived diagrammatically using
that part of the Hamiltonian having four single-particle
operators describing the atoms above the condensate
only. In (9), e is the dielectric function

~—= 1 —u(Q)X . (10)

As in (8), the irreducible f may be decomposed into a
singular and regular part, '

X=Xs+XR =AGA+XR

We now display more fully how y and 6 are coupled
and that g and G share a common denominator in the
superfluid phase where AWO. The present formulation is
somewhat different from the usual one. ' ' The present
expressions lead naturally into the model proposed below.

Below Tz we have, from (10), (11),and (16),

e= 1 —u(Q)AGA —u(Q)f~
a—1 ———

D DR

where 5—:v (Q)ANA is the coupling parameter and
a = u ( Q)Nz . Rearranging, we have

ER 1 V(Q)XR (12)

In superfluid He, e=e~ —u(Q}AGA.
The G introduced in (11) may be denote the "regular"

or "uncoupled" G. It is the single-particle 6 taking ac-
count of the interaction between the quasiparticles above
the condensate but neglecting the terms involving the
condensate. Generally, the full G is given by

where A=(no)'~ [1+P(Q,co)] is the vertex function
which vanishes in normal He. Clearly, in normal "He
the full dielectric function (10) reduces to its regular
counterpart,

DDR DDR

DD —hD —aD R+ I

From (9) and (10), we have

and using (18), we have

1

u(Q)

DD~(R —iI ) —1
R +I

1 1 —e 1 1
x ——1

e u(Q) e u(Q) e

(18)

(19)

(20)

6 '=Go ' —X, (13) Similarly,

=G ' —M, (14)

where 6 ' = Go
' —X. It can be shown' that

M =Au (Q)A/e~.
Collecting results, we have in superfluid He, for

T(Tg,

where 60 is the single-particle Green function for a
noninteracting Bose gas and X is the total self energy.
We separate X into two parts, X =X+M, where X arises
from terms in H describing the atoms above the conden-
sate only and M from terms in H involving the conden-
sate. Formally, we have'

G '=Go ' —X —M

G ' = G ' —M = G '[1—GAu(Q)A/ez ]

=G '[e~ —u(Q)AGA]/e„=G 'e/e~ . (21)

Writing e~ = 1 —u (Q)Nz /D„and using (16)—(18), we ob-
tain

N(DR —a} N(DR —a}(R i I )—
R+ I R +I (22)

In this way we see, comparing (20) and (22), that the den-
sity (y") and quasiparticle (G") spectral functions share
a common denominator, R +I . In normal He, where
A and 6 vanish, we can readily see that yR and G decou-
ple and become independent.

x=x~~, y=AGA+yR, C. The model

N6=-
D ' 6 '=G ' —M,

and in normal He, where A =0,

+R ~~R ~ +R NR ~DR

G=-
D

6=Go ' —X .

In normal He, where M =0, 6 is the total Green func-
tion. The G becomes coupled into g via the vertex func-
tion A=(no)'~ [1+P(Q,co)] in superfluid He. Similar-

ly, the density dielectric function eR is coupled into the
single-quasiparticle Green function 6 in the superfluid
phase, via A and M. In normal He, where A=O, g and
6 are independent.

To implement the dielectric formulation for liquid He,
we propose a specific model for the "regular" dynamic
susceptibility yR =NR /DR, and the "regular" Green
function, G =N/D, defined in (11) and (14), respectively.
These are the dynamic susceptibility gR and single-
particle Green function 6 obtained by taking account of
the interaction between the atoms lying above the con-
densate. They may also be called the "uncoupled" func-
tions. gR, and 6 become the full functions in normal

He, where no=0. Since no is not large, then yR and 6
might be approximately independent of temperature.
However, since there is a significant redistribution of
atoms among the finite momentum states between low T
and normal He, we do expect some temperature depen-
dence ofgR and G.

The dynamic susceptibility may be separated into a sin-
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We neglect the multiquasiparticle-hole part, yM, here.
This means we will leave out the interesting effects which
lead to subsidiary peaks in S(Q, co) above the main peak,
generally attributed to excitation of pairs of rotons or
other pairs. ' ' We may expect the intensity in the
present model to be too small at higher co where yM con-
tributes most. Neglecting yM, we present yR as

N
+R

R

N~+p + j2~I p

(24)

Equation (24) may be regarded as an approximation to
the interacting particle-hole susceptibility (i.e., a modified
Lindhard function in Fermi systems) where 0 and I o are
parameters describing the energy and half-width of the
quasiparticles. N„(Q) is a function which at low Q
(where fM ~0) must be proportional to Q to satisfy the
f-sum rule.

For the uncoupled G we choose the general Bose parti-
cle form

NG= —=
D

2cosp

~' —~»+ i.2~r„ (25)

This may be obtained from (16), G =Go ' —X, using Go
for free Bosons, Go=2Cosp/(to tosp ) and parametrizing
the self-energy as X=X' —i I sp, where hosp =Nsp
+2~pX - v v -hSY8-aho-assUmcd-~p-Fgp-~&0-I- sp-RBd- tG.k-—p p

en cosp=tosp in the numerator of G. Equation (25) is
often used to describe single Bosons such as phonons.
Equations (24) and (25) may be regarded as model for two
uncoupled Bose excitations, one in the density and one
for a single particle.

gle quasiparticle-hole and a multiquasiparticle-hole com-
ponent, ' which we write here as

(23)

where too=—0 +a and Ntt =F(Q)20. The dynamic
structure factor is ( T ) Tz }

S(Q, co) = — —[n (to)+1]y"(Q,to)
1

NR 2coI p
[n (co)+ 1]

7T (co —coo} +(2col o)
(27)

tl 1 1 lt

v (Q)
1 DDR

v(Q) R +i I' (28)

Defining ysp=2col'sp and yo=2coI o, (24) and (25) give

DDtt =(co II +i yo)(—to hosp+i ysp—) (29)

and

Equation (27) is often called ' the "harmonic-
oscillator" function. It is used as a function to fit to ob-
served data and cop and I p are identified as the excitation
energy and half-width, respectively. In normal He,
S(Q,co} describes density excitations only. At low Q,
where we expect normal He to support a zero-sound
mode, Bp and I p may be clearly interpreted as the uncou-
pled zero-sound mode energy and half-width (inverse life-
time}, respectively, with I,«too. At higher Q (e.g. , max-
on and roton Q's), where we expect a broad or no zero-
sound mode, cop may be interpreted as a characteristic en-

ergy describing weakly interacting quasiparticle-hole ex-
citations. We use this interpretation here and fit (27) to
observed data to determine cop and I p.

In super6uid He, the imaginary part of y is

1. Dynamic structure factor

NXp

1 —v ( Q)Xo Dtt
—a

NR

—gp+ j2~I p

In normal He we have, using (24),

(26)

R + t I =DD —hD —aD

=(D b, )(Dtt —a) ——ba
= [(~'—~o)(~' —~sp) —«—r sprol

+ [ro(' — sp)+ysp( ' 0)]

where cosp=cosp+ 6, which leads to-2 =—2

(30)

NR [yo(~' s~p' )+rsp(~/a)(~' &')'+r—spro[ysp+(~/a)ro]]
S(Q,c0)= [n(co)+ I]

7T R +I (31)

This rather complicated expression reduces to a transparent, readily interpreted form if we assume the quasiparticle
width, I sp, is zero (ysp 0),

S(Q, co) =
N (2tol o)(co —hosp)'

[n (c0)+ I]
7T [(co —coo)(co —ojsp) ] + [2toi o(co —a)sp) ]

(32)
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where

R = (co —too)(co —
hosp)

—ha
—

(
2 2)( 2 2

)

and

cusp ~sp+6 ~ ~o & +—2 —2 —2 2

(33)

(34)

teraction between the atoms lying above the condensate
only. In normal He, where no=0, gz and G are the to-
tal y and 6, respectively. In superfluid He, the uncou-
pled quasiparticle excitations described by G are coupled
into S ( Q, to) through the coupling parameters

6=
U ( Q)2tospA, where

A(Q, co) =(no)' [1+P(Q,to)] .
Here hosp (ol hosp) and too may be interpreted as the "un-
coupled" quasiparticle and density frequencies, respec-
tively, in superfluid He. In R these become coupled via
b,a (and rspro). hosp and coo are the shifted frequencies
due to the coupling via the condensate. In (32) the width
I =2tol o(to —hosp) vanishes at to=cosp and we expect
S (Q, to) to be large near tosp. Also, the numerator of (32)
vanishes at co=hosp. Thus, we expect a dip in S(Q, o~) at
co=cusp and the position of this dip in S(Q, co) will allow
us to determine cusp. When b, =0, (31) and (32) reduce to
(27).

S(Q, to) in (32) has five parameters, coo, I 0, hosp, b, and
a. We determine ioo(Q) and 10(Q), characterizing the
uncoupled density response, by fitting S(Q, to) in (27) to
the observed scattering intensity in normal "He at each
Q. We determine hosp(Q) by the position of the dip in the
observed intensity for T (Tz. 6(Q, T) and u( Q) are ob-
tained by fitting (32) to the intensity observed at the
lowest temperature.

2. Quasiparticle spectral function

From (22), (24), and (25), the quasiparticle spectral
function is

2 (Q, co) = —2G "(Q,co)

4~sp[rsp(~ ~0)'+ro~~+rspro]
R +I (35)

where R and I are defined in (30). Comparing (31) and
(35) we see that the density and quasiparticle spectral
function have the same denominator. Thus, if the spec-
tral functions are sharp, such as at low T and low Q, the
density and quasiparticle response of the fluid is the
same. In this sense, the density and quasiparticle excita-
tions are one and the same excitation when they are
sharp, which we expect to be the case at low Q. Also, so
long as S(Q) is independent of T, then, from the f-sum
rule, the mode energy of a sharp node will be independent
of T. Thus, at low Q in superfluid He the density and
quasiparticle response is the same and the excitation
could be equally called a density or quasiparticle mode.

III. COMPARISON WITH EXPERIMENT

In the previous section, we set out a simple model of
S(Q, to) in superfluid He using the dielectric formulation
of Bose fluids. We obtained the specific result (32) by
representing the regular or uncoupled density dynamic
susceptibility, f'2, , and the single-particle (SP) propaga-
tor, G, by (24) and (25), respectively. The f~ and G are
the density and SP propagators taking account of the in-

cosp and I sp are the "uncoupled" quasiparticle frequency
and half-width, respectively. In (32) we have taken
I sp=0. In normal He, where b(T) =0, S(Q, co) in (32)
reduces to (27). As is usual in most fluids, S(Q, co) in
normal "He depends only on the uncoupled density
response, described here by the frequency coo and half-
width I

In this section we compare S(Q,co) calculated from
(32) and (27) with experiment. The aim is to see whether
the basic picture of quasiparticle excitations coupled into
S ( Q, co) via the condensate can reproduce the remarkable
temperature dependence of S(Q, co) observed in the max-
on and roton regions. At each Q we first fit (27) to the ob-
served intensity in normal He. This determines coo and
I o, the uncoupled density excitation parameters. cusp,

A(T), and a are determined by fitting S(Q, to) in (32) to
the lowest-temperature data in superfluid He. For sim-
plicity coo, I o, cosp, and u are assumed to be independent
of temperature. The temperature dependence of S(Q, co)

is obtained using h(T) ~ no(T) and assuming no(T) fol-
lows the Bose gas form so that

b(T)=b(0)[1—(T/Ti) ] (36)

with a= —,'. S(Q, co) is folded with the appropriate instru-

ment resolution to compare with experiment. We begin
with the maxon at p =20 bars where the sharp peak at
low T and density excitation peak in normal He are well
separated in energy, thus providing a clear example.

A. p =20bar

1. Maxon

We begin with normal He. In Fig. 2 we compare (27)
for normal "He using Go=0. 5 THz and I o=0.25 THz
with the intensity observed by Talbot et al. at Q = 1. 13
A ' (maxon) and T=1.90 K (T&=1.928 K). Near Ti
and above, the observed intensity is largely independent
of T. In Fig. 2 the scattering intensity is clearly broad
and centered at high energy, Bo=0.5 THz =2.0
meV=20 K, characteristic of a broadened zero-sound
mode. There is additional intensity in the data at higher
to (co&too) that is not well reproduced in the present
model of S(Q, to), which we attribute to multiexcitations.

With coo and I o fixed at their T& values, we compare
S(Q, co) for superfluid He calculated from (32) with the
scattered intensity observed at T=1.29 K in Fig. 3.
The numerator of (32) has a zero at co=tosp. We identify
this zero with the dip in the observed intensity just above
the sharp quasiparticle peak in Fig. 3. The dip in the in-

tensity observed at 20 bars is not very pronounced. In
Fig. 4 we show the intensity observed by Stirling ' at the
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y) 15
Maxon

10-
C$

5

T8 =1.928K

maxon wave vector as a function of pressure. At SVP the
observed dip is very pronounced. The uncoupled SP fre-

quency, cosp=0. 31 THz, is set in this model by the posi-
tion of the observed dip in the data.

From Fig. 3, we see that S(Q, co} calculated from (32}
has a sharp peak at cosp=0. 30 THz. b, and cc in (32) have

been adjusted to reproduce the height and position of the
peak in the observed scattering intensity. Once Qsp is
fixed, the peak height and position are most sensitive to
6—which determines r3sp =cosp+ 6 and the coupled
quasiparticle energy, cosp, via the R of (3). Since the
quasiparticle peak in (32) occurs near cosp (or near cosp},
the sign of 5 can be inferred from the position of the
quasiparticle peak relative to cosp. This requires 6 &0 for
the maxon. S(Q, co) is relatively insensitive to cz. A 50%
change in a changes the quasiparticle peak height little.
In Fig. 3, S(Q, co) has been folded with the observed in-
strument resolution width which prevents S(Q, co) from
going exactly to zero at co=cosp. For ha & 0, the coupled
peaks separate, ~cop co p~ ) ~cop cosp~. We have taken
rsp=0. The parameters are listed in Table I.

The temperature dependence of S(Q, co) is obtained by
holding the parameters in Table I constant except 6 and
allowing the coupling parameter b, ( T) to vary according
to the Bose-gas result (36). This is done for simplicity
and to display the key dependence of S(Q, co) on no(T).
From Fig. 5 we see this reproduces the observed loss of
intensity in the sharp quasiparticle peak with increasing
T—until the quasiparticle peak disappears from S(Q, co}
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TABLE I. Parameters for S(Q, rv) in (32) used in Figs. 1 —5 for the maxon and in Fig. 6 for the roton
at p =20 bars. cop and I 0 are the uncoupled density excitation frequency and half-width (in THz). cosp

2
and I sp are the uncoupled quasiparticle frequency and half-width (in THz). 6=v(Q)A 2rvsp is the
value of the parameter coupling the two excitations via the condensate at the lowest observed tempera-
ture (in THz') and a =v (Q)F (Q)2II. rv(Q) is the peak position of the resulting sharp peak at the lowest
temperature, the phonon-roton energy (in THz).

Q(A )

1.13 (maxon)
2.03 (roton)

Cc)p

0.50
0.125

0.25
0.075

0.31
0.124

I sp

—0.005
0.0085

2
0,'/COp

—0.5
0.4

cv( Q)

0.30
0.16

entirely at T=T&. This shows that the loss of intensity
in the quasiparticle peak can be reproduced by taking
b, 0- no( T) and giving the condensate a plausible tempera-
ture dependence. The intensity in the density component
changes little with T in Fig. 5. We believe this is because
cosp and Bp are taken as constant and are well separated
from one another for the maxon at p =20 bars.

2. Roton

The parameters in S(Q, co) for the roton at 20 bars
were determined exactly as above for the maxon. The re-
sulting parameters are listed in Table I and S(Q,cv) for
five temperatures is shown in Fig. 6. S(Q, ro) shows
several interesting features. Firstly, S(Q, cv) at T=T~ is

very broad characteristic of scattering from weakly in-
teracting particle-hole pairs rather than from a collective

excitation. This leads a large I p I p —cop. At low tem-
perature in superfluid He, S(Q, cv) is confined largely to
a single sharp peak at the quasiparticle frequency. Thus,
although n p is small, the coupling via the condensate can
confine essentially all the intensity into the quasiparticle
peak at low T. Thirdly, the intensity below the sharp
quasiparticle peak is significantly reduced as T decreases.
Thus, as T decreases, the density component loses inten-
sity. This loss of intensity results when cosp lies close to
rvo so that the zero in the numerator of S(Q, cv) at rv=rvsp
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reduces the intensity in the density component to zero.
The values of the parameters are also interesting. For

the roton, the e peak in the density component (co=coo)
at T=T& lies below the quasiparticle peak. Thus, we

have chosen coo marginally less than hosp so that the cou-
pling can push hosp upward. Also, at low T, hosp lies
below the quasiparticle peak, co(Q). Since the peak posi-
tion co(Q) is determined partly by cosp=cosp+b, , this re-

quires 6)0. Also, since the quasiparticle peak posi-
tion increases with decreasing T, we have

~cusp cop~ ) ~cosp cop~. That is, the coupliqg again
separates the quasiparticle and density frequencies requir-
ing ha&0. Thus, both 6 and a change sign from the
maxon case. The values of c7)sp(Q) ct)p(Q) and the quasi-
particle peak, co(Q), are sketched in Fig. 7.

B.Saturated vapor pressure

At saturated vapor pressure the position of the quasi-
particle peak at low T, co(Q), lies close to the position of
the maximum of the scattering for T ) T&. It is for this
reason that it is difficult to decide from the SVP data
whether the quasiparticle peak disappears from S(Q, co)
as T is increased or whether the quasiparticle peak simply
broadens with increasing T. In the present model, it
means that the "uncoupled" quasiparticle and density ex-
citation frequencies, hosp and coo, will lie close together.

duced in the model because the zero in the numerator of
S (Q, co) at co = cosp cancels out the intensity in the density
component which peaks at coo as soon as T drops below

Tg ~ At SVP ct)0 Msp. In the model, there remains some
intensity at low cu at T=1.79 K not seen in the data.
This could be removed in the model by allowing I 0 to de-
crease with decreasing T but we have kept I o constant
for simplicity.

From Figs. 6 and 8 we see that, at the roton Q and low

T, all of the intensity is con6ned to a single sharp peak
arising from the quasiparticle. One of the challenges of
this interpretation has been to show that, although the
quasiparticle part of S(Q, co) is weighted by no(T) and

no(T) is small, all of the intensity can appear in the quasi-
particle peak at low T for the roton. This challenge is
clearly met in Figs. 6 and 8.

2. Beyond the roton

In Figs. 9 and 10 we show S(Q, co) at Q =2.3 and 2.5
A 'calculated at T=1.30 K and T=T&=2.17 K from
(32) compared with the observed intensity at T =1.30 K.
In each case the quasiparticle peak hosp lies
below the density excitation peak coo. The coupling b, (T)
appears to weaken with increasing Q. At Q =2.5 A ', a

1. Roton

In Fig. 8 we show S(Q, co) for the roton Q at SVP at
three temperatures compared with the observed intensity.
As T decreases below T&, we again see the quasiparticle
peak rapidly emerging in S ( Q, co). We see also a rapid
loss of intensity immediately below the quasiparticle
peak. This loss of intensity is particularly unusual be-
cause it takes place over a narrow temperature range of
0.4 K immediately below T&. It is difficult to explain this
in terms of thermal factors. The loss of intensity is repro-
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FIG. 8. Roton at Q =1.925 A and SVP; as in Fig. 6 using
parameters in Table II with Gaussian of FWHM of 0.0153 THz
and data from Ref. 18.
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very small coupling reproduces the weak quasiparticle
peak in the observed intensity at T = l. 30 K. Since 5( T)
is not large and cosp and coo are well separated, the density
component of S(Q, ro) changes little with T. At these
higher Q s, the chief efFect of the coupling is to bring the
quasiparticle peak into S(Q, ro) as T is lowered below Tz,
as suggested from (8). When the coupling is weak, (8) is a
useful and representative expression. The observed width
of the quasiparticle peak results from the resolution
width.

In Fig. 11 we plot cosp, Bo, and the quasiparticle peak
position, c0(Q), at low T (the phonon-roton energy) at
SVP. Again we see that rusp(Q)and ro(Q) cross at Q = 1.5
A
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3. Qttasiparticle lifetime

In all the above S(Q, co) we have set the quasiparticle
half-width I sp equal to zero. This is fundamentally for
simplicity and to indicate in the model only that
I'sp « I o at the maxon, roton, and higher-Q values. We
do expect I sp to increase with increasing T and I sp( T)
has been extracted from experiment at several Q values.
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For example, at the roton at SVP, I sp( T) =0.001 THz at
T =1.3 K and I sp(T) =0.03 THz at T =2.0 K. A pre-
cise I sp(T) is beyond the precision of the present crude
model.

Only in the case of the maxon at p =20 bars does a
finite I sp clearly improve the agreement of S(Q, co) with
experiment at low T. In Fig. 12 we compare S(Q, co) cal-
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FIG. 9. Q =2.30 A and SVP; S(Q, r0) from (32) at
T=1.30 K and T&=2.17 K using parameters from Table II
and folded with a Gaussian of FWHM of 0.12 THz compared
with data at T= 1.30 K from Ref. 41.
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45 DENSITY ANDQUASIPARTICLEEXCITATIONS IN LIQUID He 7331

IV. DISCUSSION

A. The interpretation

The present picture of excitations in superfluid He has
two components. When there is a condensate, quasiparti-
cle excitations of the single-particle Green function 6 be-

30

Co

20—

MAXON

Q=1.13Ai
P=20 bar

culate from the full result (31) for I sp=0 and 0.01 THz.
When I sp is increased, the quasiparticle peak broadens
and the dip in S(g, co) above the quasiparticle peak fills

in. The relation between I sp and filling in the dip is in-

teresting. I sp at the maxon and T=1.3 K, as obtained
from observed values ' of the peak width, does increase
with pressure. From Fig. 4, the dip fills in as pressure is
increased. It is interesting that these two effects are
correlated here. This broadening may also explain why
the structure in S(g, co) at high cu, seen in Fig. 4 at SVP,
disappears at p =25 bars. A more complete model in-

cluding multiexcitation contributions is needed to ad-
dress this question.

come a component of the total density response, g, as
shown in (8). The weight of G in y depends on the con-
densate no(T) through the vertex function
A=no' [1+P(g,co)]. The second component of y isy',
the density response of the atoms lying above the conden-
sate. Thus, when no(T) is finite, the quasiparticle excita-
tions can be observedin S(g, co).

Equation (8) is a useful representation when''(Q, m) is
a broad function of co, the quasiparticle excitation is
sharp and the coupling between the two via the conden-
sate is weak. Under these circumstances, the quasiparti-
cle excitation can be clearly observed in S(g, co) as a
sharp component lying on broad scattering. This appears
tobe thecaseat Q=2. 5A 'asshownin Fig. 10. There
the quasiparticle excitation appears as a sharp peak at
lower co below the broad density component of y', which
peaks near the free-atom recoil frequency co„=fig /2m
(co+=0.79THz at Q=2. 5A '). As T increases to T~,
where no(T) =0, the sharp component disappears from

S(g, co). It is the position of the sharp peak which is
traditionally identified ' as the phonon-roton energy at
higher Q. The peak in G clearly leads to a peak in the
density response and is therefore observable in S(g, co).
However, the peak originates in 6 and can therefore be
called a quasiparticle excitation. The intensity in this
peak vanishes at Q=3.4A

For 2.3~Q ~3.4A ', there is a close analogybetween
S(g, co) in superfiuid He and in an anharmonic solid. In
a solid, y(g, co) can be written in a form identical to (8)
as"

I'sp=0 g(g, co) =R(g, co) GR(g, co)+y~(g, co), (37)
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FIG. 12. Maxon at Q=1.13A and p=20bars: S(Q, co)

from (32) with parameters of Table I comparing I sp=0 and
rsp=0. 01 THz.

where G, is the one-phonon Green function, yM is the
multiphonon response, and R(g, co) contains interference
terms between the one and multiphonon components of

In a solid, yM(g, co) is always a broad function of co.

The sharp structure in y(g, co) comes from the sharp
one-phonon peak in Gt(g, co). We observe one-phonon
energies in y(g, co) of (37) using neutrons in exactly the
same way as we observe quasiparticle excitations of G in

in superfluid He. Both contribute to the density
response. In a highly anharmonic solid, the interference
terms inR(g, co) canbelarge. Thismay3 alsobethe
case in superfluid He.

Superfluid He differs from an anharmonic solid in that
g', the density response of the atoms above the conden-
sate, can also have sharp structure characteristic of a col-
lective excitation. In this event the simple separation of
y into two additive terms in (8) is not useful. Indeed, at
low Q in the phonon region, the density component is
sharp characteristic of a collective mode —as indicated
from sharp peak observed in normal He where the AGA
term of (8) vanishes. We expect normal He to support a
collective density or phonon mode ' at low Q as do
other liquids. ' As noted in Sec. II, the density and
quasiparticle spectral functions share the same denomina-
tor when no(T)WO. Thus, when the excitations in G and

y are sharp, the quasiparticle and density response of
superfluid He is identical and the two excitations cannot
be distinguished. This will be the case in superfluid He
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at low Q. The chief thermal effect at low g is a broaden-
ing of the sharp mode with increasing T.

As Q increases from the phonon to the maxon and ro-
ton regions, the density response of the atoms lying above
the condensate broadens —as indicated from the scatter-
ing data in normal He. In this Q region, the quasiparti-
cle excitation remains sharp, as suggested by the data in
superfluid He at low T. At the same time, the coupling
between the uncoupled density and quasiparticle excita-
tions is strong. Because of this strong coupling, (8) is still
not very useful and S(g, co) is complicated. It is primari-
ly in this region of Q that we have attempted to model
S(g, co) in a simple way based on the dielectric formula-
tion Bose fluids. Specifically, we seek to display, in a sim-
ple way, how the existence of a sharp quasiparticle peak
in S(g, co) depends on the condensate no(T) and disap-
pears from S(g, co) as T is increased into the normal
phase. We now examine this simple model closely in or-
der to study the parameters in it and reveal its limits.

B. The model

We begin in normal He where y(g, co) is represented
by (26),

In normal He at low Q, where I'0(coo in Fig. 13,
80(g) and I o(g) may be immediately interpreted as the
energy and half-width [lifetime r(g)=I O '(Q)j of the
collective density excitation. The model does not attempt
to develop or derive the collective mode from single-
particle excitations; it rather assumes its existence. In the
maxon and roton regions where I 0 is large (I o=coo), it is
difficult to say whether a well-defined collective excitation
exists. At the maxon and roton Q, where I 0=coo, coo and
I p are better interpreted as an energy and width charac-
terizing weakly interacting particle-hole excitations.

In modeling the dielectric formulation for higher Q in
superfluid He, we represented the uncoupled density
response of the atoms above the condensate by

x
1+V(g)x

N

co —(coo —a ) +i 2col 0

(40)

where a=u(g)Nz and 0 =coo a f—'„ i.s intended to
represent approximately a Lindhard function for the
atoms above the condensate having renormalized ener-
gies, i.e,

1 "k "k+g
XI. V k co —(Ek+g —Ek)+i'

x(g, ~)=
co coo(g—)+2icoI 0(g)

(38)

This may be derived as a phonon y or from a random-
phase-approximation-(RPA-) like method. In the appli-
cation of (38), we fitted the corresponding S ( Q, co) to the
single density excitation at low Q and focused on repro-
ducing the low-frequency region of the data at higher Q.
The observed intensity at higher Q, especially at the ro-
ton in normal He (see Fig. 6), has high-frequency tails.
Since the present S (Q, co) is fitted to the lower-co region of
the intensity and it does not reproduce the high-
frequency tails, y in (38) and S(g, co) in (27) will not
reproduce sum rules. Crudely, (38) is approximately the
single excitation component of y(g, co) for Q's up to the
roton Q and does not include the whole of S (Q, co).

A direct fit of (27) to the data of Andersen et al.
yields the values of coo(g) and I o(Q) for normal He
shown in the upper half of Fig. 13. These are empirical
values of coo(g) and I o(g). In Fig. 13 the height of the
bars is 2I'0( Q) and the bar is centered at
co& =(coo—I 0)'~, the energy that has traditionally been
used to identify the phonon-roton energy. That is, the
"harmonic-oscillator" function (27) may be reexpressed
as a sum of two "Lorentzian" functions,

1 2cok n

co cok& + l 2''g
N~

co —0 +i2coI p

3
multiphonon
substracted

e 0
M

co 0I-
CDI
C

UJ
I

1.30 K
'

2.49 K
~

2

1.30 K

2.49 K

(41)

(2col 0)

(co —coo) +(2col o)

1 r,
2~@ (co —cog) +I g

r~
(co+cog) +I g

(39)

where coo=co&+ I o. The rhs of (39) has traditionally
been fitted to data with co& defined as the phonon-roton
energy. cop is strictly the more fundamental parameter.

FIG. 13. The bars show the width (2I p) of the scattering in-

tensity at T=2.49 K in normal He obtained by the least-

squares fit of (27) to the data of Andersen et al. (Ref. 37). The
—2

bars are centered at ct)g =(Qp I p) . The solid line is the posi-
tion of the sharp peak at T =1.30 K (the phonon-roton curve) ~

At T = 1.30 K, the intrinsic width is within the solid line.



45 DENSITY AND QUASIPARTICLE EXCITATIONS IN LIQUID 4He 7333

Q(A )

TABLE II. As in Table I for saturated vapor pressure (SVP).

2
a/a)0 co(Q}

1.1 (maxon)
1.925 (roton)
2.30
2.50

0.32
0.119
0.55
0.66

0.12
0.075
0.21
0.22

0.32
0.12
0.33
0.38

—0.015
0.0155

—0.012
—0.004

—0.5
0.5

—0.3
—0.4

0.29
0.18
0.30
0.37

0 corresponds to an average of the difference in
uncoupled quasiparticle energies, i.e., 0 = ( cok~ )
= ((ek+ —ek ) ). I v represents the difference in lifetime
of these energies. In a consistent theory, ck should lie
close to the uncoupled quasiparticle energies cusp.

We have identified cosp with the position of the ob-
served dip in S(Q,co) in superfluid He, as shown in Fig.
4. Using the data of Andersen et al. , this yields the hosp

in superAuid He shown in Fig. 11 which follow a
phonon-roton-like curve. The parameter a in (40) and
b, ( T) are determined to get the sharp peak position and
height correct at T=1.3 K. Using a from Tables I and
II, we see II =coo—a=coo(1 —a/coo) lies above coo at the
maxon and below coo at the roton. u (Q) is the weak, re-
normalized interaction which shifts 0 to
coo=A +u(Q)Nz in y. We emphasize that cosp and a
have been determined in superAuid He. We do expect
cosp to differ in normal and super6uid He. Especially,
the development of a collective excitation will be
different. As noted, a collective excitation is assumed and
not developed here.

N
M, = lim y(Q, co) .

2 Q) —+ 00
(42)

In the present model, we have focused on fitting the low-
co region of S (Q, co). In the cases in which most of the in-
tensity is at low e or there is no high-energy tail, we ex-
pect M, =M =A'Q /2m. For example, we expect M, =M
at Q =2.5 A ', where S(Q,co) in (27) apparently repro-
duces all of the observed intensity quite well.

In normal He, using (38) we have,

a
M,*=

2 2v(Q)
(43)

where the star denotes normal He. If v (Q) were known,
the contribution to M,* could be evaluated. At Q =2.5
0A, where we expect M,*=M, we may use (43) to deter-

mine NR and v(Q) giving Nz =fiQ /m and u(Q)=5. 4
K, respectively. Thus, u(Q) is small as expected and
quite different from the potential needed to develop a col-
lective excitation. At low Q, where coo=coQ and where
we find a/~p is approximately constant,
v (Q) =a/2M, =a/2cos is approximately independent of
Q. In superfluid He, using (19) and (17}for y, we have

C. f-sum rule

The contribution of a model y(Q, co} to the f-sum rule,
M = J d co coS (Q, co) =fiQ /2m, may be obtained as

1 a
Mc (a+6)= 1+ (44)

and

M, =1+—.M*
C

(45)

Clearly, if M, =M,*=M, we expect M /M,*=1. At the
maxon, the roton, and Q =2.5 A ', we obtain
M, /M,*=1.3, 3.6, and 1.02 using b, /a at SVP from
Table II. At Q =2.5 A ', M, /M, '=1.02 because y in
(38) describes the whole of S(Q,co) well so that M,'=M.
In this case we expect M, /M;=l. At the roton M,'
misses the very large contribution to M from the high-
frequency tail. This tail is much smaller at lower temper-
ature in superfluid He (see Fig. 6). Thus, we expect
M, /M; to be large at the roton where the quasiparticle
peak at low co is large in superQuid He. A similar effect
but less pronounced occurs at the maxon. Without a
description of the high-frequency tail, we cannot make
further use of the f-sum rule.

At low Q, we may estimate S(Q) using (27) and (38)
which gives

N
S(Q)= [2n (coo)+ I ] .

2cop
(46)

For Q 0.2 A, but low Q, n(coo) is negligible and
S(Q)=N„/2co&=AQ/2Mcv, which follows using the f
sum-rule result for Nz.

The present model is intended to be illustrative and it
is possible to overinterpret the parameters and lose the
broad meaning. Other parametrizations are clearly possi-
ble.

D. Thermodynamic properties.

The characteristic excitations of liquid He have, since
Landau, ' been used to evaluate the thermodynamic prop-
erties of superAuid He. The low-lying excitations in the
phonon and roton regions are predominant at low T.
The thermodynamic properties are evaluated assuming
there is a single excitation at each wave vector Q.

In the present rndee, we have included density and
quasiparticle excitations. An important result of the
dielectric formulation is that the density (y) and quasi-
particle (G) propagators share the same denominator as
seen from (20) and (22). If the excitations have small
widths, we therefore expect g and G to have common
poles. In this sense there is only a single excitation in the
Quid. This point was emphasized by Gavoret and
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(Q

g 0 --4 I

0.05 0.10 0.150
0
C

ROTON

6
O
Q)
CL
g) 4

I

0.20 0.25

Nozieres' who showed that the excitations of y and 6
have the same linear dependence on Q, co(g) =cog at low

To emphasize this point we have evaluated the spectral
functions of y and G from (31) and (35) in the phonon
and roton regions at SVP, using the parameters listed in

0 I I I

0.12 0.15 0.18 0.21 0.24

to (THZ)

FIG. 14. Density and quasiparticle spectral functions in
superfluid He from (31) and (35) with the parameters in Table
II and I sp =0.0017 THz at T = 1.30 K.

Table II for the roton, setting Bsp close to coo for the pho-
non, and I sp=0. 0017 THz for both the roton and the
phonon. The results are shown in Fig. 14 and we see that
both g" and 6"are confined to a single sharp peak at low
T. y" and 6" are slightly displaced from one another
due to the different numerators in (31) and (35). This
shows that the density and quasiparticle excitation ener-
gies track each other closely when the excitations are
sharp in the present model.

In summary, the goal here has been to illustrate how
the temperature dependence of S ( Q, to ) can be repro-
duced in a simple model based on the dielectric formula-
tion. Specifically, we wish to reproduce the shaper peak
in S (Q, co) at the maxon, roton, and higher Q as a quasi-
particle peak and illustrate how this peak disappears
from S(g, ro) following no(T). We see that this structure
can be obtained keeping all parameters constant except
no(T). The temperature dependence might be improved
by using no(T) for liquid He rather than the Bose-gas
no(T) used here. The model is extremely simple, has
clear limitations, and is only a first step toward describing
S ( g, co ) using the dielectric formulation. Particularly, a
clearer basis in microscopic theory and addition of higher
co components of S(g, co) is needed.
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