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Classical Heisenberg spins on a lattice of corner-sharing tetrahedra with nearest-neighbor antiferro-
magnetic interactions are investigated with Monte Carlo (MC) techniques. The system is highly frustrat-
ed with an infinitely degenerate ground state. Mean-field theory predicts no long-range order (LRO) at
any temperature. The MC calculations are consistent with this result, thus providing evidence that
thermal fluctuations beyond the mean-field approximation do not stabilize LRO. The possibility of in-
commensurate and spin nematic order is considered. The temperature dependence of some spin-glass or-
der parameters, such as the Edwards-Anderson order parameter and the single-spin autocorrelation
function, are also investigated. The results show that no spin freezing occurs at nonzero temperatures.

I. INTRODUCTION

Frustration in magnetic systems is well known to be re-
sponsible for a number of diverse phenomena such as
spin-glass behavior,! noncollinear and incommensurate
order,? unusual critical properties,’® and infinitely degen-
erate ground states. The stacked triangular lattice anti-
ferromagnet* and the fcc antiferromagnet® with Ising
spins are examples of three-dimensional systems with
infinitely degenerate ground states. However, these sys-
tems have the interesting property that long-range order
(LRO) is stabilized at finite temperatures. Frustrated sys-
tems with XY or Heisenberg spins will tend to find non-
collinear long-range-ordered states at low temperatures.
The best known example is the 120° spin structure found
in triangular lattice antiferromagnets.

Pyrochlores have the chemical composition 4,B,0,
and crystallize in the cubic, face-centered space group
Fd3m, where the A and B atoms are metals located on
the sites 16c and 16d of the space group. Each of the
metal atoms in this system forms an infinite three-
dimensional lattice of corner- sharing tetrahedra. If ei-
ther of the 4 or B atoms is magnetic, then there is a very
high degree of frustration when the nearest-neighbor in-
teractions are antiferromagnetic. A schematic diagram
of the tetrahedra formed by the 16¢ lattice within a unit
cell is shown in Fig. 1, the 16d sublattice is identical ex-
cept for a spatial displacement of (§,1,1). Frustration on
a lattice of corner- sharing tetrahedra can be partially un-
derstood by realizing that no spin configuration exists
which simultaneously satisfies all six antiferromagnetic
interactions on a single tetrahedron. This same difficulty
is also present on the fcc lattice which can be thought of
as a lattice of edge- sharing tetrahedra. LRO in pyro-
chlores is further inhibited because the tetrahedra are
corner-sharing and thus more sparsely connected than in
the fcc counterpart.

The problem of antiferromagnetic ordering on this lat-
tice has been considered by Anderson,® who predicted on
qualitative grounds a very high ground-state degeneracy
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and that no LRO would exist at any temperature for Is-
ing spins. Villain reached basically the same conclusion
for Heisenberg spins,’ calling the system a “‘cooperative
paramagnet.” Monte Carlo (MC) simulations with Ising
spins8 are consistent with this result. More recently,
mean-field calculations have shown that Fourier spin
modes with arbitrary wave vector are degenerate.” This
implies that no LRO occurs within the mean-field ap-
proximation. Another interesting problem is that of
quantum spins on the corner-sharing tetrahedral lattice
with antiferromagnetic interactions. Initial work on this
difficult problem is also consistent with a lack of conven-
tional LRO.°

Through a simple application of counting degrees of
freedom, one can show that the ground-state manifold of
a pyrochlore antiferromagnet with N Heisenberg spins is
at least N /2 dimensional. Each spin has two degrees of
freedom, {6,¢}, for a total of 2N degrees of freedom in a
system with N spins. There are N /2 tetrahedra in the
system (four spins per tetrahedron and each spin is
shared by two tetrahedra). The ground-state condition
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FIG. 1. The three-dimensional network of corner-sharing
tetrahedra formed by one of the metal sublattices in pyro-
chlores. An outline of the cubic unit cell is also shown.
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for a single tetrahedron is
S;+S,+8S;+8,=0, (1)

which gives at most N constraints on the system that
must be satisfied in the ground state. We say at most 3N
because, in all likelihood, the conditions are not linearly
independent. In any case, this leaves at least N /2
remaining continuous degrees of freedom in the system.
Thus, the ground-state degeneracy is macroscopic and
therefore not long-range ordered. However, the question
remains as to whether or not thermal fluctuations beyond
the mean-field level will stabilize LRO.

It is instructive to compare the pyrochlore antifer-
romagnet with the fcc Heisenberg antiferromagnet since
the fcc lattice can be thought of as a network of edge-
sharing tetrahedra. The type-I fcc antiferromagnet ex-
hibits LRO at finite temperature and a finite ground-state
degeneracy per spin.!! However, at the mean-field level
of approximation, there is a two-dimensional continuous
degeneracy with respect to the relative orientations of the
four magnetic sublattices. Henley has shown that
thermal fluctuations will break this degeneracy and select
a collinear ordered phase, i.e., two spins up and two spins
down.!? This process of thermal selection has been
termed “order by disorder.”!3 With this result in mind, it
is interesting to consider whether or not thermal fluctua-
tions will break the enormous degeneracy evident at the
mean-field level in the pyrochlore problem.

The theoretical work is augmented by a significant
amount of intriguing experimental results that point to-
wards spin-glass-like behavior. One class of materials is
the defect pyrochlores CsMnFeF¢ and CsNiFeF4. In
these compounds Cs is on the 8b sites and the two transi-
tion elements are disordered on the 16¢c sites.!* Thus,
there is a significant structural difference with the pyro-
chlore oxides which show no obvious signs of disorder.
Extensive measurements have been reported which indi-
cate some behavior similar to that of spin glasses but oth-
er effects which are contrary to such a characterization.
Cusps in the low-field dc and ac susceptibility are report-
ed along with differences in zero-field-cooled and field-
cooled behavior, and remnant magnetism at low tempera-
tures.!> 1

The other class of pyrochlores which we call spin-
glass-like are the oxides with general formula R,M,0;,
where R is a trivalent rare earth and M is a transition
metal. Crystallographic information on the series of
compounds R,Mn,0, (R =Dy-Lu,Y) (Ref. 20) obtained
by single-crystal x-ray diffraction showed no evidence for
disorder. Spin-glass-like behavior in Y,Mn,0; is evi-
denced by the following: (1) heat-capacity measurements
show large entropy removal down to 2 K and no sharp
anomaly associated with a phase transition, (2) irreversi-
bilities in the dc susceptibility, (3) frequency dependence
of the ac susceptibility maximum, and (4) diffuse neutron
scattering over a wide temperature range in the absence
of any magnetic Bragg peaks.?!

The related compound Y,Mo0,0; shows spin-glass-
behavior?? in the form of a cusp and sample history
dependence in the magnetic susceptibility, even though

J. N. REIMERS 45

the compound appears to be chemically ordered.?® Simi-
lar behavior has also been observed in susceptibility data
for Tb,M0,0,.>* Here spin-glass-like behavior is also evi-
dent in neutron-diffraction data where strong diffuse
magnetic scattering develops below the apparent freezing
temperature of 25 K. In fact, inelastic-neutron-scattering
measurements on Tb,Mo,0, show direct evidence for
some degree of spin freezing near 25 K.

The question of chemical order in these oxide pyro-
chlores requires that more careful work be carried out.
Cation disorder can be ruled out on the basis of bond
length arguments. The transition-metal site is quite sim-
ply too small to accommodate the rare-earth ions. How-
ever, the possibility of oxygen nonstoichiometry at the
1-5 % level is not unreasonable.

Recently there has been some interest in the stacked
Kagomé lattice system SrCrg_, Ga,, 0,o.2°2® This sys-
tem also exhibits diffuse neutron scattering over a wide
temperature range down to 1.5 K and other spin-glass
properties. This is indeed interesting in light of the fact
that the Kagomé lattice, which is also very highly frus-
trated, can be thought of as a lattice of corner-sharing tri-
angles and is therefore a natural two-dimensional analog
of the corner-sharing tetrahedral lattice. Between every
other Kagomé sheet in SrCrg_, Ga,, O, is a triangular
plane of Cr** ions situated above and below the centers
of the Kagomé triangles thus forming distorted tetrahe-
dra (see Ref. 23 for a drawing). The mean-field-theory re-
sults for the Kagomé and pyrochlore systems are almost
identical.” Recent theoretical work?® on Kagomé lattice
antiferromagnets suggests an infinitely degenerate ground
state and no LRO at any temperature for Heisenberg
spins in the absence of further neighbor interactions.

The aim of this work is to determine the effects of
thermal fluctuations on antiferromagnetic ordering in py-
rochlores. In particular, it is important to establish
whether or not thermal fluctuations will significantly lift
the Fourier mode degeneracy present at the mean-field
level of approximation. Also, attempts will be made to
determine the dynamics of some spin-glass order parame-
ters. The paper is organized as follows: In Sec. IT we de-
scribe the details of the MC methods used. Elementary
thermodynamic properties for a chemically ordered pyro-
chlore model, with only nearest-neighbor interactions
and classical vector spins, will be described in Sec. III.
The powder neutron-scattering function is shown in Sec.
IV and a check for spin nematic order can be found in
Sec. V. Section VI focuses on the behavior of various
spin-glass order parameters calculated by the MC simula-
tions. Concluding comments can be found in Sec. VIIL.

II. MONTE CARLO METHOD

A standard classical model Hamiltonian

H=—3J 3 S;S; ()
i)
was simulated where S; =(S,,S,,S,) is a unit three vector
and J is the nearest-neighbor exchange constant. J <0
corresponds to an antiferromagnetic interaction.
The simulations were carried out using the standard
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Metropolis spin-flipping algorithm with three system
sizes LXLXL=2X2X2, 4X4X4, and 6X6X6 unit
cells. It is important to keep in mind that there are 16
spins per cubic unit cell which corresponds to lattice sizes
of 128(L =2), 1024(L =4), and 3456(L =6) spins, re-
spectively. Thus, the largest lattice considered is roughly
comparable to a 15X 15X 15 Bravais lattice. Simulation
lengths varying from 5000 to 200 000 Monte Carlo Steps
(MCS) per spin were carried out over a wide range of
temperatures 0.05=> T /J =20.0 we use units in which
kg=1. For each simulation between 1000 and 10000, in-
itial MCS were discarded in order to reach equilibrium.
The longest simulations were done at low temperatures.
The random-spin moves AS in the Metropolis algorithm
were attenuated by a factor & that was adjusted in such a
way that roughly 50% of the attempted spin moves were
accepted. This increases the efficiency at low tempera-
tures. When a spin move was rejected, the spin was then
randomly pivoted around its local exchange field.*® Such
pivoting has no effect on the internal energy but does in-
crease the rate at which phase space is sampled.

All thermodynamic functions were calculated using
histogram or reweighting methods.3! This method allows
efficient storage and usage of the MC data and most not-
ably the method allows one to calculate all thermo-
dynamic properties as continuous functions of tempera-
ture.

The central idea behind the histogram method is to
build up information on the energy probability distribu-
tion Pg(E), where B=1/T is the inverse temperature. To
be more specific, one calculates a histogram Hg(E) which
is the number of spin configurations generated between E
and E +AE. P4(E)is now defined as

Hy(E,)

= ——— 3
PHE)=—Z 3)
Zs=3 HyE,) . @

Through a simple transformation,*! one can, in principle,
also calculate the probability distribution at any tempera-
ture f3':

Pp(E,)exp[(B—B)E, ]
3. PpE,)exp[(B=BE,]

In practice, P4(E) only provides information on the dis-
tributions at nearby temperatures since counting statis-
tics in the wings of the distribution Hy(E) far from (E )
(the average energy) will be poor.

In order to alleviate this problem, Ferrenberg and
Swendsen have proposed the “multihistogram method,”
which is an optimized method of combining histogram
data for different temperatures and has been implemented
in our calculations. In order to follow with temperature
quantities like the sublattice magnetization m,, one must
store two-dimensional histograms in the form Hg(E, m).
Storing two-dimensional histograms is quite costly and
can be circumvented if one is only interested in calculat-
ing the thermodynamic quantities at one value of the ap-

Py(E,)= (5)
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plied field (i.e., H=0). The idea is to store a one-
dimensional histogram Hg(E) along with (m(E))g,
([m,(E)]*)p, which allows calculation of {m,),x, as
continuous functions of temperature.?

Each histogram contained 5000 bins spread over an en-
ergy range from E / |[J|=—1 to +0.5 for high tempera-
tures and from E /|J| = —1to —0.9 for the very low tem-
peratures. This corresponds to bin sizes of
AE/|J|=3X10"* and 2X107%, respectively. As a
check, some histograms with 20 000 bins were calculated
for L =4 and L =6 and gave virtually identical results.

In order for the multiple histogram method to function
properly, the histograms Hz(E) for neighboring tempera-
tures must have some overlap. At high temperatures
H4(E) tends to be rather broad and histograms at widely
spaced temperature intervals are sufficient. At low tem-
peratures, simulations must be done at much smaller tem-
perature intervals. As well, Hz(E) narrows like ¥~/
with system volume which implies that calculating ther-
modynamic quantities over a wide temperature range for
large lattices is quite time consuming. The simulation
time will increase as ¥3/? or L°/2 in this case. For L =6
it was necessary to combine 193 histograms. However,
once the histogram data is generated, all primary thermo-
dynamic properties will be available at arbitrarily fine-
temperature intervals. This virtually eliminates the possi-
bility of missing any very narrow features (in tempera-
ture) that could be associated with a phase transition.
The thermodynamic functions were calculated at temper-
ature intervals of AT /|J|=0.001 and 0.01, respectively,
in the low- and high-temperature regimes.

Assuming standard counting statistics, errors can be
estimated as

opp=[TH(E)]'?, (6)

where 7 is the auto correlation time. These errors can be
carried through in the calculation of all thermodynamic
quantities. For our problem, the heat capacity seemed to
be the most sensitive to statistical error.

III. ELEMENTARY THERMODYNAMIC PROPERTIES

The internal energy and heat capacity are shown in
Fig. 2. If any phase transition occurs, it is expected to be
at some temperature below the mean-field T, indicated by
the arrow. A transition to LRO should be accompanied
by noticeable finite-size effects, particularly in the heat
capacity, which result from a correlation length larger
than the simulation size. Except for minimal noise in the
heat-capacity data, there are no anomalies or finite-size
effects. For the heat capacity which was the most sensi-
tive to statistical noise, a few sample error bars are
shown, where 7 in (6) was estimated at 7=~5 MCS, based
on plots of E(t) vs E(t +7). At low temperature, the
internal energy is seen to approach an expected ground-
state energy of —1.0/J|. An asymptotic fit to the energy
at low temperature gives E(T =0)=—1.0|J| to within
0.01% with a slope

dE /dT|,=Cyx(T =0)=0.71(1) .



7290

This result is hard to reconcile with spin-wave theory
(and the equipartition theorem) for an ordered magnet,
which predicts that the zero-temperature heat capacity
should be C=1 ( for each transverse degree freedom).
This provides further evidence that there is no LRO at
low temperature.

In light of the fact that the order parameter for this
model is not known, we have chosen to calculate the
mean sublattice magnetization which is a measure of the
q=0 Fourier modes:

S R
m‘—F<a§1 ma> . )
where
m,=YS;. (8)

Here i labels a unit cell and a labels a sublattice within
the unit cell. The sublattice magnetization and its associ-
ated staggered susceptibility are shown in Fig. 3. The
size dependence of my is typical for the behavior of rms
(root mean square) magnetization variables in the
paramagnetic regime of finite systems. The log-log plot
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FIG. 2. (a) Internal energy and (b) the heat capacity per spin,

for the pyrochlore NN antiferromagnet. The arrow indicates
the mean field 7.
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of the susceptibility indicates a roughly T ! behavior
over about two and a half decades in temperature. Since
X; is defined by

XS=N%(<m3>—<ms>2), 9)

we see that the average fluctuations in m, remain roughly
constant at all temperatures.

Another quantity that is sensitive to the occurrence of
phase transitions is the fourth energy cumulant suggested
by Binder™

—_ (ED
L 3(E2>2 :

This quantity is a measure of the deviation of the energy
probability distribution from a Gaussian form. Away
from a phase transition or fixed point, ¥V, z%, and a
minimum in ¥, occurs at fixed points. The minimum of
V; is usually rather sensitive to finite-sized effects. In
Fig. 4 one can see that V; =2 at low temperatures and
the only finite-size effects seem to be associated with the
fixed point at 7 = .

So far the data indicate no evidence for critical behav-
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FIG. 3. (a) The q=0 sublattice magnetization and (b) its as-
sociated susceptibility per spin, for the pyrochlore NN antifer-
romagnet.
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0.7 culate the neutron-scattering function from the low-
2/31 temperature spin configurations. Any LRO would show
0.6 up as Bragg peaks which will grow in intensity like N2

1 and narrow like L ~!. Thus sharp peaks in the scattering
0.5 1 function that show dramatic lattice size dependence
04: should be present if LRO has occurred. Even incom-
a mensurate structures that do not fit within the periodic
> 03 - boundary conditions should show some size dependence.
] In order to inspect the data in a one-dimensional form,
0.2 4 we will calculate the radial part of the scattering which
| —_- k - 2 corresponds to the data observed in a powder diffraction

014 — L=2¢6 experiment.
After performing an angular average in Q space,’® the
0.0 s U — magnetic neutron cross section for a system with one

0.01 0.1 1 10

T/1l

FIG. 4. The fourth energy cumulant (see text) indicating
finite-size effects only at high temperature.
ior in the bulk properties. The mean-field-theory results’
predict that further-neighbor interactions will stabilize
LRO. Figure 5 shows the critical temperatures for a
model with a next-nearest-neighbor interaction Jyyy as a
function of Jynn/|J|. In this model, which is discussed
in more detail in Refs. 9 and 34, the q=0 modes are sta-
bilized. These data were calculated by MC simulations
on a 4X4X4 lattice, again using the histogram method
which provides rather accurate estimates for critical tem-
peratures. The T,’s were define by the maxima in Cy and
X;- It seems clear that T,—0 as Jyyy—0. The solid
lines, which are fits to a power law, are merely intended
as guides to the reader’s eye.

IV. SCATTERING FUNCTION

One remaining possibility is that a very weak transition
to some sort of incommensurate LRO has occurred.
Without a priori knowledge of the wave vector for the in-
commensurate LRO, this may be difficult to detect. An
efficient way to check for LRO of a general sort is to cal-

2.5
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Xmax

1.5 4

./l
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0.0 —T——7
00 01 02

'03 04 05 08
Jxan/ I
FIG. 5. Dependence of T, on Jyny for a model with a NNN
interaction that exhibits LRO. Apparently T, goes to zero as
JnnN approaches zero. The solid lines, which are fits with a
power law, are merely intended as guides to the reader’s eye.

type of magnetic atom is

do 1
40 QI (Q@rrl S
sin(QR;;)
x> <s,.-sj>——Q—’— , G8))
o R
where f(Q) is the magnetic form factor,

1lyre=0.27X10""2 cm/puy is the neutron-scattering
length per Bohr magneton, Q is the magnitude of the
scattering vector, and the factor of % takes account of the
fact that neutrons are only scattered by the portion of the
spin vectors that are perpendicular to the scattering vec-
tor Q. This is essentially just a version of the standard
Debye formula adapted for magnetic spin scatterers. If
the spins are correlated over large distances, the double
summation in (11) will be proportional to N2, whereas for
short-range order it will be proportional to N.

In order to compare the results for different lattice
sizes, we will plot the scattering per spin, (do /dQ)/N.
As well, the magnetic form factor f(Q), which merely at-
tenuates the signal at high Q, has been divided out. A
unit-cell edge of a ;=10 A, which is typical for pyro-
chlores, has been assumed in order to give the scattering
vector appropriate units. The result is shown in Fig. 6(a)
for two temperatures. In the Q range considered, two
broad peaks are apparent with no size effects observed for
T/|J|=1. However, at the very low temperature
T/|J|=0.05, the L =2 data deviates slightly from data
for larger lattices but the L =4 and 6 profiles are virtual-
ly identical. This implies that there are some weak corre-
lations beyond two unit-cell lengths but not beyond four
cell lengths. In order to appreciate the diffuse nature of
the scattering in Fig. 6(a), the scattering function for the
model with a NNN interaction is shown in Fig. 6(b).
Here the development of Bragg-like peaks, which grow
with lattice size and also become sharper for the larger
lattices, is obvious. The diffuse scattering in Fig. 6(a) is
due to small correlated droplets whose spatial extent is
roughly two unit cells. This result essentially eliminates
the possibility of any incommensurate order with a very
weak phase transition.

The scattering in Fig. 6(a) can be compared (after scal-
ing with an appropriate form factor) directly with experi-
mental neutron-diffraction results for FeFs,>¢ Y,Mn,0,,2!
and Tb,M0,0,.2?° FeF; does exhibit LRO below 16 K;
however, over a wide temperature range from T, to 10T,
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(a) JN'NN = 0
T/l = 0.05

£(Q) N!

FIG. 6. Powder neutron-scattering profiles calculated from
spin configurations generated by Monte Carlo simulations at
low temperature. (a) Diffuse scattering arising from short-range
correlations and (b) Bragg-like scattering from the model with a
NNN interaction for comparison purposes.

diffuse magnetic scattering is observable. It is worth
pointing out that the pseudo-Bragg scattering calculated
from (11) is not comparable to experiment because the
derivation of (11) assumes isotropy in spin space which is
broken in a long-range-ordered phase. The positions of
Bragg-like peaks will be correct but relative intensities
will not be.

V. SPIN NEMATIC ORDER

In a collinear spin nematic, the spins are all oriented
along an arbitrarily selected single axis in spin space.
The actual polarity of the spins is, however, not long-
range ordered. Thus, nematic order is not characterized
by an ordering wave vector but by a tensor

Q“ﬂ=—-11\} S 1(S7SP) — 167 .

1

Diagonalizing Q®? determines a suitable coordinate sys-
tem in spin space and the eigenvalues (A) characterize the
type of long-range nematic order. At low temperature,
where (S;) =1, three simple cases can be distinguished:
(1) A=(0,0,0), no long-range nematic order, (2)
A=(—1,—12)  collinear nematic order, and (3)
A=(L,1,—1), coplanar order, where the A’s are eigenval-
ues of Q. These eigenvalues have been calculated at
two temperatures, 7/ |J=0.2 and 0.05 for lattice sizes
L =2, 4, and 6, and simulation lengths of 5000 MCS,
which is longer than the relaxation time as determined in
the next section. The results for A™=(AI+A3+213)!"?
are shown in Table I. Clearly all eigenvalues are ex-
tremely small ( <<1l) indicating no long-range nematic

= o]
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TABLE I. Root-mean-square eigenvalue A™° of the spin
nematic ordering tensor Q%. Nonzero eigenvalues indicate
long-range nematic order.

T/|J]=0.2 T/1J|=0.05
L=2 6x1073 1X107?
L=4 1x107* 6Xx107°
L=6 3x10™* 2X1073

order at these temperatures. A more detailed investiga-
tion of nematic order will be carried out in a future publi-
cation.

VI. DYNAMICS

In the absence of conventional LRO, it seems natural
to investigate the behavior of some spin-glass order pa-
rameters. The Edwards-Anderson (EA) order parame-
ter37 and the autocorrelation function are defined by

' 2

% > St

t'=0

=% > ()%, (12)

W=~ 3 ($0)5,(0) , (13)

respectively. As t— oo, one expects that gg, (1)=W(1).

1.0

(8(0) -S(t))

"Ti0*_ 10° 10°* 10°
Y S

i)

Tam®) = 7/t {1 - ¥}

-3
T e 168
t (MCS)
FIG. 7. Time dependence (in Monte Carlo Steps per spin) of
(a) the autocorrelation function and (b) the EA order parameter
(see text), for various temperatures from T=2|J| down to
T =0.001]J].
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Figure 7 shows the time dependence of these quantities
for a wide range of temperatures. The solid lines in Fig.
7(b) represent fits to the empirical relationship

x
t

qea(t)= l—exp |[—— , (14)

where the parameter 7 can be interpreted as a relaxation
time. One can see that, when T < |J|, the relaxation time
grows rapidly. Figure 8 shows the temperature depen-
dence of 7 for the two lattice sizes investigated. The cal-
culation was also repeated with no spin pivoting on re-
jected moves as this is expected to have an effect on the
dynamics. The relaxation times were indeed about five
times longer when spin pivoting was turned off. Howev-
er, the qualitative temperature dependence was the same.
At low temperature, 7 seems to roughly follow a power
law

TO:T—I.ZS , (15)

which is consistent with spin freezing only at zero tem-
perature.

These dynamical results should not be interpreted too
literally since vector spins do not obey the stochastic dy-
namics of the MC method. However, Binder®® and Fer-
nandez’® have successfully investigated vector spin dy-
namics from MC simulations, giving arguments that the
qualitative dynamical behavior should be the same. In
reality, the system will display a mixture of stochastic dy-
namics (induced by lattice vibrations) and spin motion
due to the equations of motion. For classical spins, the
equations of motion are

s, off
@ S, XH{", (16)
where H¢T is the local effective field at site i. As it turns
out, the spin pivoting employed in the MC algorithm
mimics (16) to some extent and, as we have seen, does not
effect the qualitative behavior of the dynamics.

The fact that g, (#)—0 as t — o at all finite tempera-
tures is consistent with and reinforces the previous results
showing the lack of any phase transition. The absence of

10°
3 e L =2
1a s L =4
10 ‘s a L = 4 No Pivoting
L ]
@ 10° -
3 ]
5 .| A
- .t
10 11 n“
] %
A
10 3§ . A
3 'a e
MF T, *
10° 10 10" 1 10 10°*
T/

FIG. 8. Temperature dependence of the relaxation time 7 ob-
tained from an empirical fit (see text) of the EA order parame-
ter.
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size effects in 7 indicates that there is no critical slowing
down at finite temperature.

VII. CONCLUSIONS

There are a number of models with no LRO at finite
temperature that do order at T=0. All classical one-
dimensional systems and the two-dimensional (2D)
Heisenberg model are examples. In these systems, the
density of states above the ground-state manifold is so
high that entropy effects will destroy LRO at any
nonzero temperature. There are also some interesting
systems such as the fcc Ising antiferromagnet with
infinite ground-state degeneracy [S(0)xN!73, which
translates to zero entropy per spin] that order at finite
temperature due to entropic selection.’ This is opposite
to the situation for one-dimensional systems. Finally,
there are models that remain paramagnetic at all temper-
atures. Examples include the 2D antiferromagnetic tri-
angular lattice with Ising spins®® and Kagomé lattices
with Ising or vector spins.>? All of the evidence indi-
cates that the pyrochlore NN antiferromagnet belongs to
this last group.

The following observations from our simulations pre-
clude the possibility of LRO in the temperature range
considered: (1) absence of any maxima or finite-size
effects in the heat capacity, (2) zero-temperature heat
capacity Cy(T =0)71, (3) no minima in V; except at
T=, (4) T. for NNN model approaches zero as Jynn
goes to zero, (5) the scattering function shows no sharp
peaks or size effects that would be associated with LRO,
(6) the spin-glass order parameters approach zero at all
finite temperatures, and (7) there are no finite-size effects
in the dynamics. The lack of finite-size effects in all cal-
culated properties is important because this can only be
understood if one assumes that the spin-spin correlations
do not extend beyond a distance on the order of two
unit-cell lengths. The MC results show clearly that, if
any thermal selection does occur, it is insufficient to sta-
bilize LRO in the temperature range considered. The
possibility of LRO at temperatures below T =|J| /20 still
exists, however, MC is not efficient at such low tempera-
tures. When one considers the finite-temperature results
together with the finite number of continuous degrees of
freedom in the ground state, an extremely low-
temperature conventional LRO phase seems unlikely.

In light of these results, it is useful compare the pyro-
chlore lattice of corner-sharing tetrahedra with the fcc
lattice of edge-sharing tetrahedra. To begin with, the
corner-sharing lattice is more sparsely connected than
the edge-sharing counterpart, as the names imply. This
in itself will inhibit LRO. A more precise comparison
can made by considering ground-state degeneracies. The
ground state for the fcc Ising antiferromagnet is N1!/3-
fold degenerate, which is a much smaller degeneracy than
the N-dimensional degeneracy in the pyrochlore case.
The two-dimensional continuous degeneracy of type-I fcc
vector antiferromagnets is also small in comparison. The
degeneracies for the fcc models are broken by thermal
fluctuations. In the Ising case, LRO is stabilized and, in
the vector spin case, a collinear structure is selected. It is
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quite possible that thermal fluctuations will select a sub-
set of the large ground-state manifold in pyrochlores, but
that this subset is not restrictive enough to produce a
long-range-ordered phase.

It would be interesting to investigate the system using
a molecular-dynamics approach or quantum MC tech-
niques. A proper dynamical treatment may give some
understanding of the spin-glass-like behavior experimen-
tally in pyrochlore antiferromagnets. Also, the effects of
small levels of disorder should be investigated, i.e., will
5% chemical disorder induce spin freezing at nonzero
temperature?
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