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Magnetic coupling to long Josephson junctions is analyzed by use of a recently proposed model. The
model is discussed in detail, and for a specific geometry of the system we are able to make analytical pre-

dictions of zero-voltage steps in the I-V characteristic of the junction embedded in an ac magnetic field.

Good agreement is found when comparisons are made to numerical experiments performed on the

nonsimplified system.

I. INTRODUCTION

Phase locking of fluxon motion in long Josephson junc-
tions (LJJ's) to external fields has been extensively investi-
gated from a theoretical point of view during the past few
years. ' Mainly the study has been done assuming the
external field (electric or magnetic) to enter the system
through the boundary conditions only. However, as was
demonstrated in Refs. 6 and 7 an external magnetic field
can in some cases enter the system dynamics of the interi-
or of a LJJ as well. In fact it was demonstrated that the
interaction between a LJJ and an external magnetic field
could take place for an annular LJJ, which has no open
boundaries, and phase locking of fluxon motion to the
frequency of the external signal was predicted theoreti-
cally, by use of a standard perturbation method.

A similar system has been studied numerically, but
there the spatial structure of an electric- field interaction
with the LJJ was combined with open boundaries,
through which no interaction with the external field took
place. Although the physical reasons, made in Refs. 8
and 9 for choosing the spatial modulated interaction were
not clear, we find many similar features between the nu-
merical results made in Refs. 8 and 9 and the study made
in Ref. 6 as well as the study made in this paper. In par-
ticular, we will here investigate the phenomenon of zero-
voltage steps in the current voltage (I V) characterist-ics
of a LJJ driven in the one-fluxon mode by a spatial modu-
lated ac force. This is done by analyzing the fluxon dy-
namics in the annular LJJ coupled to an external ac mag-
netic field. From a standard perturbation approach to
the problem, we find that the spatially modulated ac force
can provide the fluxon with an effective dc potential well,
in which the fluxon is trapped; and thus, even if a dc
force is applied, the system will respond with a zero volt-
age. This is the essential physics in the understanding of
the phenomenon. The results presented in this paper are
based on several assumptions in order to keep the
analysis simple and illustrative. In particular, we have
assumed that the geometry of the junction is annular in
order to make the spatial modulation of the ac force
sinusoidal in space. However, we note that any spatial
modulation of ac forces acting on the system give rise to
similar effects as the ones presented here. Also we note

that the choice of bvundary conditions is made to keep
the analysis simple. Changing the boundary conditions
may change the results quantitatively, but will not change
the existence of the reported phenomena (see Refs. 8 and
9).

The paper is structured as follows. In Sec. II we will
emphasize the model of magnetic coupling and make it
clear when and why we can expect spatially modulated
perturbations to the LJJ from an external magnetic field.
In Sec. III we will set up the perturbation method used in
this paper. This method takes into account the reso-
nances of the linear modes induced by the magnetic field
and is thus a modification to the perturbation treatment
made in Ref. 6. In this section we give an analytical ex-
planation for the existence of zero-voltage steps in the I-
V characteristics of the ac-driven LJJ and it is analytical-
ly demonstrated how the limit cycles of the fluxon mode
is uniquely connected to the existence of zero-voltage
steps. This is in close agreement with the extensive study
of limit cycles made in Refs. 8 and 9. In Sec. IV we
show some results of numerical experiments and discuss
the validity and limitation of the applied perturbation
method. The agreement between the perturbation results
and the results of the numerical experiments shows good
agreement in the appropriate limits of parameters. Final-
ly, in Sec. V, we wi11 make some conclusions.

II. THEORY

As in Ref. 6 we consider the Lagrangian density L(x),
defined by

L(x)= ,'P, ,'P„——(1 —c—os/)+b—(B n)P„,
where x and t are the space and time dimensions normal-
ized to the Josephson penetration depth A,J and the in-
verse plasma frequency to ', respectively. ' The field P
represents the quantum-mechanical phase difference be-
tween the two superconductors defining the LJJ and B is
the external magnetic field normalized to A/2ed kz, where
d =2k.L+t„,A,L being the magnetic penetration depth of
the superconductors and t,„being the thickness of the in-
sulating layer separating the superconductors. The spa-
tial orientation of the magnetic fiux density (P ) of the
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LJJ is represented by the unit vector n, and finally the
coupling strength between the LJJ and the external rnag-
netic field is given by the dimensionless parameter A.
From Eq. (1) we see that, in order to have any interac-
tion, B needs to have a component in the plane of the
barrier of the junction (B n&0). Also we observe that if
n-B (0 the system increases its potential energy, whereas
if n.B)0 the system decreases its potential energy.

From the Lagrange density Eq. (1) we get the equation
of motion for the phase di6'erence:

P„,—P„—sing=(i)/Bx )(bB n),
as well as the total energy H of the system:

H= f [ —,'P„+—,'P, +1—cosP —b,(B n)P ]dx,

(2)

(3)

b(x =0)=b(x =L ) =1 .

This choice of the coupling parameter at the boundaries
does of course not say anything about the behavior of the
coupling parameter in the interior of the junction
(0&x &L ), but it makes it plausible to regard the addi-
tional potential-energy term in Eq. (1) as physically
relevant, since the undriven and lossless LJJ embedded in
a dc magnetic field maintains its conservation of energy.

Interaction between the LJJ and external magnetic
field may be obtained in several ways. Of course we may
consider the conventional way of applying the field
through open boundary conditions, but if the quantity
AB n varies along the x direction, we have an influence
through the right-hand side of Eq. (2). We can imagine
either of the three quantities to be dependent on the x
coordinate, but a simple way of realizing a system is to
consider the annular LJJ in a spatially homogeneous
magnetic field and a coupling parameter 6=1. In this
way we also avoid any open boundary conditions,
through which the magnetic field may interact. Of
course, we cannot expect the magnetic field to be spatial-
ly homogeneous around the superconducting films, but in
order to keep the system mathematically simple, we will
make this assumption. Including the usual perturbations
of energy input and dissipation we now have the system

(() „—P« —sinP=Bk sin(kx )+a/, —i), (6)

where the boundary conditions are given by the annular
geometry:

P(x =0)=P( x=L ) +2m l,
l being the total number of trapped Aux quanta in the
LJJ. Further, it has been assumed that the geometry of

where the integral is over the size of the system. If we
denote the system length by L, make the time derivative
of the system energy, and use Eq. (2) we get

dH /dt =(1 b, )P„P—, ~o,

where P„at the boundaries is identical to the external
magnetic field B n at the same points. ' Thus we note
that in order to maintain the system as a Hamiltonian
system, we must require that the coupling parameter
satisfies the conditions

the LJJ gives

b,B.n=B cos(kx ),
provided 6=1. Here k =2m/L is the spatial wave num-
ber of the system. In Eq. (6) the parameter a represents
the normalized loss due to tunneling quasiparticles and
the parameter g represents the normalized external bias
current density forced through the junction. '

III. PERTURBATION THEORY

In order to analyze the one-soliton dynamics (I = 1 ) in
the perturbed sine-Gordon (PSG) system given by Eqs. (6)
and (7) we will make use of the method of separating the
soliton field ij'j from the field of the externally induced
(linear) modes e (Ref. 11)—thus writing P=g+e. In
this way we may preserve information about the reso-
nances of the linear modes, which is important when we
consider spatially modulated systems. Making the usual
assumption of small perturbations (a, rt, and Bk small),
we may assume that the magnetic-field-induced mode e is
given by the linear equation

e„—e« @=a—e, rt Bk s—in(Q—t )sin(kx ), (9)

1( =4 tan '[) (u)(x —g) ], (13)

where g is the soliton position, u =g is its velocity, and
y(u)=(1 —u )

' is the inverse Lorentz contraction of
the kink, we will make the assumption that the system is
long compared to the size of the kink —i.e., that

f L oo

(
. )dx —

(
. )dx (14)

0 oo

This approximation makes the soliton travel in an
infinitely long system with the spatial modulation given
by k. In this way we do not consider an annular system,
since that would require taking into account an infinite
sequence of solitons as well. However, for reasonably
long systems this approximation is quite good (see, e.g. ,
Refs. 6 and 7). Inserting the kink profile Eq. (13) into the
energy expression Eq. (12) and using the approximation
of Eq. (14) we find in the framework of the well-known

where we have included the time oscillation of the mag-
netic field. This equation can easily be integrated to give

sin(Qt+8)sin(kx )

+(Q —k —1) +(Qa)
(10)

Qatan8=
1+k —0

The soliton field is then governed by the equation

g„,—g« —sing=a/, —2e sin (g/2),

where E is given by Eq. (1) and
~
e~ is assumed to be small.

Defining the energy of the unperturbed soliton field [left-
hand side of Eq. (11)]to be

H = f ( ,' P„+,' —P,+ 1 cosP)d—x, —

and introducing the unperturbed kink-soliton profile
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adiabatic perturbation method' the dynamical equation
for the collective coordinate g in the form

dH/dt = —8au y(u )
—2n gu —2n ukB I sin(Qt )sin(kg),

where we have defined the quantity r by

If we now assume that the soliton moves with nonrela-
tivistic velocity (g «1) we may write the dynamical
equation for the collective coordinate in the following
way:

~ . mk mk
N = —a4 —

r) — kB I sin(Qt +8)sin(4),
4 4

1+k (1—u ) nk
sech

+(1+k —Q ) +(Qa) 2r(u}

and where

(16}

1—'2

for the soliton.
From Eq. (15} we see that the soliton motion may

resonate with the external frequency 0 in many different
ways and hereby cause phase-locked steps in the I-V
characteristics of the junction at soliton frequencies (volt-
ages) given by co=(m/n )Q. In particular, we note the
phase locking at the fundamental frequency 0, which
was also predicted in Ref. 6 by using a simpler perturba-
tion method, not taking into account the dispersion rela-
tion of the linear mode. The condition for phase locking
at the fundamental frequency is that the change, hH, in
the soliton energy during one period of the driving field
2n /Q is zero —i.e., that

g= —ag — kB1 sin(%)sin(Qt+8)
4

mk kB I sin(%)[sin(Qt+8)
4 0+a

(22)

+ cos( Q—t +8 ) ] . (23)0
Similarly we separate the slow "dc" terms yielding

where we have introduced the phase angle @=kg. This
equation clearly describes a parametrically driven parti-
cle. Following Ref. 14 we can regard the frequency of
the external drive to be much faster than the average soli-
ton motion. Under this assumption, we may write the
variable 4=4+ g as a sum of a slowly varying com-
ponent (4) and a fast oscillating component (g) with zero
mean. The rapidly oscillating component is considered to
be of small amplitude ( ~ g~ && 1). Inserting this separation
into Eq. (21) and separating the terms oscillating with the
frequency 0 we get

This integral is easily evaluated if we assume that the sol-
iton travels through the system with constant velocity

u =+ =— g=ut+—
2~ k' ' ' k' (19)

where 80 is a phase angle. By adjusting this angle we
may obtain the total phase-locking range 5g of this mode
to be

kB mk5g= sech
'(/1+ [Qa/(1+ k —Q )] 2'Y(Q/k )

(20)

Equation (20) predicts a symmetric step around the IV-
curve for the system with no magnetic field applied to it.
This result is slightly different from the one obtained in
Ref. 6, where the square root in the denominator was ab-
sent. However, realizing that all perturbations must be
small (a«1} and that driving frequency must be less
than the spatial wave number (Q & k ) in order to be able
to obtain phase locking of the soliton motion at the fun-
damental frequency, we find that this correction of the
predicted locking range can be neglected. This is
reasonable, since very good agreement between the re-
sults of numerical experiments and the prediction made
in Ref. 6 were found. We note that if phase locking at
other frequencies than the fundamental were to be stud-
ied, the dispersion relation of the linear mode can prove
to be much more important. This will be reported else-
where. '

m.k0= —a%—
4

wk
kB sin(2%) . (25)

r'
0+a

Equation (25) has the form of an effective (slow-motion)
pendulum equation in 2%, where the effective harmonic
potential is induced by the "fast" oscillating parametric
force acting on the collective coordinate particle. As is
obvious from this "slow motion" equation, we can apply
a finite external bias current g and still maintain the soli-
ton trapped in the induced potential well. This bias is
given by

2
mk kB
16

1

1+(a/Q)

(1+k ) m.k
sech

[1+(k/Q) —(1/Q) ] +(a/Q)

(26)

Clearly this limit is in itself an upper limit, since the ex-
pression does not take the fast oscillations into account.
These oscillations will decrease the height of the actual
zero-voltage step because the energy stored in the vibrat-
ing motion Eq. (23) will make the particle move out of
the potential well for lower values of g than predicted by
Eq. 26. Actually, we can calculate the vibration energy

(li= —a4 —
rt

— kBI cos(%)((sin(Qt+8)), (24)
4 4

where the bracket denotes the time average. This equa-
tion can then be rewritten in the form



7318 NIELS GRQNBECH-JENSEN 45

of the motion Eq. (23) and estimate that the size of the
zero-voltage step is 2&2/3=0. 94 times the prediction
made in Eq. (26).

From Eqs. (23) and (25) we are able to construct the
limit cycle of the Auxon analytically. Inserting the static
fix point 4, of Eq. (25)

(27)

into Eq. (23), we obtain the limit cycle in the phase plane
(g, g) for the collective coordinate as an elliptic motion
with the period of the external drive (2~jQ). From the
expressions above it is evident how the dynamics of the
system creates a certain amplitude of the limit cycle (g, g)
determined by Eqs. (27) and (23). Then from Eq. (24) we
see how the dynamics of the system seeks to react by
creating a "dc potential" proportional to the spatial arn-
plitude of the limit cycle.

IV. NUMERICAL EXPERIMENTS

In order to verify the condition Eq. (26) for obtaining
the zero-voltage step in the annular junction, we have
performed numerical experiments on the system defined

by Eqs. (6) and (7) for different values of system length L,
magnetic-field amplitude B, and the driving frequency Q.
The numerical method for integrating the field equation
was chosen to a second-order finite-difference method in
time and a fourth-order finite-difference method in space.
The integration step sizes in time and space were varied
and chosen pending the actual parameters. For simplici-
ty we have in all our numerical experiments chosen the
dissipation parameter to be a =0.1.

In Fig. 1 we show a section of a normalized I-V curve
for a system defined by the parameters L =10, 0=0.8k,
and kB =0.2. Clearly we observe the phase-locked step
at the fundamental frequency co=A as well as many
subharmonic steps at frequencies

co=(min�

)0 (the five

largest subharmonic steps are indicated in the figure).
More important for this paper, however, is to observe
that the dc I Vcurve has a step f-or zero voltage (~—:0).
This step is in fact the second largest step —only dom-
inated by the step at the fundamental frequency (co=A).
%'e note that the zero-voltage step is actually twice the
size of what is shown in Fig. 1, since the I-V curve con-
tinues antisymmetrically for negative g values.

In Fig. 2 we have shown the comparison between the
perturbation result Eq. (26) (solid curve) and numerical
experiments (markers). We have here chosen the driving
frequency to 0=k and we have plotted the (half) size of
the zero-voltage step as a function of the magnetic field
B. Clearly, we see that the predicted quadratic depen-
dence on the external magnetic filed is fulfilled in the in-
terval of the chosen amplitudes for both system lengths
(L =10 and 20). As noted above, the predicted step size
of Eq. (26) is an upper limit to what we might expect
from the numerical experiments, so the trend found in
Fig. 2(a) that the numerical experiments show a smaller
step than predicted does not come as a surprise and we
note that the error of the predicted size compared to the

0. 1 — n/5k

20/3k
I

0/2k ~

n/k

measured is less than 20%. For L =20 [Fig. 2(b)] we find
that the comparison in general is better —apart from the
high values of the magnetic-field amplitude. The trend
that the longer systems show better agreement than the
shorter is of course an artifact of the assumptions made
in the perturbation treatment. First we note that the ap-
proximation mentioned in Eq. (14) is closer to reality
when the system is long. Second, we note that the equa-
tion for the linear mode Eq. (9) is considered in a system
without a trapped soliton. Thus, the resulting standing
wave, driving the soliton, is idealized with respect to res-
onances, since the soliton, with its finite width, will per-
turb the linear mode field and then suppress the reso-
nance described by Eq. (11) for the shorter systems. In
general we may expect a suppression of the resonance for
all system lengths, since the perturbation treatment has
information of the linear mode e only. Of course, when
the resonance is reached, the amplitude of the e field is
predicted to be kB/Qa, which may be a large number,
and thus outside the validity of Eq. (11). [The violation
of the linear assumption is also the reason for the devia-
tion between the analytical curve and the experimental
data for "large" B in Fig. 2(b).]

This suppression of the predicted resonance is visible in

Fig. 3, where we have shown the comparison between the
perturbation results and the numerical experiments for
the zero-voltage step size as a function of the driving fre-
quency Q. Clearly we find that the agreement between
the experiments and the perturbation treatment is very
good as long as the driving frequency is not too close to
the predicted resonance. In spite of the discrepancy near
the resonance, we do find a peak in the experimental data
for frequencies Q=(1+@ )'~, indicating that the linear
mode does in fact resonate near the predicted
frequency —although this is not a quantitatively correct
result. Closer agreement between the results of the nu-

merical experiments and the perturbation result could be

oo
—0.0 0.2 0.4 0.6 O. B 1.0

~/k
FIG. 1. Normalized I- Vcurve calculated from the field equa-

tion Eq. (6). Parameters are L=10, kB=0.2, 0=0.8k, and
a=0. 1. The step at the fundamental frequency Q is indicated
together with the five most significant steps at subharmonic ra-
tios of the drive as well as the zero-voltage step.
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ment is found when the system is operated near the reso-
nance of the linear mode, induced by the external mag-
netic field. Hence, we have found that zero-voltage steps
may in fact exist in LJJ's driven by spatially modulated
ac forces. It is interesting to make the parallel to the
zero-voltage steps reported in Ref. 7, where a dc magnet-
ic field created a potential well for the soliton. In the dc
case it was found that the zero-voltage step size increased
as -B and the soliton motion were periodic with the
length L, whereas we have found in this paper that the ac
field created a zero-voltage step of size -B and a soliton
motion periodic with L /2.

The work presented in this paper can be related to the
numerical study ' of a long Josephson junction with open
boundary conditions and a spatially modulated ac electric
field acting on the system. There zero-voltage steps were
also observed and we believe that the zero-voltage
phenomenon reported in Refs. 8 and 9 and the zero-
voltage steps predicted in this paper are created by the
same mechanism —an effective dc potential, induced by
the spatially modulated ac driving field, which acts as a
parametric force on the collective coordinate particle in
the reduced system. More specifically, we have demon-
strated analytically how the limit cycles of the fluxon
mode uniquely is connected to the existence of the zero-
voltage steps. However, the step size predicted in this pa-
per will most probably not apply to the system with open
boundary conditions, since the soliton experiences
reflection losses and phase shifts during reflections (see,
e.g., Ref. 2 for details) at the boundary. In particular the
reflection losses make a difference between the system
considered here and the system studied in Refs. 8 and 9,
since rejecting boundary conditions require an oscillating
mode of the soliton in order to avoid annihilation of the
soliton. Thus, a mode of g =0 does not exist for
reflecting boundary conditions, as also noted in Refs. 8

and 9.
Some remarks can be made about the idealized system

discussed in this paper. As noted in the Sec. II, we can-
not expect a perfect homogeneously magnetic field
around a superconductor. Further, we may expect that
the junction provides some spatial variation of the cou-
pling parameter 6 as a function of x, and finally we may
consider other geometries of the function than the annu-
lar. We note, however, that any periodic structure in the
modulation of the system will give rise to phenomena
similar to the ones described in this paper and further, we
note that the perturbation treatment presented here easi-

ly (in principle) can be generalized to any periodic struc-
ture of the form

a (5B n) =+[a„(t)sin(knx )+b„(t)cos(knx)],
Bx

(28)

and hence, we may consider more complicated structures
of the spatial modulation. We note finally that long an-
nular Josephson junctions are well within current fabrica-
tion capabilities. ' ' Measurements have been made on
these systems containing one or more solitons. Experi-
ments are currently being prepared' in order to verify
the bifurcation and phase-locking phenomena described
in Refs. 6 and 7 as well as the zero-voltage steps de-
scribed in this paper.
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