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The pyrochlore form of FeF3 (pyr-FeF3) exhibits an unusual noncoplanar form of long-range magnetic

order below 16 K. This is a result of the topological frustration inherent in the lattice of corner-sharing

tetrahedra formed by the iron atoms. Neutron-diffraction experiments fix the critical exponent P at

0.18(2), which does not correspond to any known universality class. Monte Carlo simulations on the

same lattice with Heisenberg spins confirm this value of P and also determine that v=0. 38(2),

y =1.1(1),and a=0.6(1). The power of Ferrenberg and Swendsen's histogram method of Monte Carlo

data analysis is discussed, as well as careful checks for weak first-order behavior in the transition. The

recently discovered universality classes in triangular-lattice antiferromagnets are compared to the situa-

tion in pyr-FeF3.

I. INTRODUCTION

Frustration in magnetic systems is well known to be re-
sponsible for a number of diverse phenomena such as
spin-glass behavior, ' noncollinear and incommensurate
order, and unusual critical properties. Recently there
has been much interest and controversy over the critical
properties in frustrated triangular antiferromagnets.
With vectors spins (XY or Heisenberg) these systems will
order with three magnetic sublattices forming 120' angles
with nearest neighbors on the other sublattices.

Kawamura has pointed out using Monte Carlo simula-
tions that triangular-lattice antiferromagnets (TLAF's}
exhibit unusual critical exponents. ' In particular, the
exponents for TLAF's with XY spins [P=0.253(10),
y=1.13(5), v=0.54(2), a=0.34(6)] (Ref. 3) and Heisen-
berg spins [P=0.30(15), y =1.17(7), v=0.59(2),
a =0.25(5)] (Ref. 4) are in no way similar to the standard
O(n) critical exponents where n=2 for XY (P=0.345,
y=1.316, v=0 669, a= .—0.01) (Ref. 5) and n=3 for
Heisenberg (P=0.367, y=1.388, v=0.707, a= —0.121).
Thus, TLAF's with vector spins belong to different
universality classes. This is a counterexample to the pop-
ular misconception that universality classes can be
characterized by the spin dimensionality. As originally
stated by Griffiths, one must consider the symmetry of
the order parameter (which reduces to spin dimensionali-
ty only in simple cases) when characterizing universality
classes. This idea can be understood by realizing that the
symmetry of the order parameter determines the form of
the Ginzberg-Landau-Wilson (GLW) Hamiltonian,
which, in turn, governs the critical properties upon re-
normalization. In fact, Kawamura has suggested that
both the c=4 —d and 1/n expansion treatments of
TLAF's exhibit a fixed point not present for O(n) sys-
tems. These critical exponents have been confirmed by
neutron-scattering experiments on CsMnBr3, Hol-
muim, and VC12, ' and most recently by careful heat-
capacity measurements on CsMnBr3. "

The unusual exponents are also a source of controversy

for three reasons.
(1) The critical point in CsMnBr3 has been shown to be

a tetracritical point and multicritical points are well
known to exhibit unusual critical properties. However,
such multicritical behavior is consistent with the oc-
currence of a different universality class. '

(2) These exponents are not far, numerically, from the
mean-field tricritical exponents (P=0.25, y=1, v=0.5,
and a =0.5}. Azaria et al. ' have proposed such an inter-
pretation based on their renormalization-group calcula-
tions (d =2+a).

(3) Reluctance to part with the simple idea that univer-
sality classes are governed by spin dimensionality.

These interesting results have stimulated an investiga-
tion of critical properties in pyrochlores. In the pyro-
chlore form of FeF3 (referred to as pyr-FeF3), the metal
atoms form an infinite three-dimensional lattice of
corner-sharing tetrahedra. Antiferromagnetic ordering
on such a lattice is highly frustrated. This can be partial-
ly understood by realizing that no spin configuration ex-
ists which simultaneously satisfies all six antiferromagnet-
ic interactions on a single tetrahedron. This same
diSculty is also present on the fcc lattice, which can be
thought of as a lattice of edge-sharing tetrahedra. Anti-
ferromagnetic ordering in pyrochlores is further inhibited
because the tetrahedra are co~ner sharing and thus more
sparsely connected than in the fcc counterpart.

pyr-FeF3 was synthesized by De Pape et al. , ' with
cell edge a=10.324(2) A and cubic space group Fd3m.
Subsequently, Ferey et al. ' determined the magnetic
structure below 16 K, which consists of four sublattices
(corresponding to the four corners on a tetrahedron)
oriented along the four cubic (111)directions (see Fig. 1).
This noncoplanar order seems to be, in some sense, a
three-dimensional analog of the coplanar (but noncol-
linear} ordering observed in the TLAF's.

The objective of this work is to investigate the critical
properties of pyrochlore antiferromagnets. First, experi-
mentally in pyr-FeF3 and secondly, through extensive
Monte Carlo (MC) simulations with finite-size scaling.
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FIG. 1. The three-dimensional network of corner-sharing
tetrahedra formed by one of the metal sublattices in pyro-
chlores. An outline of the cubic unit cell is also shown. Arrows
are a schematic representation of the noncoplanar magnetic
structure in pyr-FeF3.

The experimental and MC results both strongly suggest
that the pyrochlore antiferromagnet belongs to a univer-
sality class characterized by an order-parameter space
isomorphic to S2 XZ3. In Sec. II we describe the results
of neutron-diffraction experiments on pyr-FeF3. A brief
review of mean-field-theory results which suggest a suit-
able exchange mode1 for the simulations is outlined in
Sec. III. Section IV contains some technical details of the
Monte Carlo methods employed and the results for the
elementary thermodynamic functions. Section V is an ex-
tensive discussion of methods for determining the order
of a phase transition with MC data and a respective ap-
plication of these methods to our data. Critical ex-
ponents for the transition are determined using finite-size
scaling analysis in Sec. VI and Sec. VII contains a discus-
sion of collinearity of the ordered state in the MC simula-
tions. A summary and concluding remarks can be found
in Sec. VIII.

II. CRITICAL PROPERTIES IN pyr-FeF3

In order to determine the critical exponent p, we have
carried out neutron-diffraction experiments on a powder
sample of pyr-FeF3. The sample was prepared following
the procedure outlined in Ref. 14. Great care was taken
in removing residual ammonia from the sample in order
to minimize the incoherent scattering due to hydrogen.
The measurements were carried out at the McMaster Nu-

0

clear Reactor using 1.39 A neutrons and a position-
sensitive detector. For the determination of P, data in
the range of 1.16 ~ Q ~ 2.94 A were considered, which
contain scattering from the first four magnetic Bragg
rejections. Twelve data sets were collected from 7.5 to
15.5 K and analyzed with Rietveld profile fitting in order
to determine an ordered moment at each temperature.

A magnetic moment of [3.36(3)]@~ was observed at 7.5
K, which is in agreement with Ferey's result' but lower
than the theoretical value which is naively expected to be
near 5pz. Such low magnetic moments have also been
observed in many of the triangular antiferromagnets

where the effect is believed to be caused by quantum spin
fIuctuations. ' For temperatures closest to T„ it was
necessary to account for a smail amount of critical
scattering near the Bragg peaks. This was modeled with
a resolution convoluted Lorentzian. Since the intensity
of the critical scattering is statistically correlated with the
Bragg peak intensities, the estimated errors in the refined
magnetic moments increase near T, . The refinement was,
however, constrained in that all four magnetic Bragg
peaks had the same fraction of critical scattering with the
same correlation length, and the Gaussian Bragg peak
widths were set equal to the nuclear peak widths.

The measured magnetic moments were fitted using a
power law of the form

p(&) ~ rs,

where

is the reduced temperature. The best fit to (1) is shown in

Fig. 2 giving P=0.18(2) and r, =15.4(l) K, using a re-
duced temperature range of 0.01~ t ~0.3. As is always
the case, p is somewhat dependent on the choice of T, .
In this case when T, was varied by +0.1 K, g for the fit

roughly doubled and p changed by approximately +0.02,
thus defining the e.s.d. 's (estimated standard deviations)
in p and T, . The datum at 7.5 K was excluded from the
analysis.

The value obtained for p is vastly different from any of
the exponents for the O(n) models which range from
0.326 [O(1)= Ising] to 0.367 [O(3)=Heisenberg]. ' In
light of the unusual exponents in frustrated TLAF's,
where p ranges from 0.25 (Ref. 3) to 0.30, the low ex-

ponent observed in pyr-FeF3 does not come as a complete
surprise. The presence of critical scattering provides evi-
dence that the transition is most likely second order.
Measurements of other exponents y and v with neutrons
are also possible, in principle, but, in practice, this is not
viable without a large single crystal. However, a mea-
surement of a in the heat capacity should be possible.
This has been attempted' without satisfactory resu1ts.

0.6

P = 0. fe(2)
—0.5 — T,

O—0.4—

-2.0 -1.5 -1.0 -0.5 0.0
log)o(t)

FIG. 2. log-log plot of the measured magnetic moment in

pyr-FeF3 vs reduced temperature, t =
I T, —T) /T„giving

f3=0.18(2) and T, =15.4(1) K.
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The heat-capacity peak was rounded considerably by par-
ticle size or surface area effects. A similar problem has
occurred in dysprosium aluminum garnet' where heat-
capacity data were observed to be much more sensitive to
particle size effects than the neutron-diffraction data. At
the moment, the only way to make further progress on
this interesting phase transition is to simulate the system
using a reasonable exchange model. In the next section
we will describe and justify such a model.

0.5

,0,0)

III. MEAN-FIELD THEORY

A detailed analysis of magnetic ordering in pyrochlores
can be found in Ref. 19. Therein a general Landau
theory calculation is carried out in which no a priori as-
sumptions are made about the nature of the highest-
temperature ordered phase. In other words, all Fourier
modes were considered and a variety of exchange models
were analyzed, including interactions out to fourth neigh-
bors.

As stated previously, the metal atoms in pyr-FeF3 lie
on the 16c site in the space group Fd3m and form a
three-dimensional lattice of corner-sharing tetrahedra.
Because of the face centering, it is possible to choose a
primitive rhombohedral unit cell which has only one-
quarter the volume of the cubic unit cell, thereby reduc-
ing the number of magnetic atoms per cell from 16 to 4
and simplifying any algebraic work considerably. The
mean-field results will be discussed in terms of the primi-
tive unit cell. Because there are four magnetic atoms per
primitive cell, there will be four normal modes for every

q (wave vector) in the zone. For the simplest model, in
which the nearest-neighbor interaction J& is less than
zero (antiferromagnetic) and further-neighbor interac-
tions are zero, no long-range order is predicted within the
mean-field approximation. At the mean field T„2N out
of the 4N (N is the number of primitive unit cells) become
critical (gq diverges). Thus, the system preferentially
selects a phase space with half the dimensionality below
T, . This reduced phase space is not sufficiently restric-
tive to stabilize long-range order. Monte Carlo simula-
tions of this model have shown that no long-range order
occurs at any temperature. In fact, the majority of py-
rochlore antiferromagnets studied to date show no long-
range magnetic order but instead exhibit spin-glass-like
behavior. '

In some cases, long-range order is stabilized when
further-neighbor interactions are included. Figure 3
shows a phase diagram in the space of J2 and J3, the
second- and third-neighbor exchange constants.
Different regions in the phase diagram are characterized
by the wave vector of the highest-temperature ordered
phase. The diagram is dominated by regions of incom-
mensurate order. The dotted line for J3 &0 indicates that
there is a degeneration line in q space and therefore no
long-range order within mean-field theory. Of interest
for this work is the region on the right of the phase dia-
gram (J3 )0) where the q=O phase is stable. This corre-
sponds to the situation in pyr-FeF3 ~ In this case there are
three degenerate normal modes that go critical

—0.5—0.5

q, q,

0.0
Js/I J11

0.5

FIG. 3. Phase diagram of ordering wave vectors in the ex-
change constant space of J2 and J3, as determined by mean-field
theory (from Ref. 19). The dashed line for J3 &0 indicates that
the system has a degeneration line in q space and no long-range
order is predicted. On the right half (J3 &0) of the diagram,
phases with q=o are stable, which is relevant to pyr-FeF3.

1p, = —,'(m, +m2 —m3 —m4),

(P2 ( I ™2™3™4)
(m1 m2 m3+ m4)

where m, is the net magnetization on sublattice a.
Within mean-field theory these modes can mix in any
way subject to an orthogonality constraint

Pl %2 V2 'IP3 V3 P1 (4)

imposed by higher-order terms in the Landau expansion.
The implications of this will be discussed further in Sec.
VII. It is also worth pointing out that mean-field theory
predicts that the phase transition is continuous. Howev-
er, mean-field theory is often wrong in this respect.

In an attempt to simulate the situation in pyr-FeF3, we
have chosen the following exchange model:

A model with J2=0 and J3%0 may seem unphysical,
however, the second- and third-neighbor bond distances
only differ by about 10%. Also, superexchange interac-
tions in insulators are strongly dependent on bond angle
and not just bond distance. In addition to this, most
models with J2&0 and J3 )0 will also stabilize the q=O
phase, as can be seen in Fig. 3. If one believes in
universality, then the precise values of Jz and J3 are ir-
relevant as long as the q=O ordered state is selected.
Therefore, we chose to exclude J2 in order to save com-
puter time. Another model with Jz(0 and J3=0 may
also seem tenable. However, Fig. 3 shows that such an
exchange model lies precisely on the mean-field phase
boundary between a q=o phase and an incommensurate
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phase. The critical properties will almost certainly be
affected and complicated by this coexistence, which is un-
desirable in any preliminary investigation such as this
one.

The exchange model in (5) can be pictured if one thinks
of the corner-sharing tetrahedral lattice as four inter-
penetrating fcc lattices. The coupling between the fcc
lattices is J& &0 and the coupling within each fcc lattice
is J3. Thus, one can think of this model as four fer-
romagnetic fcc lattices which are mutually intercoupled
by strong antiferromagnetic interactions.

Another important question is anisotropy. Fe + is a
spin- —,

' ion with a totally symmetric A (S state) ground
state. The crystal field around the Fe atoms is very close
to perfectly octahedral and the site symmetry is 3m, with
the threefold axes along the cubic ( 111)directions. Any
anisotropy in this system can only arise from mixing of
higher level with different spin quantum numbers and is
expected to be weak compared to T, =15.4 K. The an-
isotropy will be discussed further in Sec. VII.

IV. MONTE CARLO SIMULATIONS

The simulations were carried out using the standard
Metropolis spin-Gipping algorithm with seven lattice
sizes L XL XL (L=3,4, 56, 78, 1 0.)It is important to
note that there are 16 spins per unit cell, such that we
have 128 spins for L=3 and 16000 spins for L=10,
Periodic boundary conditions were implemented in order
to eliminate surface effects. Simulation lengths of
50000—200000 Monte Carlo Steps (MCS) per spin were
carried out over a wide range of temperatures
0.1 ~ T/~ J

~

1.0 for L=3. Larger lattices were simulat-

ed only in the critical region. For each simulation,
10000—20000 initial MCS were discarded in order to
reach equilibrium. The random-spin moves AS were at-
tenuated by a factor 5 which was adjusted in such a way
that roughly 50% of the attempted spin moves were ac-
cepted. This increases the efficiency at low temperatures.
When a spin move was rejected, the spin was then ran-
domly pivoted around its local exchange field. Such
pivoting has no efFect on the internal energy but does in-

crease the rate at which phase space is sampled.
All thermodynamic functions were calculated using

Ferrenberg and Swendsen's histogram method. The
method allows efficient storage and usage of the MC data
and most notably the method allows one to calculate all
thermodynamic properties as continuous functions of
temperature. This feature is extremely useful for locating
maxima, minima, and inAection points of thermodynamic
quantities, thereby enabling one to obtain accurate esti-
rnates of critical temperatures.

The central idea behind the histogram method is to
build up information on the energy probability distribu-
tion Pp(E), where P=1/T is inverse temperature (in
units with kp =1). To be more specific, one calculates a
histogram Hp(E) which is the number of spin
configurations generated between E and E+b,E. Pp(E)
is now defined as

Hp(E )
Pp(E )= (6)

Zp= g Hp(E ) . (7)

In practice, Pp(E) only provides information on the dis-
tributions at nearby temperatures since counting statis-
tics in the wings of the distribution Hp(E) far from (E )p
(the average energy) will be poor.

In order to alleviate this problem Ferrenberg and
Swendsen have proposed the "multihistogram method, "
which is an optimized method of combining histogram
data for different temperatures and has been implemented
in our calculations. For each lattice size at least seven
histograms for difFerent temperatures near T, were com-
bined. In order to follow with temperature quantities like
the sublattice magnetization m„one must store two-
dimensional histograms in the form

Hp s (E,m, ), where
h =H/T is the applied (staggered) field that couples to
m, . Storing two-dimensional histograms is quite costly
and can be circumvented if one is only interested in cal-
culating the thermodynamic quantities at one value of the
applied field. The idea is to store a one-dimensional his-
togram Hp(E) along with (m, (E))p, ([m, (E)] )p, and

any other desired moments of m, . We have stored the
first, second, and fourth moments of m„which allows
calculation of ( m, ),g, and the fourth cumulant of m, (to
be discussed later).

Each histogram contained 1000 bins spread over a nar-
row energy range that the system samples near T„ in-

stead of the whole energy range from E/~ J, ~

= —1.6 to 0.
The actual energy ranges were determined from short tri-
al simulations and varied with lattice size. The important
parameter is not the energy range but the bin size AE,
which varied from bE/~J, ~=7.8X10 for L=3 down
to bE/~J&~=1. 9X10 for L=10. As a check, two his-

tograms with 5000 bins were calculated at T, for L=8
and 10 and gave virtually identical results.

The model Hamiltonian for the simulations was

g= —
—,'J, g S, S, ——,'J3 $ S;.S, ,

(ij),

where ( ij )
&

and (ij ) 3 represent first- and third-neighbor

bonds, respectively, S, =(S,",S~,S,') is a unit, three vector
on lattice site i, and the exchange constants are described
in Eq. (5). The order parameter for the transition is the
mean-square sublattice magnetization

4

m, =— g m,
a=1

where

(10)

Through a simple transformation, one can, in principle,
also calculate the probability distribution at any tempera-
ture P':

Pp(E, )exp[(P —P')E„]
Pp(E, )=

g Pp(E„)exp[(P —I3')E„]
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I
N, .~g

S;,

where i labels a lattice site, a labels a sublattice within the
unit cell, and N is the number of primitive unit cells. The
order parameter is also a measure of the normal modes
(3):

m ~p+y+y
because m&+ m2+ m3+ m4=0 in an antiferromagnet.
Since the three normal modes y are three vectors, the full
order parameter has nine components. Imposing ortho-
gonality conditions (4) still leaves five continuous rota-
tional degrees of freedom, which is similar to the situa-
tion in fcc antiferromagnets. Three of these degrees of
freedom are due to Heisenberg symmetry, the remaining
two are associated with the arbitrary choice of the rela-
tive magnitudes of tp&, y2, and y3.

The temperature dependence of the internal energy and
heat capacity are shown in Fig. 4. The energy ap-
proaches —1.6l /, l

as T~O, which is in agreement with
a simple ground-state calculation. Clear evidence for a
phase transition can be seen in the heat capacity near
T/l J, l

=0.525. The mean-field transition temperature
for this model is

The mean sublattice magnetization, m„and its corre-
sponding susceptibility,

y, =N ((m, ) —(m, ) ),
are shown in Fig. 5. The fact that y, is diverging strong-

ly at T, indicates that m, is the correct order parameter
for this transition. At this point it is crucial to determine
whether this transition is first order or continuous (criti-
cal). This will be discussed in the next section.

V. ORDER OF THE TRANSITION

For the problem at hand, the large number of order-
parameter components suggests that the phase transition
may be first order. Azaria et al. have conjectured that,
for frustrated systems such as the triangular-lattice anti-
ferromagnets, the transitions may indeed be first order.
For these reasons we feel it is important to check in great
detail for first-order behavior in the pyrochlore system.

One of the central problems in Monte Carlo data stud-
ies of phase transitions is determining the order of the
transition. Strong first-order transitions will show
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FIG. 4. (a) Internal energy and (b) the heat capacity per spin,
for the pyrochlore antiferromagnet with third-neighbor interac-
tion.

FIG. 5. (a) The mean sublattice magnetization and (b) sus-
ceptibility per spin, for the pyrochlore antiferromagnet.
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marked discontinuities in thermodynamic quantities such
as internal energy and magnetization and present no real
problems. Weakly first-order transitions are much more
difficult to recognize. This can be understood if one pic-
tures a correlation length g, growing as T approaches
some virtual critical point, but before that virtual point is
reached, the system abruptly changes to the other phase.
The correlation length g only reaches a critical but finite
value, g, . While (&g„ the system will appear to be in
the critical region of a continuous transition. It is easy to
see that this creates problems if L & g„where L is the
linear extent of the lattice size simulated. Thus, it can al-
ways be claimed that any transition that appears to be
critical based on MC data is actually weakly first order
with g, ))L

Recently there have been significant advances in over-
coming this problem. Below we list a number of tech-
niques for detecting a first-order transition.

(1) Discontinuities in the internal energy and magneti-
zation.

(2) Hysteresis in the internal energy and magnetization.
(3) Double peaks in the probability distributions P (E)

and P(m).
(4) The heat-capacity and susceptibility maxima should

diverge like L ", where d is the lattice dimensionality.
(5) Half-widths of the heat-capacity and susceptibility

peaks should decrease like L
(6) Binders fourth energy cumulant

V =1—
3(E )

(14)

at T, should approach —', for a continuous transition and

approach some nontrivial value V'& —,
' at a first-order

transition.
Methods (1), (2), and (3) are, in fact, three aspects of

the same thing and are also rather unreliable for two
reasons. For one, if the free-energy barrier which is re-
sponsible for the hysteresis is small enough, the MC
simulation will sample both phases within the time scale
of the simulation, then no hysteresis will be observed.
The second and more important reason is that double
peaks in the probability distribution have also been ob-
served near continuous transitions in finite systems, as
will be discussed further below. The explanation of this
is currently unknown. Methods (4) and (5) are also as-
pects of the same thing. At a first-order transition, the
heat-capacity peak is expected to be a 5 function which
depends on system volume and thus diverges like L and
narrows like L ". Both of these ideas are combined in
the scaling form of the heat capacity suggested by Challa
et al. where one plots C(T)L vs [T—T, (L)]L".
For a first-order transition, the data for all L and T
should collapse onto a single line. This works to a high
degree of precision for the 10-states (q=10) Potts model
but the same is not true for q =8. Method (6) tests the
Gaussian nature of the probability distribution P(E) at
T, . If V =

—,', then P (E) is Gaussian. For a continuous
transition, P(E) is expected to be Gaussian at, as well as
away from T, . For a first-order transition, P(E) will not
be Gaussian and therefore V( T, ) = V* & —', . V* is related

O. 10
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[T—Tc(L)]L'/IJgl

FIG. 6. First-order transition scaling law plot of heat capaci-
ty. If the transition is first order, all data should collapse onto a
single line, which is not the case.

in a rather transparent indirect way to the latent
heat. ' In a sense this is similar to method (3), except
much more sensitive, in that small splittings in P(E) for
the infinite system that do not result in a double peak for
small lattices can be detected. In principle, when L ~~,
the double peak will be eventually resolved for a weak
first-order transition. Another advantage of this tech-
nique is that the minimum of VL is expected to approach
—', or V* as a power law in L, thus allowing one to extra-
polate to L = ~. Extrapolating the whole distribution
P (E) to L = ~ is not so trivial.

A standard testing ground for these techniques is the
q-state Potts model on a two-dimensional lattice, for
which the exact solution is known. ' For q &4, the tran-
sition is continuous; for q )4, the transition is first order.
The q=5 phase change is an example of an extremely
weak first-order transition with g, =2000 lattice spac-
ings. For q=4 and 5, P(E) shows double peaks and for
q=3, 4, and 5, P(m) is double peaked, providing clear
evidence that continuous transitions in finite systems will
exhibit double peaks. However, by extrapolating
VL (min) to L = co, one finds that, for q=3 and 4, V*=—',
(within statistical accuracy) and for q=5, V" & —,'. Thus,
in principle, using this method one can discern a first-
order transition by simulating lattices with L «g, . Lee
and Kosterlitz have proposed an alternative method of
dealing with double-peaked distributions ' which they
apply to systems with scalar order parameters. It is not
yet clear how one applies this method to systems with
vector or tensor order parameters.

We now proceed to determine the order of the transi-
tion in the pyrochlore model using the ideas discussed
above. The first point to make is that the distributions
P (E) and P(m, ) were not double peaked at T, thus mak-

ing the Lee-Kosterlitz method inapplicable to our prob-
lem. Without double peaks, one therefore expects no
hysteresis or discontinuities and none were observed.
This leaves scaling of the heat capacity and susceptibility
with lattice size and the determination of V', the last be-
ing the most reliable method.

Figure 6 shows Challa's heat-capacity scaling plot of
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our data for various lattice sizes. For a first-order transi-
tion, the data are expected to collapse onto a single
line, which is obviously not the case. Figure 7 shows
the best fit to C,„and y,„as power laws in lattice size.
Here we expect

C,„(L)=Ci+C2L

y,„(L)~L"

for a first-order transition and

C,„(L)=C, + C2L

y,„(L} Lr "

(15)

for a continuous transition with periodic boundary condi-
tions. C, and C2 are constants determined in the least-
squares-fitting procedure. The best-fit values for the ex-
ponents were a/v=1. 7(2) and y/v=3. 5(3), where the
e.s.d. 's were, as usual, determined by a doubling of g for
the fit. The divergence of the heat capacity seems to be
significantly weaker than the L behavior expected for a
first-order transition. However, the result for the suscep-
tibility is somewhat ambiguous.

In Fig. 8(a) we plot VI with temperature for all lattice
sizes considered. In each case there is a minimum near

T, indicating a deviation of P(E} from Gaussian form.
Similar to the situation for the heat capacity, V;„(L) is

also expected to follow a power-law behavior in L,

V;„(L)= V C3L (17)

0.667
a

2/3

Figure 8(b} shows the best fit to V;„(L) giving
V* =0.666 58(10) and a/v= 1.8(2) in good agreement
with the exponent for C,„. V* is seen to equal —', to
within one e.s.d. In fact, the deviation between V' and

3

is only 1 part in 10 . This is more than an order of mag-
nitude closer to —', than V* for the 5-state Potts model,
which may be the weakest first-order transition known.
Considering that this method currently seems to be the
best one for determining the order of a phase transition,
it is clear we are dealing with a continuous or critical
phase transition. At this point we have some information
on the critical exponents from C,„,g,„, and V;„. In
the next section we will apply proper finite-size scaling
techniques throughout the whole critical region in order
to get more information about the exponents.

15.0 I I I

(a)
a/v = 1.7(2) 0.666

10.0—

0.665

5.0-

0..0 ~ I ~ I ~ I ~ I ~ I ~ I ~
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0.664
0.4

0.667
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I
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T/l&il
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0.0
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~ I ~ ~ 4 ~

2000.0 3000.0

0.665
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I

0.02
I
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FIG. 7. (a) Dependence of the heat-capacity maximum and
(b) the susceptibility maximum, on lattice size. Solid lines
represent fits to (16).

FIG. 8. (a) Binder's fourth energy cumulant (see text) near
T, . Deviation of VL from

3 indicates that P(E) is non-
Gaussian. (b) Least-squares fit (solid line) of V;„as a power
law in lattice size L (L ~ 4), giving V*=0.666 58{10) and
a/v = 1.8{2).
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VI. CRITICAL EXPONENTS

A well-known fact of finite-size simulations is that the
transition temperature tends to shift slightly with chang-
ing lattice size. For a critical phase transition one ex-
pects

T, (L)= T, ( ~ )+ AL' (18)

where A is a nonuniversal amplitude. Conventionally,
T, (L) is defined by the heat-capacity maximum. Howev-
er, there are many other methods of defining T, (L) such
as from g,„, V;„, and from the inAection point in the
magnetization, i.e., the minimum in m, =dm, /dT. Other
less obvious definitions of T, have also been proposed
such as extrema in m'/rn, (m )', and (m )'/(m ). As
it turns out, all of these quantities have different T, 's

which may not necessarily be independent. Another
quantity which shows an inflection point near T, (L) is

the fourth cumulant of the order parameter

(m')
3(m')

(19)

We found that the extrema in UL were very strongly
dependent on L ri.e., in (18), A was large] which makes
extrapolation to L = ~ unreliable. Therefore, these data
were not used in the analysis of T, . It is fairly straight-
forward to calculate all of these quantities from histo-
gram data and obtain a rather large amount of accurate
T, (L) data. By simultaneously fitting the T, 's from all

seven functions described above to the power law (18)
(Fig. 9), we obtain T, ( ~ )=0.5265(3) and v=0.45(5).
Only lattices with L ~ 5 were considered in the fit. The
fit was somewhat insensitive to the precise value of v,
however, fixing v= —,

' =1/d, which would be expected for

a first-order transition, gives a decidedly poor fit. It is
worth noting that the T, (L )'s approach T, ( ao ) from both
above and below, which helps to place a definite window
in which T, (ao) resides. The unusually accurate value

for T, (o T, /T, =0.0006) is a standard feature of the his-

togram method and is aided by the use of extrema from

seven different thermodynamic functions. Using longer
simulations combined with the histogram method, Pec-
zak et al. have managed to obtain an even higher accura-
cy of o.„,/T, =0.0001 for a Heisenberg ferromagnet.

Next we apply the full finite-size scaling analysis over
the whole critical region, following Fisher and Lan-
dau. In particular, we will scale m„y„and C using
the scaling laws

m, (t,L)=L ~~"j' (x),

y, (r,L)=L"/( ),
(20a)

(20b)

C(t, L)=C„(T)+L '/c(x), (20c)

where x =L ' "t is the scaling variable, and C„, ( T) is the
regular or noncritical part of the heat capacity. The scal-
ing functionsgare expected to have the following asymp-
totic behavior: ' '

/ (x) ~x~ for T & T, ,

g (x) coax~ "~ for T ) T, ,

&x ~x

y, (x)

(21a)

(21b)

(21c)

(21d)

which gives a further check on the exponents.
In Fig. 10 we show m, L~ plotted as a function of the

scaling variable x =L' t using T, as determined above
and p=0. 19 and v=0.37 chosen in such a way that the
data for all lattice sizes collapse onto a single line. The
slopes at large x give additional exponent estimates,
p=0. 17 and p —3v/2= —0.35. In general, it has been
found that scaling fluctuation quantities likes C and y, is
much more difficult than scaling of the order parameter.
There are two reasons for this: (1) the statistical error is
always larger in fluctuation quantities and (2) the regular
part of the heat capacity is unknown and must be ac-
counted for in some empirical manner. In fact, scaling
the susceptibility data above T, was unsuccessful and

scaling of the heat capacity was only possible by assum-

ing different regular parts (C and C+) of C above and

0.528

0.527-

0.5
P = 0.19
v = 0.37

0.526

0.525—

0.52$ 0.01 0.02-1/v 0.03

00-

0
—0.5

—1.0—2

+0 + aooD ~

L
L =
L
L = 7L=8
L = 10 Slope = —0.35

FIG. 9. Scaling of the critical temperatures with lattice size.
Solid lines represent fits to (18) giving a mean extrapolated

T, ( ~ ) =0.5265(3). The T, 's were obtained from extrema in

seven different thermodynamic quantities.

FIG. 10. Finite-size scaling of the order parameter m, with

p=0.19 and v=0.37 chosen in such a way that all of the data

collapse onto a single line. Asymptotic slopes are also shown.
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FIG. 11. Same as in Fig. 10 for the staggered susceptibility
below T„giving y =1.1 and v=0.38.

m, (L)=m, ( oo )+ c(T)
(22)

where the second term arises from spin-wave contribu-
tions. As usual, this is only valid for large L. Away
from T, (22) works quite well, however, as one ap-
proaches T„it necessary to strip away data for small L in
order to obtain a good fit. Using data for L ~4 away
from T, and L ~7 nearer T, we have extrapolated our
m, data following (22). The result is shown in Fig. 13 as
a function of reduced temperature, with T, =0.5265. The
slope of the line gives P=0.19(1) in good agreement with

below T, . The results for scaling g, are shown in Fig.
11 giving y=1.1, v=0.38, and an asymptotic slope of—1.0. The heat-capacity results (Fig. 12) sufFer from sta-
tistical noise but scaling is possible if a=0.6 and v=0.39.
The asymptotic behavior below T, gives a slope of —0.6
which agrees with (21d), whereas the slope ( —1.1) above
T, is far to steep. A possible explanation for this is that
some temperature dependence of C„(T) must be taken
into account below T, .

Recently, Kawamura has suggested a method of extra-
polating the magnetization from finite L to L = (x),

FIG. 13. log-log plot of the sublattice magnetization extrapo-
lated to L = ~ according to (22).

a+2P+y ~ 2 . (23)

Phenomenological scaling theory predicts that the
equality, in fact, holds. Using the pyrochlore exponents
in Table I, one finds that a+2P+y=2. 06(15), which
satisfies the inequality and agrees with scaling well within
statistical error. Another scaling law (actually a hyper-
scaling law since dimensionality is involved) which lies on
less rigorous grounds than (23) is

dv+a=2 . (24)

all previous results. The e.s.d. in P is most likely underes-
timated by the fitting procedure since the choice of suit-
able lattice sizes in (22) was to some degree arbitrary.

At this point we write down estimates of the exponents
for this transition in Table I along with the critical ex-
ponents for the other two Heisenberg spin universality
classes. It is clear that the pyrochlore transition belongs
to a new universality class. Again, this does not come as
a complete surprise in light of the now well-established
results for the TLAF systems. It is well known that criti-
cal exponents must obey certain inequalities based on
rigorous thermodynamic arguments. The most famous
example being the Rushbrooke inequality

+/

I

O

s 0
o oo 0 aa 0

L =
L =
L =
L =
L =
L =

6

tag o(1.'~"t)

From Table I we obtain dv+a=1.7(1), which is not in
very good agreement with (24). Fisher has pointed out
that this scaling law breaks down in the presence of
dangerous irrelevant variables. A resolution of this
problem must await a proper renormalization-group
treatment.

If the pyrochlore universality class is indeed different,
then it is important to determine the symmetry of the or-
der parameter in this system, which is discussed in the
next section.

TABLE I. Critical exponents for the three currently known
universality classes in Heisenberg spin systems.

FIG. 12. Same as in Fig. 10 for the heat capacity, giving
a =0.6 and v=0.39. The regular parts of the heat capacity were
chosen as C =1.1 and C+ =0.8.

Pyrochlore 0.18(2} 1.1(1} 0.38(3)
TLAF (Heis. ) (Ref. 4) 0.30(2) 1.17(7) 0.59(2)
O(3) (Heis. ) (Ref. 5) 0.367 1.388 0.707

0.6(1}
0.24(4)

—0.121
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VII. COLLINEARITY

As stated previously, mean-field theory predicted that
the relative magnitudes of the three critical models y, ,

pz, and y3 [see Eq. (3) for a definition] were indeter-
minate. This results in two extra internal degrees of free-
dom for the order parameter, over and above the three
symmetry degrees of freedom associated with all Heisen-
berg spin systems. Thus, a collinear structure such as
(p, =m„pz=0, and F3=0) will be degenerate with non-
collinear structures (y, =y2=y3=m, /&3). Figure 14
shows this schematically. Henley has shown by low-
temperature expansions that type-I and type-III fcc anti-
ferromagnets prefer collinear ordered states at finite tem-
perature. Thus, thermal fiuctuations (beyond the
incan-field approximation) will break the internal two-
dimensional (2D) degeneracy. In order to check that this
is the case in pyrochlores, we have defined and calculated
a "collinearity function" for four sublattice antiferromag-
nets

3 0'&+0'v+0'3 1
0'ci = 2 (mi+m2+m'3)'

(25)

(a)

FIG. 14. Examples of (a) collinear and (b) noncollinear spin
structures. Thermal fluctuations will select (a) over (b) (Ref. 26).

For a collinear structure [Fig. 14(a)] y„= 1 and in the
noncollinear limit with spins along the (111) directions
[Fig. 14(b)] p„., =0. The probability distribution P(p„) is
shown in Fig. 15 for two lattice sizes at a temperature
just below T, . One can see that the system prefers to be
collinear, as conjectured by Henley, with significant fluc-
tuations about the collinear state. The ordered state in
pyr-FeF3 is certainly not collinear, therefore there must
be a uniaxial anisotropy strong enough to overcome the
entropy forces that prefer a collinear state. This immedi-
ately raises the question as to whether or not the anisot-
ropy in pyr-FeF3 will affect the critical exponents. A
simple answer would be yes. The anisotropy will lower
the symmetry of the order parameter and thus change the
critical exponents. However, a little more thought re-
veals that, if the anisotropy is weak, it will only be
effective very close to T, where

~ T, —
T~ is on the order of

the anisotropy energy E,„;„. Thus, when
~ T, —T~)E,„;„,one will obtain isotropic critical exponents since

the system is fluctuating throughout the whole order-
parameter space. Crossover to anisotropic exponents will
occur at

~ T, —T =E,„;„.A reasonable scenario for FeF,
is that E,„;„is on the order of 0.1 K or less and thus
beyond the temperature resolution of the experiment. In
this case the system modeled in the simulations will

0.10

0.08-
L=4

———— L —8

0.06
cf

8-

0.04

0.02-

0.000.5 0.6 0.7 0.8 0.9 1.0
ga

FIG. 15. Probability distribution of the collinearity function

y, ~
defined in (25), for two different lattice sizes, just below T, .

VIII. SUMMARY AND CONCLUSIONS

pyr-FeF3 exhibits an unusual but highly symmetric,
noncoplanar antiferromagnetic order. Neutron-
diffraction experiments have been used to follow the sub-
lattice magnetization as a function of temperature, thus
allowing the determination of the critical exponent
/3=0. 18(2). This exponent has been verified by Monte
Carlo simulations with Heisenberg spins on the same lat-
tice and a suitable exchange model. The phase transition
in the simulations is shown to be almost certainly con-
tinuous or critical. From the simulations we obtain other
exponents y = 1.1(1), v=0.38(3), and a =0.6(1). These ex-
ponents agree well with the Rushbrooke relationship (23),
however, hyperscaling does not seem to be as well

satisfied. It is clear that these exponents constitute a
different universality class. As stated previously, this re-
sult is almost to be expected in light of the universality
classes predicted and verified in the TLAF's. The simula-

reflect the observed behavior in pyr-FeF3. In the pres-
ence of the anisotropy, the ordered state is, in fact, two-
fold degenerate, corresponding to spin arrangements with
all spins pointing inwards or outwards on a tetrahedron
[Fig. 14(b)]. Naively, one might expect to see 3D Ising
critical exponents for such a model, which are certainly
not observed in our measurements on pyr-FeF3.

Kawamura has introduced the use of continuous group
nomenclature as a means of labeling magnetic order pa-
rameters. ' ' ' This language has long been familiar to
gauge theorists. Simple Ising, XY, and Heisenberg order
parameters are isomorphic to the groups Z2,

S, =SO(2) =O(2), and S2 =SO(3)/SO(2), respectively.
Here it is important not to include redundant symmetries
in the group. For example, spatial inversion and rotation
about the magnetization axis are redundant symmetry
operations for a simple Heisenberg order parameter. The
corresponding spaces for the pyrochlore problem are
S2XO(3) at the mean-field level, which is reduced to
S2XZ3 for the collinear ordering selected by thermal
fluctuations. The S2 space corresponds to a choice of
spin collinearity axis and the Z3 space maps into the three
possible ways of dividing four spins into two pairs.
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tions also show that a collinear ordered spin arrangement
is thermally selected. The agreement between the sirnula-

tions and experiment is understandable if the anisotropy
in FeF3 that selects the noncollinear state is weak and
that the temperatures considered in the experiment are
outside the crossover to anisotropic critical properties.

Further work on this problem can proceed along a
number of directions. Experimental progress will be
dependent on the preparation of better powder samples of
pyr-FeF3 with large particle sizes so that a can be
checked with heat-capacity measurements. pyr-FeF3 is
metastable and must be prepared at low temperatures,
which means there is little chance of making large single
crystals. However, there are may other pyrochlores that
have not yet been fully investigated at low temperatures.
It is possible that a few will order with the same magnetic
structure as in pyr-FeF3.

There is much theoretical work still to be done on py-
rochlores, not only in relation to critical properties but
also to understand the spin-glass behavior. A

renormalization-group treatment of the problem would
almost certainly show many interesting results pertaining
to critical properties. Monte Carlo work with anisotropy
forces would also be of great interest for two reasons: (1)
to determine the strength of the thermal selection and (2)
to determine if the critical properties are Ising-like as
would be expected from symmetry considerations.
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